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The onset of electron-only reconnection
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Motivated by recent observations of ‘electron-only’ magnetic reconnection, without an
ion-scale sheet or ion outflows, in both the Earth’s magnetosheath and in numerical
simulations, we study the formation and reconnection of electron-scale current sheets
at low plasma β. We first show that ideal sheets collapse to thicknesses much smaller
than the ion scales, by deriving an appropriate analogue of the Chapman–Kendall
collapse solution. Second, we show that, in practice, reconnection onset happens in
these collapsing sheets once they reach a critical aspect ratio, because the tearing
instability then becomes faster than their collapse time scale. We show that this can
happen for sheet thicknesses larger than the ion scale or at only a few times the
electron scale, depending on plasma parameters and the aspect ratio of the collapsing
structure, thereby unifying the usual picture of ion-coupled reconnection and the new
regime of electron-only reconnection. We derive relationships between plasma β, ion-
to-electron temperature ratio, the aspect ratio, electron outflow velocity and the final
thickness of the sheets, and thus determine under what circumstances electron-scale
sheets form and reconnect.
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1. Introduction
Magnetic reconnection in current sheets is present in many astrophysical and

laboratory settings and is an important process for converting magnetic energy into
thermal and non-thermal kinetic energy (Zweibel & Yamada 2009; Ji et al. 2019;
Yamada, Kulsrud & Ji 2010). In low-β collisionless guide-field reconnection, field
lines are broken within a microscopic electron diffusion region, of size comparable
to the electron inertial length de = c/ωpe, where ωpe =

√
4πnee2/me is the electron

plasma frequency. In the usual picture of (guide-field) reconnection, this electron
region is embedded in a larger-scale ‘ion region’ of thickness of order the ion
sound scale ρs = ρi

√
ZTe/2Ti, where the ion gyroradius ρi = vthi/Ωi, the ion

thermal speed vthi =
√

2Ti/mi and the ion gyrofrequency Ωi = ZeB0/mic. Associated
with this region one expects bidirectional jets of plasma flowing away from the
reconnection site at around the in-plane Alfvén speed vAy = By/

√
4πnimi, where

By is the reconnecting (in-plane) magnetic field. We will term this standard picture
‘ion-coupled’ reconnection.

However, recent analysis of data from the MMS spacecraft (Phan et al. 2018) has
shown that, at least in Earth’s turbulent magnetosheath, one overwhelmingly finds
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2 A. Mallet

current sheets with thicknesses of only a few de (i.e. much thinner than ρs) without
associated ion regions and ion jets, but with clear electron jets moving at appreciable
fractions of the electron Alfvén velocity vAey = By/

√
4πneme. This new regime has

also recently been reproduced in the numerical simulations of Sharma Pyakurel
et al. (2019). A similar situation has been observed in the hybrid Vlasov–Maxwell
turbulence simulations of Califano et al. (2018), who observed that when energy
is injected at scales much larger than the ion scales, ion-coupled reconnection is
observed, while if energy is injected closer to the ion scales, only electron jets and
electron-scale sheets are observed. Reconnection of current sheets with thicknesses
of a few de is also observed in the VINETA-II experiment (Jain et al. 2017). We
will follow the terminology of Califano et al. (2018) and term this new regime
‘electron-only’ reconnection.

The goal of this paper is to develop a theoretical picture that can explain the onset
of this new regime of electron-only reconnection, and under what circumstances it
occurs in place of the standard ion-coupled reconnection. To achieve this, we will
make use of a simplified model, rigorously derived from gyrokinetics in the limit
βe ∼ me/mi � 1, the so-called ‘kinetic reduced electron heating model’, henceforth
KREHM (Zocco & Schekochihin 2011). The details of this model, as well as its utility
and limitations, are described in § 2.

To make progress in understanding electron-only reconnection onset, there are
two main questions which should be answered. First, can current sheets collapse to
thicknesses of order a few de, significantly below the ion scales? We answer this in
§ 3 by deriving a collapsing X-point solution analogous to Chapman–Kendall collapse
(Chapman & Kendall 1963; Biskamp 2000), and showing that the solution is valid
both above and below the ion scales. This means that ideal (i.e. with field lines frozen
into an effective electron flow) sheets can indeed collapse well past the ion scale.

