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Abstract

It can be seen that a mixture of an exponential distribution and a gamma distribution
with increasing failure rate for the right choice of parameters can yield a distribution
with a bathtub-shaped failure rate. In this paper we consider a continuous mixture of
exponentials and a continuous mixture of gammas with increasing failure rates and show
that the resulting mixture has a bathtub-shaped failure rate.
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1. Introduction

We consider mixtures of continuous distributions whose failure rate turns out to have a
bathtub failure shape. For extensive discussions concerning mixtures of survival functions and
also bathtub-shaped failure rates, see the recent books of Lai and Xie (2006) and also Marshall
and Olkin (2007).

Many populations studied in reliability can be considered heterogeneous. The reason for this
is that there are usually at least two subpopulations: the normal (sometimes called the strong)
subpopulation and the defective (or weak) subpopulation. This implies that the population can
be modeled as a mixture of two or more lifetimes. The failure rate function for the population is
not just a simple composite of the failure rate of the subpopulations. It is a complicated function
whose shape is hard to predict, even if the shape of the failure rates of the subpopulations are
very simple.

Several important results about the limiting behavior of failure rates of mixtures of distribu-
tions are given in Block et al. (2003). In Example 2.4 therein it was shown that a mixture of an
exponential distribution and a gamma distribution with the right choice of parameters can yield
a distribution with a bathtub-shaped failure rate. Recently, in Block et al. (2008) the overall
behavior of similar mixtures was discussed. In that paper it is shown that when a continuous
mixture of exponentials, gammas, or Weibulls with decreasing failure rates are mixed with a
gamma with increasing failure rate, under certain conditions on the parameters, a distribution
having a bathtub-shaped failure rate is obtained.
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In the present paper we show that these results can be extended. The single gamma
distribution having increasing failure rate, mentioned in the previous paragraph, can be replaced
by a continuous mixture of gammas with increasing failure rates and this will still result in a
distribution with a nondegenerate bathtub failure rate. Our main result is Theorem 2.1 in
Section 2. Details are given in Appendix A.

A few facts about the gamma distribution are needed. The density of the gamma with shape
parameter γ > 0 and scale parameter λ > 0 is given by

g(t | λ, γ ) = λγ

�(γ )
tγ−1 exp(−λt) for t > 0

and the survival function is denoted by Ḡ(t | λ, γ ). If λ = 1, we use the notation g(t | γ ) and
Ḡ(t | γ ), respectively. We also have, for t > 0 and γ > 2,

g′(t | γ ) = g(t | γ − 1) − g(t | γ )

and
g′′(t | γ ) = g(t | γ − 2) − 2g(t | γ − 1) + g(t | γ ).

We now give the definition of a bathtub distribution.

Definition. A distribution has a bathtub-shaped failure rate if the failure rate function is
decreasing up to a point and then increasing after that point. We sometimes use the term
bathtub distribution to designate a distribution with a bathtub-shaped failure rate function.

Notes. (a) The terms decreasing and increasing will be used to mean nonincreasing and
nondecreasing. If the monotonicity is strict, we will precede the terms with ‘strictly’.

(b) A bathtub distribution will be said to be degenerate bathtub if the failure rate function is
always increasing or always decreasing. Otherwise it will be said to be nondegenerate bathtub.

2. Main result

It was recognized by several authors that distributions with bathtub-shaped failure rates
could arise as simple mixtures. For example, Gupta and Warren (2001, Section 3) showed that
a certain mixture of two gammas, one with an increasing failure rate (IFR) and the other with
a decreasing failure rate (DFR), could have a failure rate which is bathtub. An even simpler
example, given in Block et al. (2003, Example 2.4), gives a mixture of an exponential and
an IFR gamma which also has a bathtub-shaped failure rate. It turns out that both of these
examples are a special case of a much more general result which is given in Block et al. (2008).
Mixing an IFR gamma with a host of different DFR distributions turns out to have a failure rate
with bathtub shape. In the present paper we show that we can replace the single gamma by a
mixture of IFR gammas and obtain the same results. A mixture of IFR gammas is in general
not IFR. However, subject to restrictions on the parameters, mixtures of two IFR gammas may
be IFR. See Gupta and Warren (2001) where examples and the restrictions on the parameters
are given. As part of our main result, we show that our continuous mixture of IFR gammas is
also IFR.