Second, at what sheet thickness do these collapsing sheets begin to reconnect, and
under what conditions is this thickness above (obtaining ion-coupled reconnection) or
well below (obtaining electron-only reconnection) the ion scales? We answer this in
§ 4, showing that the sheets are disrupted when they collapse to a critical thickness1

at which the linear tearing growth rate2 is faster than the collapse or formation rate of
the sheet derived in § 3. Our analysis allows us to derive relationships between βe and
the aspect ratio and thickness of the sheet at disruption (reconnection onset), and we
thus determine the physical conditions under which one will observe ion-coupled or
electron-only reconnection. The essential physical result is that if the initial collapsing
solution is not sufficiently anisotropic when its thickness is above the ion scales, the
collapse continues down to a thickness well below the ion scale, and electron-only
reconnection will occur. Remarkably (considering the formal limitation of KREHM to
low β), we will see that our model seems to agree rather well with the magnetosheath
observations of electron-only reconnection (Phan et al. 2018; Stawarz et al. 2019).

2. Equations
Our starting point is the KREHM derived by Zocco & Schekochihin (2011)

(henceforth ZS11) from gyrokinetics for electron β of order the mass ratio βe ∼

Zme/mi, where Z= qi/e (and the temperature ratio τ = T0i/T0e∼ 1). The spatial scales
1Notably, this critical thickness at which reconnection onset occurs is always larger than that of the

steady-state reconnecting configuration, derived in appendix A, similar to the results of Pucci & Velli (2014)
and Uzdensky & Loureiro (2016) for resistive reconnection onset.

2We derive the growth rate of the tearing mode for sheets with thicknesses below the ion scales in
appendix B.
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The onset of electron-only reconnection 3

of the fluctuations are ordered to be comparable to the relevant ion kinetic scales,
k⊥ρi ∼ k⊥ρs ∼ 1, and so KREHM is able to capture both the large-scale (k⊥ρs� 1)
and small-scale (k⊥ρs� 1) behaviour of the plasma, as well as the transition between
them. This is essential for our present purposes, since we are attempting to diagnose
the transition between ion-coupled and electron-only reconnection onset.

KREHM is in some sense a minimal model for describing collisionless guide-field
reconnection, since the equations incorporate the dispersive effects entering at the ion
sound scale ρs that are thought to be essential to enable fast reconnection (Rogers
et al. 2001), a flux-unfreezing mechanism (electron inertia) entering at the electron
inertial scale de, and a rigorous treatment of the (electron) heating channel. The
equations, written in terms of the electrostatic potential φ, the magnetic potential A‖
and the reduced electron distribution function ge, are

d
dt

Z
τ
(1− Γ̂0)

eφ
T0e
= b̂ · ∇

e
cme

d2
e∇

2
⊥

A‖, (2.1)

d
dt
(A‖ − d2

e∇
2
⊥

A‖)=−c
∂φ

∂z
−

cT0e

e
b̂ · ∇

[
Z
τ

(
1− Γ̂0

) eφ
T0e
−
δT‖e
T0e

]
, (2.2)

dge

dt
+ v‖b̂ · ∇

(
ge −

δT‖e
T0e

F0e

)
=C[ge] +

(
1−

2v2
‖

v2
the

)
F0eb̂ · ∇

e
cme

d2
e∇

2
⊥

A‖, (2.3)

where
d
dt
=
∂

∂t
+

c
B0
{φ, ... }, (2.4)

b̂ · ∇=
∂

∂z
−

1
B0
{A‖, ... }, (2.5)

δT‖e
T0e
=

1
n0e

∫
d3v

2v2
‖

v2
the

ge, (2.6)

and Γ̂0, encoding the ion finite Larmor radius effects, is the inverse Fourier transform
of

Γ0
(

1
2 k2
⊥
ρ2

i

)
= I0

(
1
2 k2
⊥
ρ2

i

)
e−1/2k2

⊥
ρ2

i , (2.7)
where I0 is the modified Bessel function. The electron density perturbation δne is
related to φ via the relation

δne

n0e
=−

Z
τ

(
1− Γ̂0

) eφ
T0e
. (2.8)

The Poisson bracket appearing in the equations is {f , g} = ẑ · ∇⊥f × ∇⊥g. We have
taken the limit νei� ω, which allows us to neglect a resistive term in (2.2) (but not
the collisions C[ge] in (2.3)).

The function ge is a mathematically convenient reduced electron-gyrocentre parallel
velocity distribution function, which encodes the electron heating channel. This is
perhaps all the information that is needed to understand the present paper: in more
detail, it is related to the perturbed distribution function δfe by

δfe(r, v, t)=
(

1+
δne

n0e
+

2v‖u‖e
v2

the

)
F0e + ge(Re, v, t), (2.9)

where Re = r+ v⊥ × ẑ/Ωe is the electron gyrocentre. Integrating the zeroth and first
v‖-moments of δfe over all velocity (perturbed electron density and parallel flow),
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4 A. Mallet

we can see that contribution from ge to these vanishes, i.e. ge contains the information
of all higher moments, but not density or parallel flow. It turns out (see ZS11 for
details) that the non-trivial v⊥ dependence of ge can be safely ignored, and so ge can
be considered a function of v‖, space and time only.

We may write (2.2) as

∂A‖
∂t
=−cb̂ · ∇

[
φ +

Z
τ

(
1− Γ̂0

)
φ −

δT‖e
e

]
+

d
dt

d2
e∇

2
⊥

A‖, (2.10)

which defines an effective velocity

ueff = ẑ×∇⊥
c

B0

[
φ +

Z
τ

(
1− Γ̂0

)
φ −

δT‖e
e

]
, (2.11)

into which the field lines are frozen, apart from the effects of electron inertia (Zocco &
Schekochihin 2011). Thus, field lines are only broken when gradients are of order d−1

e .
These equations have various interesting limits. First, for fluctuations on long length

scales (compared to the ion gyroradius) k⊥ρi� 1, and Γ0 ≈ 1− k2
⊥
ρ2

i /2, and one can
show that the equations reduce to those of RMHD, reduced magnetohydrodynamics
(Strauss 1976), describing nonlinearly interacting Alfvénic fluctuations propagating up
and down the magnetic field. Second, if one takes k⊥ρi� 1, Γ0≈ 0, and subsequently
expand in the square root of the mass ratio

√
me/mi, i.e. k⊥de� 1, one obtains the

equations of ERMHD, electron reduced magnetohydrodynamics (Schekochihin et al.
2009), which involve nonlinearly interacting kinetic-Alfvén fluctuations propagating up
and down the field.

It is important to note that, as mentioned earlier, formally these equations are
only valid for βi ∼ βe � 1. This rather limits their formal applicability to some
physical regimes, including the magnetosheath, where electron-only reconnection has
recently been observed (Phan et al. 2018; Stawarz et al. 2019), where βi & 1 and
βe . 1. Nonetheless, we believe that their simplicity allows us to model the essential
physics of current sheet collapse and reconnection onset in a useful way, for three
main reasons. First, simulations of turbulence using KREHM have revealed that it
seems to compare rather well with more complete models, even at higher β than its
formal regime of applicability (Grošelj et al. 2017). Second, we will show in § 3 that
the Chapman–Kendall-like current sheet collapse solution also exists in ERMHD at
arbitrary βi and τ , meaning that this part of the analysis remains true even without
the formal βi� 1 requirement. Finally, the collisionless tearing mode (which we will
show enables the onset of reconnection in § 4) has a growth rate that decreases with
βe (Numata & Loureiro 2015) for constant ratio of sheet thickness to ρi, meaning
that at higher βe, the basic physics of our picture will remain, but with the sheets
potentially attaining even smaller (relative to ρi) thicknesses.