In the following theorem we consider a mixture of two quantities: an arbitrary mixture of
exponentials and an arbitrary mixture of IFR gammas. Parameters are chosen so that the failure
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rates of these two quantities do not cross and also so that the mixture of IFR gammas turns out
to be IFR (see Theorem 2.1(ii)).

Notation. In the following theorem we consider mixtures of exponential distributions with
scale mixture random variable � and probability measure R. We also consider mixtures of
gamma distributions with shape parameter random variable � and scale parameter λ0 > 0.
Restrictions for the random variables and parameters for the general case of Theorem 2.1(iii)
are as follows.

(A) For the random variable �, we assume that its probability measure has support on a
subset of (λ0, ∞).

(B) For the random variable �, we assume that it takes nonzero values only in the interval
(α, β) with 2 < α < β < δ(α), where δ(α) = min(2α − 1, 4α − 6, α + 0.5 +
0.5

√
8α − 7). Also, δ(α) can be written as

δ(α) =

⎧⎪⎨
⎪⎩

4α − 6 if 2 < α < 2.5,

2α − 1 if 2.5 ≤ α < 4,

α + 0.5 + 0.5
√

8α − 7 if 4 ≤ α.

Theorem 2.1. Consider a mixture of the following two families of mixtures:

• an arbitrary mixture of exponentials with density h1(t) = E[� exp(−�t)], where � is
the mixture random variable with probability distribution R; and

• an arbitrary mixture of gammas each with increasing failure rate and the mixture having
density

h2(t) = E

[
λ0

�t�−1 exp(−λ0t)

�(�)

]
, λ0 > 0,

where � ≥ 1 is the mixing random variable.

The overall mixture has density

f (t) = p1h1(t) + p2h2(t),

where 0 ≤ pi ≤ 1, i = 1, 2, and p1 + p2 = 1. Then,

(i) for p1 = 1, f (t) = h1(t) has a decreasing failure rate;

(ii) for p1 = 0, f (t) = h2(t) has an increasing failure rate if � takes values in [α, α +0.5+
0.5

√
8α − 7], where α > 2;

(iii) for 0 < p1 < 1, under the parameter restrictions given in (A) and (B), the mixture has a
bathtub-shaped failure rate.

If R has a finite first moment then the mixture is nondegenerate bathtub.

Before giving the proof of Theorem 2.1 we give some examples showing that if the conditions
of Theorem 2.1(iii) are not met, we do not obtain the bathtub shape. We also give some notes
on the relation to previous results.

The choice of parameters in Theorem 2.1(iii) gives sufficient conditions to guarantee that the
mixture is bathtub. It turns out these bounds are not so far away from necessary conditions, as the
following examples show. We give four examples where the parameters chosen are very close

https://doi.org/10.1239/jap/1294170507 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170507


902 H. W. BLOCK ET AL.

to but not included in the region given in Theorem 2.1(iii). The behaviors of the failure rates
for these examples are quite different from the bathtub shape obtained in Theorem 2.1. In fact,
there are many additional changes of monotonicity (bathtub has one change from decreasing
to increasing).

For all four examples below, we consider a mixture of the form

f (t) = p1λ exp(−λt) + p2g(t | α1) + p3g(t | α2),

where the g(t | α) are gamma densities.

Example 2.1. Let p1 = p2 = p3 = 1
3 , λ = 2, α1 = 1.5, and α2 = 13

6 . The resulting
failure rate has a modified bathtub shape (i.e., increasing, decreasing then increasing). Here
1 < α1 < 2 < α2.

Example 2.2. Let p1 = 0.05, p2 = 0.475, p3 = 0.475, λ = 1.4, α1 = 2.1, and α2 = 3.
The failure rate has at least four changes of monotonicity. Here 2 < α1 < 2.5, but α2 >

4α1 − 6 = 2.4.

Example 2.3. Let pi and λ be as in Example 2.2, α1 = 2.6, and α2 = 4.3. The failure rate has
at least four changes of monotonicity. In this case, 2.5 < α1 < 4 and α2 > 2α1 − 1 = 4.2.