We should also mention here that Boldyrev & Loureiro (2019) have used a set of
fluid equations derived for k⊥ρi� 1, βi ∼ 1, βe� 1 to study the small-scale tearing
instability and its effect on turbulence, obtaining some results similar to ours (which
is an additional source of reassurance that our low-βi ordering does not invalidate
the basic picture of tearing-induced reconnection onset): we have used KREHM
instead because, first, we want a set of equations covering the ion-scale transition at
k⊥ρi ∼ 1 to describe the transition between the ion-coupled and electron-only
reconnection regimes, and second, the electron heating channel as encoded by (2.3)
is important for a realistic picture of reconnection.
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The onset of electron-only reconnection 5

3. X-point collapse

For electron-only reconnection to occur, it must first be possible to form current sheets
with thicknesses well below the ion scale. In ideal MHD (magnetohydrodynamics), it
is well known that X-points tend to collapse into sheets (Syrovatskii 1981). It turns
out that this is still true in our system of equations, even at scales well below the
ion gyroradius. If we require

b̂ · ∇∇2
⊥

A‖ = 0, (3.1)

then ge=0 is a solution. Let us also impose a ‘vorticity-free’ condition on the system,

∇
2
⊥
φ = 0. (3.2)

Under this condition, Γ̂0φ = φ
3, and along with (3.1), the whole of (2.1) vanishes.

Our flow must, of course, be consistent with maintaining the condition (3.1).

3.1. Chapman–Kendall solution

One (two-dimensional) solution which satisfies the conditions (3.1), (3.2) is a slightly
modified version of ‘Chapman–Kendall’ collapse (Chapman & Kendall 1963; Biskamp
2000), originally derived for MHD (but which turns out to still be applicable here),

φ =
B0

c
Λ(t)

2
xy, (3.3)

A‖ =
B⊥
2

(
x2
+ 2d2

e

a(t)
−

y2
+ 2d2

e

L(t)

)
, (3.4)

where a(t) and L(t) are the thickness and length of the current sheet respectively. This
solution is an approximation valid in the region close to the X-point in the interior of
a realistic current sheet. Inserting this into (2.10), we obtain

ȧ=−Λ(t)a, (3.5)
L̇=Λ(t)L. (3.6)

Thus, in the absence of reconnection, current sheets can thin to scales much smaller
than the ion scales. However, this does not show that such thin sheets are always
physically realisable: we will show in § 4 that, in fact, localised current configurations
with L > a are disrupted by the onset of reconnection at scales larger than de (but,
importantly, sometimes smaller than ρs)4. White, Hazeltine & Loureiro (2018) have
found that KREHM also allows a more general class of Chapman–Kendall-like
solutions, for example a helically twisted version of the simple solution presented
here.

3The series defining the modified Bessel function is I0(x)=
∑
∞
m=0 (x/2)

2m/(m!)2, so Γ̂0 is just a series in
∇2
⊥

, with the m= 0 term being 1. If we had first taken the small-scale limit k⊥ρi� 1 and said that Γ̂0 ≈ 0
using the large-argument asymptotic expansion of I0, we would have missed this fact.

4Indeed, equations (3.3), (3.4) are valid even at scales below de: perhaps a hint that something interesting
might happen at a larger scale which invalidates this simple scenario.
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6 A. Mallet

3.2. Choosing Λ(t)
It remains for us to decide a reasonable form for Λ(t). We do this in two limiting
cases, a� ρi and a� ρi, and ask that the outflows match the characteristic wave
speed involved in maintaining the structure of the sheet in the y-direction in both cases.
In the case where a � ρi, the outflows should attain the constant in-plane Alfvén
speed vAy = By(a)/

√
4πn0imi at y ∼ L(t). In the small-scale case where a� ρi, the

outflow speed at y∼ L(t) should be the in-plane kinetic-Alfvén wave speed (see ZS11
or Schekochihin et al. 2009),

uKAWy =

√
1
2

(
1+

Z
τ

)
vAy

ρi

a(t)
. (3.7)

Importantly, this is inversely proportional to a. Thus, it is physically reasonable to
choose

Λ(t)=


2vAy

L(t)
, a� ρi,

√
2(1+ Z/τ)vAyρi

a(t)L(t)
, a� ρi,

(3.8)

which defines (inverse) time scales associated with forming sheets of thickness a and
length L. With these choices, equations (3.5) and (3.6) have the solutions

a� ρi : L= L0 + 2vAyt, a= a0L0/L, (3.9)

a� ρi : L= L0 exp
(√

2(1+ Z/τ)vAyρi

a0L0
t
)
, a= a0L0/L. (3.10)

The aspect ratio as a function of a is given by

L
a
=

a0L0

a2
, (3.11)

simply from continuity. It is important to note that, if the sheets are formed as part
of turbulence, this scaling is not accurate, because structures will interact with each
other as well as undergoing their own nonlinear evolution. Instead, one might expect,
for a� ρi, L/a∝ a−1/4 (cf. Boldyrev 2006; Chandran, Schekochihin & Mallet 2015;
Mallet & Schekochihin 2017). The aspect ratio scaling for a� ρi in turbulence is as
yet unknown.