Example 2.4. Let pi and λ be as in Example 2.2, α1 = 4.2, and α2 = 7.5. The failure rate has
at least seven changes of monotonicity. Here 4 < α1 and α2 > α1+0.5+0.5

√
8α1 − 7 = 7.28.

Notes. (a) In regards to Theorem 2.1(ii), Gupta and Warren (2001) considered the mixture of
two gammas with shape parameters a1 and a2 and the same scale parameter. For the quadratic,
which is the numerator of η′(t) given on page 1908 of their paper, it turns out the mixture is IFR
if the discriminant is negative. This reduces to a1 > 1, a2 > 1,and a1 − 1 > (a1 − a2 + 1)2/4
(this includes Cases 5 and 6 in the paper along with a symmetric version). This yields a slightly
larger region than the one given in Theorem 2.1(ii) when � reduces to the corresponding two
point mixture distribution. However, it is important to note that the present result is for arbitrary
mixtures of IFR gammas.

(b) In particular, we illustrate the Theorem 2.1(ii) result for the mixture of n gammas. Note
that, for the mixture of three gammas, the techniques of Gupta and Warren (2001) do not
appear to apply. Let λ0 = 1 and a1 < a2 < · · · < an, and assume that a1 > 1 and
an < a1 + 0.5 + 0.5

√
8a1 − 7. By taking α = a1, it follows from Theorem 2.1(ii) that the

mixture
n∑

j=1

pj exp(−t)
taj −1

�(aj )

has an increasing failure rate.

(c) As in Block et al. (2008), we can replace a continuous mixture of exponentials with a
continuous mixture of DFR gammas, ‘modified’ DFR Weibulls, and any survival distribution
which is completely monotone.

(d) Theorem 2.1(iii) gives conditions under which the mixture has an increasing failure rate.
A paper by Lynch (1999) also gave conditions under which a mixture has increasing failure
rate. The present theorem has no conditions other than on the support of the mixing measure,
while Lynch assumed the mixing distribution was IFR.
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2.1. Proof of Theorem 2.1

For p1 = 1, the result of the theorem follows since mixtures of DFR distributions are DFR.
The proof of the result for p1 = 0, which we include at the end of this section, follows from
a special case of the proof of the main result. We prove the main result for λ0 = 1. The more
general case follows from rescaling. For λ0 = 1, we have

f (t) = p1 E[� exp(−�t)] + p2 E

[
exp(−t)t�−1

�(�)

]
,

where 0 < p1 < 1, the support of the probability R is a subset of (1, ∞), and � is as given
in Theorem 2.1(iii). To show that the failure rate function r(t) = f (t)/F̄ (t) is bathtub, we
examine the function η(t) = −f ′(t)/f (t). If we can show that η′(t) has one change of sign
from negative to positive (i.e. η(t) has a nondegenerate bathtub shape) then, by a result of Glaser
(1980), r(t) is either IFR or has a nondegenerate bathtub shape.

To prove Theorem 2.1(iii), we need a proposition. This is proven in Appendix A along with
several other results that are needed. First, we note that the derivative of η(t) is given by

η′(t) = −f (t)f ′′(t) + (f ′(t))2

f 2(t)
,

and, thus, the signs of η′(t) and the numerator above are equivalent. We set

k(t) = [f ′(t)]2 − f (t)f ′′(t).

Then it is easy to check that

k(t) = p2
1A11(t) + p2

2A22(t) + p1p2A12(t),

where
Akk(t) = [h′

k(t)]2 − h′′
k(t)hk(t), k = 1, 2, (2.1)

and
A12 = 2h′

1(t)h
′
2(t) − h′′

1(t)h2(t) − h′′
2(t)h1(t). (2.2)

We now let W(t) = exp(2t)t4−2αk(t) for t > 0. Since exp(2t)t4−2α > 0, the sign change
properties of k(t) are the same as the sign change properties of W(t). We now state the
proposition.

Proposition 2.1. (i) limt→0+ W(t) = −∞.

(ii) limt→∞ W(t) = ∞.

(iii) W(t) strictly increases on (0, ∞).

Proof. See Appendix A.

Then W(t) changes sign exactly once from negative to positive and so η(t) is nondegenerate
bathtub shaped. Thus, from Glaser (1980), r(t) is IFR or nondegenerate bathtub. We can rule
out IFR by Lemma A.2 in Appendix A when � has a finite mean.