3.3. Collapse time
Let us start with a structure of thickness a0 >ρi, and ask how long it takes for it to
collapse to a thickness a∗<ρi. First, using (3.9), the time taken to collapse to ρi is

tρ ∼
(

a0

ρi
− 1
)

L0

2vAy
≈

a0L0

2vAyρi
. (3.12)

Subsequent collapse from ρi down to a∗ occurs according to (3.10) in a time

t∗ ∼
a0L0 ln(ρi/a∗)√
2
(
1+ Z

τ

)
vAyρi

, (3.13)

which is, in practice, usually of order tρ . Thus, the total collapse time is of order tρ ,
and mainly depends on the initial size and reconnecting field within the structure.
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The onset of electron-only reconnection 7

3.4. Current sheet collapse at higher β
Finally, the question of whether or not this collapse process depends crucially on the
low-β ordering used to derive KREHM may be of interest to the reader. First, for
k⊥ρi� 1, the Chapman–Kendall collapse obviously works, since the RMHD equations
are valid at arbitrary β and can be derived from gyrokinetics under the assumption
k⊥ρi� 1 (Schekochihin et al. 2009). Second, for k⊥ρi� 1, we can examine the (two-
dimensional) electron reduced MHD equations (Schekochihin et al. 2009), which may
be manipulated into the following form, chosen for their similarity to (2.1) and (2.2),

d
dt

Z
τ

eφ
T0e
=

2

2+ βi

(
1+

Z
τ

) b̂ · ∇
e

cme
d2

e∇
2
⊥

A‖, (3.14)

d
dt

A‖ =−
cT0e

e
b̂ · ∇

[
Z
τ

eφ
T0e

]
. (3.15)

The effective velocity into which the field lines are frozen is

ueff = ẑ×∇⊥
c

B0

(
1+

Z
τ

)
φ, (3.16)

which can be compared with (2.11). Under the condition (3.1), equation (3.14)
vanishes5. Inserting (3.3) and (3.4) with de = 0 into (3.15), and requiring the outflow
velocity to be the in-plane kinetic-Alfvén velocity (at larger βi, see Schekochihin
et al. 2009),

uKAWy =

√
1+ Z/τ

2+ βi(1+ Z/τ)
vAy

ρi

a(t)
, (3.17)

we find that the solutions for a(t) and L(t) are

L= L0 exp


√

2(1+ Z/τ)
1+ βi(1+ Z/τ)/2

vAyρi

a0L0
t

 , a= a0L0/L, (3.18a,b)

only mildly different to the KREHM case. Thus, the fact that current sheets collapse
even at thicknesses a� ρi does not depend on the β� 1 ordering of KREHM.

4. Disruption of forming sheets by the tearing instability
A useful model of the disruption of forming current sheets by reconnection has been

developed recently by Uzdensky & Loureiro (2016). In this model, collapsing sheets
are disrupted if their linear tearing mode is faster than their formation time scale, i.e.

γ /Λ(t) > 1, (4.1)

assuming that the nonlinear stage of the tearing mode is at least as fast as the linear
stage.

In general, the tearing mode that disrupts the sheet has the maximum tearing growth
rate γmax if it fits into the sheet, i.e. if kmaxL>1, and by the growth rate of the longest-
wavelength mode that fits in the sheet otherwise, i.e. the mode with kyL = 1. The
relevant tearing growth rates for our system are summarised in table 1: the growth
rates for the case a� ρs are derived in ZS11, while we derive the growth rates for
the opposite case with a� ρs in appendix B.

5Note that the dφ/dt in (3.14) could in fact just be written ∂φ/∂t, because {φ, φ} = 0.
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8 A. Mallet

a/ρs ∆′δin γ /kyvAy δ δin γmaxa/vAy kmaxa

� 1 � 1 H∆′deρs/a Hd2
e∆
′ H1/2deρ

1/2
s ∆′1/2 Hd1/3+2/3n

e ρ2/3+1/3n
s

a1+1/n

(
d2/3

e ρ1/3
s

a

)1/n

� 1 Hρ2/3
s d1/3

e /a Hd4/3
e ρ−1/3

s H1/2ρ1/3
s d2/3

e

� 1 � 1 H∆′deρs/a Hd2
e∆
′ δ Hρs

a

(
de

a

)1/n (
de

a

)1/n

(� 1 Hρs/a Hde δ)

TABLE 1. Scalings for the collisionless tearing mode in various limits, as discussed in
appendix B. The final row, a/ρs� 1 and ∆′δin� 1, is probably inaccurate since we do
not have an analytic solution. The quantity H =

√
1+ τ/Z; please see the appendix for

details.

4.1. Critical aspect ratio
One can show that for our choice of Λ(t), in the case a�ρs, kmax becomes accessible
before the mode with kyL= 1 goes unstable, while in the case where a�ρs, the sheet
is disrupted when kmaxL∼1, and thus in practice we may always use γmax. Using (4.1),
we find that sheets are disrupted for aspect ratios

L
a
>

(
L
a

)
crit

∼


1

√
1+ τ/Z

(
a
de

)1/n ( a
ρs

)(
ρs

de

)(1−1/n)/3

, a� ρs(
a
de

)1/n

, a� ρs.

(4.2)

The a� ρs expression was previously found by Del Sarto et al. (2016)6.
We have shown that there is a maximum achievable aspect ratio for sheets with both

a�ρs and a�ρs. Inserting a∼ρs into (4.2), sheets will become unstable before they
reach the ion scales (a ∼ ρs) only if their aspect ratio becomes larger than (ρs/de)

ν ,
where 1/n6 ν6 1/3+ 2/3n. Once the sheet reaches the thickness at which it disrupts,
it reconnects at that thickness7 until all the available flux has been used up. Thus, if
one observes a reconnecting (i.e. disrupting) sheet with length

L>
ρs

√
1+ τ/Z

(
me

mi

Z
βe

)ν/2
, (4.3)

one expects to see that the sheet thickness is larger than the ion scale and that there
should be bidirectional ion jets moving at vAy. This roughly agrees with the numerical
simulations of Sharma Pyakurel et al. (2019), who found that to obtain fully ion-
coupled guide-field reconnection, L needed to be of order 10di, and is reminiscent
of the results of Mandt, Denton & Drake (1994) for reconnection without a guide
field, who observed a change in the scaling of the reconnection rate once the length of
sheets became comparable to a few times the ion inertial length. In the magnetosheath
interval studied by Phan et al. (2018) and subsequently Stawarz et al. (2019), βe≈ 0.5
and τ/Z≈ 10; choosing ν= 1 and using the a�ρs expression gives the critical length

6The expressions do not match for a= ρs: this is because the analysis of previous sections fails around
a∼ ρs, where the operator Γ̂0 cannot be expanded in small or large argument.

7As in the picture of ‘ideal tearing’ proposed by Pucci & Velli (2014) and elaborated in e.g. Tenerani
et al. (2016) for resistive reconnection.
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The onset of electron-only reconnection 9

for ion-coupled reconnection L/ρs≈ 10 (this is also effectively the critical aspect ratio
of such ion-coupled reconnecting sheets, since it is the point at which a ≈ ρs). In
other words, the fact that ion-scale sheets and ion jets are not often observed in the
magnetosheath means that the aspect ratios of the sheets formed (presumably by the
turbulent dynamics) are not extremely high.

As a→de, current sheets of any appreciable aspect ratio greater than 1 are disrupted
– so in practice, as one might have expected, the steady-state Sweet–Parker-like
configuration, with width de (which we derive in appendix A) is not accessible.
Reconnecting sheets for a � ρs should have the aspect ratio given by the second
expression in (4.2), and so we can estimate the aspect ratio of the sheets observed
by Phan et al. (2018), with thicknesses a ≈ 4de, to be no more than ≈4, using the
n= 1 expression.