We conclude with the p1 = 0 case. From the proof of Lemma A.1(ii) in Appendix A,

k(t) = 1
2 exp(−2t) E[t�1+�2−4
(�1, �2)],

where �1 and �2 are independent versions of �. Now if � takes values in [α, β] then (�1, �2)
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take values in [α, β] × [α, β]. It is not hard to see, from the argument at the beginning of
Appendix A, that the largest square such that 
(a1, a2) ≥ 0 for (a1, a2)ε[α, β] × [α, β] has
α > 1 and β = α + 0.5 + 0.5

√
8α − 7. Thus, from Glaser (1980), f (t) has an increasing

failure rate.

Appendix A

We use the following notation:


(a1, a2) = (a1 − 1)(a2 − a1 + 1) + (a2 − 1)(a1 − a2 + 1)

�(a1)�(a2)

= (a1 + a2 − 2) − (a1 − a2)
2

�(a1)�(a2)
.

This quantity is nonnegative if the numerator is nonnegative, which occurs if

a1 + 0.5 − 0.5
√

8a1 − 7 ≤ a2 ≤ a1 + 0.5 + 0.5
√

8a1 − 7

for a1 ≥ 7
8 .

Furthermore, let

Q(�, �, t) = (� − 1)2t3−� + 2(� − 1)(� − 1)t2−� + (� − 1)(� − 2)t1−�

�(�)
.

It is easy to see that Q(�, �, t) > 0 by the restrictions on � and �.
We need the following result to prove Proposition 2.1.

Lemma A.1. For the quantities Aij given in (2.1) and (2.2), and, for t > 0,

(i) A11(t) = − 1
2 E[�1�2(�2 − �1)

2 exp(−(�1 + �2)t)];
(ii) A22(t) = 1

2 exp(−2t) E[t�1+�2−4
(�1, �2)];
(iii) A12(t) = − E[t2�−4�Q(�, �, t) exp(−(� + 1)t)],

where �1 and �2 are independent versions of �, and similarly for �i, i = 1, 2.

Proof. (i) From (2.1),

A11(t) = [h′
1(t)]2 − h1(t)h

′′
1(t)

= (E[�2 exp(−�t)])2 − E[�3 exp(−�t)] E[� exp(−�t)].
Hence,

A11(t) = E[�2
1�

2
2 exp(−(�1 + �2)t) − �3

1�2 exp(−(�1 + �2)t)]
= E[�2

1�2(�2 − �1) exp(−(�1 + �2)t)].
By symmetry,

A11(t) = E[�2
2�1(�1 − �2) exp(−(�1 + �2)t)].

Combining these quantities gives

A11(t) = 1
2 E[(�2

1�2(�2 − �1)
2 + �2

2�1(�1 − �2)) exp(−(�1 + �2)t)]
= − 1

2 E[�1�2(�1 − �2)
2 exp(−(�1 + �2)t)].
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(ii) Similarly, from (2.1),

A22(t) = [h′
2(t)]2 − h2(t)h

′′
2(t)

= [E g(t | � − 1) − E g(t | �)]2

− E g(t | �)[E g(t | � − 2) − 2 E g(t | � − 1) + E g(t | �)]
= [E g(t | � − 1)]2 − E g(t | �) E g(t | � − 2).

The above quantity thus becomes

E[g(t | �1 − 1)g(t | �2 − 1) − g(t | �1)g(t | �2 − 2)].
By symmetry, the above quantity can also be written as

E[g(t | �2 − 1)g(t | �1 − 1) − g(t | �2)g(t | �1 − 2)].
Consequently,

A22(t) = 1
2 (E[g(t | �1 − 1)g(t | �2 − 1) − g(t | �1)g(t | �2 − 2)]
+ E[g(t | �2 − 1)g(t | �1 − 1) − g(t | �2)g(t | �1 − 2)])

= 1

2
e−2t E

[
t�1+�2−4

{
2

�(�1 − 1)�(�2 − 1)
− 1

�(�1)�(�2 − 2)

− 1

�(�2)�(�1 − 2)

}]

= 1

2
e−2t E

[
t�1+�2−4

�(�1)�(�2)
{2(�1 − 1)(�2 − 1) − (�2 − 1)(�2 − 2)

− (�1 − 1)(�1 − 2)}
]

= 1

2
e−2t E

[
t�1+�2−4

�(�1)�(�2)
{(�1 − 1)(�2 − �1 + 1) + (�2 − 1)(�1 − �2 + 1)}

]

= 1
2 e−2t E[t�1+�2−4
(�1, �2)].