A simple estimate of the disruption time scale of the current sheets observed
by Phan et al. (2018) is possible using (3.13). Given that aL is constant during
collapse, we can estimate a0L0 = aL ≈ 64d2

e . Using de ≈ 1 km, vAy ≈ 25 kms−1 and
ρi ≈ 100 km, t∗ ≈ 0.06 s, which suggests that these electron-only reconnection events
are individually rather short lived.

4.2. Outflow velocity
One can obtain an estimate of the electron outflow velocity in the reconnecting sheets
by a simple scaling argument. Our configuration is a current sheet of thickness a and
length L� a, and a known upstream field Bin. The electrons flow into the sheet at
uin, and out at uout (which are related to φ via (2.11)). We will assume that ge = 0
for simplicity; although this is not realistic, on the level of the scaling arguments
presented here it is irrelevant.

First, because upon inspecting (2.11), ∇⊥ · ueff = 0,

Luin ∼ auout. (4.4)

Second, because L� a, the upstream energy is dominated by the magnetic field, while
the energy downstream is dominated by the ion flow and the density perturbations
(Zocco & Schekochihin 2011). Balancing these,

B2
in

8π
∼

[
1+

Z
τ
(1− Γ̂0)

]
Z
τ
(1− Γ̂0)

e2n0e

2T0e
φ2

out. (4.5)

In the limit ρi � a, Z/τ(1 − Γ̂0) ≈ (ρs/a)2, and using (2.11), this just results
(reassuringly) in Alfvénic outflows, uout ∼ vAy, where vAy = Bin/

√
4πn0imi. In the

case where ρi� a, using Γ̂0 ≈ 0, we find

uout ∼

√
1
2

(
1+

Z
τ

)
vAy
ρi

a
, (4.6)

which is just the in-plane kinetic-Alfvén wave speed. So, rather different from the
MHD case, the outflow velocity depends on the thickness of the sheet. Written in
terms of the electron Alfvén speed, this is

uout ∼

√
βi

2

(
1+

Z
τ

)
vAey

de

a
. (4.7)
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(a)

(b)

FIGURE 1. In black, the disrupted thicknesses (a) and outflow velocities (b) of
reconnecting sheets as a function of aspect ratio (cf. (4.2) and (4.6)). Because we have
only derived scalings in the asymptotic limits a� ρs and a� ρs, for 0.5 < acrit/ρs < 2
we have plotted these two scalings as dotted lines; the true scaling must lie between
them. Red dashed lines show the positions of ρs and de (a) and vAey (b). We have used
parameters taken from Stawarz et al. (2019), βe = 0.5, τ = 10.

For the Phan et al. (2018) sheets, our model predicts (with βi ≈ 5, cf. Stawarz et al.
2019) uout/vAey ≈ 0.4, while the observed outflow speed in Phan et al. (2018) is
uout/vAey ≈ 0.25− 0.45; given the idealisations involved (not to mention the fact that
we are pushing our equations rather beyond their low-β regime of validity), this is
reasonable agreement. More generally, we plot the dependence of the thickness at
disruption, acrit, and the electron outflow velocity uout,crit, as functions of (L/a)crit in
figure 1.

Finally, it is worth asking what the effect of relaxing the low-β ordering of the
KREHM equations would be on the tearing mode and on the critical aspect ratio
we obtain here. We have shown in § 3.4 that β does not make a difference to the
collapse process. Numata & Loureiro (2015) have shown that, if ρi/a and ρs/a
are kept constant, the gyrokinetic tearing mode growth rate basically agrees with
KREHM, i.e. proportional to β−1/2

e . Thus, we believe that using the KREHM tearing
mode scalings is physically (if not quite mathematically) reasonable up to βe ∼ 1.