(iii) From (2.2),

A12(t) = 2h′
1(t)h

′
2(t) − h1(t)h

′′
2(t) − h′′

1(t)h2(t).

Recalling that g(t | λ, γ ) is the density of a gamma distribution with scale parameter λ > 0
and shape parameter γ > 0, we have

A12(t) = −2 E[�2 exp(−�t)(g(t | 1, � − 1) − g(t | 1, �))] − E[�3 exp(−�t)g(t | 1, �)]
− E[� exp(−�t){g(t | 1, � − 2) − 2g(t | 1, � − 1) + g(t | 1, �)}]

= − E[� exp(−(� + 1)t)t2�−4Q(�, �, t)].
We can now prove Proposition 2.1.

Proof of Proposition 2.1. We write

W(t) = p2
1W11(t) + p2

2W22(t) + p1p2W12(t),
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where
Wjk(t) = exp(2t)t4−2αAjk(t) for (j, k) ∈ {(1, 1), (2, 2), (1, 2)}.

Consequently,

W11(t) = − 1
2 t4−2α E[�1�2(�2 − �1)

2 exp(−(�1 + �2 − 2)t)],
W22(t) = 1

2 E[t�1+�2−2α
(�1, �2)],
W12(t) = − E[t2(�−α)�Q(�, �, t) exp(−(� − 1)t)].

(i) If � is not degenerate, it is easy to check, as t → 0+, with α > 2 and � > 1, that
W11(t) → −∞. Similarly, using the fact that � > α > 2, W22(t) → 0 as t → 0+. If � ≥ 1
and � ≥ 2, then W12(t) ≤ 0 for all t . Thus, if R is not degenerate then W(0+) = −∞. If �

is degenerate then W11(t) = 0. But then if β < 2α − 1, we have W12(0+) = −∞, in which
case we still have W(0+) = −∞.

(ii) Similarly, as t → ∞, W11(t) → 0, W22(t) → ∞, and W12(t) → 0. In the latter case,
we make use of the assumption that the support of R is contained in (1, ∞). Thus, W(t) → ∞.

(iii) It is easy to see that W11(t) and W22(t) are increasing. To show that W12(t) is increasing,
let

g(t) = �(�)(t2(�−α)Q(�, �, t) exp(−(� − 1)t))

= exp(−(� − 1)t)[(� − 1)2t�−2α+3 + 2(� − 1)(� − 1)t�−2α+2

+ (� − 1)(� − 2)t�−2α+1].
Then

g′(t) = exp(−(� − 1)t)[−(� − 1)3t�−2α+3 + (� − 1)2(−� − 2α + 5)t�−2α+2

+ (� − 1)(� − 1)(� − 4α + 6)t�−2α+1

+ (� − 1)(� − 2)(� − 2α + 1)t�−2α].
We now show the four coefficients above are negative. This is obvious for the first since

� > 1. For the second coefficient, since � > α > 2, it follows that −�−2α+5 < −3α+5 <

−1 < 0. For the third coefficient, we require that � − 4α + 6 < 0, and, for the last coefficient,
we need �− 2α + 1 < 0. These conditions become β < 4α − 6 and β < 2α − 1, respectively,
which we have assumed. This means that g(t) is decreasing and so W12(t) is increasing.

We need one last lemma.

Lemma A.2. The mixture in Theorem 2.1 has a nondegenerate bathtub shape if R has a finite
first moment.

Proof. First, note that

r ′(t) = f ′(t)F̄ (t) + f 2(t)

F̄ 2(t)
for t > 0,

and so, for 0 < p1 < 1,
lim

t→0+ r ′(t) = f ′(0) + f 2(0)

= p2
1(E[�])2 − p1 E[�2]

= −p1 var � − p1(1 − p1) E2 V

< 0.

Consequently, r(t) cannot be IFR and so must have a degenerate bathtub shape.
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