5. Conclusions
We have developed a theoretical model for low-β current sheet formation and

disruption by reconnection, and predict that sheets that are not sufficiently anisotropic
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will collapse to scales much smaller than the ion kinetic scales (ρs and ρi), only
reconnecting when their thickness is a few times the electron inertial scale de. For
such sheets, we predict electron jets with velocities an appreciable fraction of the
electron Alfvén velocity (i.e. much larger than the ion Alfvén velocity), and that there
will be no ion-scale region and very slow or no ion outflows. As the aspect ratio
of the sheets is varied, there is a gradual transition between the usual ‘ion-coupled’
regime and this new regime of ‘electron-only’ reconnection, with sheets reconnecting
at thickness a≈ρs when their aspect ratio L/a≈10. We find that in the magnetosheath,
this means that the aspect ratio of reconnecting sheets, observed to be of thickness
a≈ 4de, is no more than a factor of ≈4. Our results may thus help to explain recent
observations of electron-only reconnection in the magnetosheath (Phan et al. 2018).

Our picture of reconnection onset is based on two phenomena. First, ideal current
sheets tend to collapse (Syrovatskii 1981; Chapman & Kendall 1963; Biskamp 2000),
and we show in § 3 that this collapse does not have to stop at the ion scale. Second,
this ideal collapse process breaks down when the tearing mode growth rate becomes
larger than the collapse (or sheet formation) rate, an application of the ideas of
Uzdensky & Loureiro (2016) to a collisionless plasma. This implies a critical aspect
ratio at which reconnection onset occurs, which we derive in § 4. Importantly, the
sheet thickness at disruption can be above or below the ion scales, and so we can
predict the physical conditions in which we expect ion-coupled reconnection to give
way to electron-only reconnection.

Our analysis is based on the KREHM equations, which are derived from
gyrokinetics for βe ∼ βi ∼ Zme/mi � 1. This low-β ordering is not usually formally
valid in the magnetosheath. However, we can show that, in fact, the collapse process
does not depend on the low β, and KREHM does a surprisingly good job of
predicting the full gyrokinetic tearing rates even at moderate βe. This perhaps explains
why our estimates of electron outflow velocities agree reasonably well with the MMS
observations. More generally, we believe that KREHM, while not always formally
valid, is a useful minimal physical model of collisionless reconnection, which allows
us to make theoretical progress in understanding electron-only reconnection and the
transition from the ion-coupled to electron-only regimes.

Boldyrev & Loureiro (2019) use a different approach to the one used in this work:
instead of studying a nonlinear collapsing solution, they show that if helicity in
a structure is held constant, the nonlinear interaction is minimised by making the
structure as sheet like as possible: thus, sheet-like structures last longer. They then
argue that this means that the turbulence favours the creation of highly sheet-like
structures, but that this is limited by the tearing instability, which then sets a particular
critical aspect ratio (as does our analysis). Despite the overall similarity of the results,
there are some important differences in the two pictures: in ours, the nonlinear
interaction actively produces increasingly sheet-like structures, while in Boldyrev &
Loureiro (2019), its role is to rapidly remove non-sheet-like structures. Our method
has the advantage that it also works for sheets thicker than the ion scales, and
we can therefore predict when one expects to see electron-only versus ion-coupled
reconnection, depending on the characteristic aspect ratios of sheets as a function of
their thickness.

In turbulence models that include the phenomenon of dynamic alignment (Boldyrev
2006; Chandran et al. 2015; Mallet & Schekochihin 2017), the turbulent structures
at scale λ are sheet like in the perpendicular plane, with aspect ratios ∝ (λ/L⊥)−1/4,
where L⊥ is the outer scale at which energy is injected into the system. Thus,
for electron-only reconnection to be observed in turbulence, energy must be injected
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relatively close to the ion scales: in the magnetosheath, this injection could potentially
come in the form of Alfvén vortices (Alexandrova 2008), perhaps driven by
density gradients (Sundkvist & Bale 2008). If this picture is correct, electron-only
reconnection may be relevant in other astrophysical environments with large density
inhomogeneities, for example close to shocks. The appearance of electron-only
reconnection in turbulent systems where the driving scale is relatively close to the
ion scales has been observed rather clearly in the (two-dimensional) hybrid turbulence
simulations of Califano et al. (2018), who observed electron-only reconnection when
di/L⊥ ≈ 0.6, but ion-coupled reconnection when di/L⊥ ≈ 0.3. Our results therefore
provide a theoretical context for these numerical results.

Another low-βe environment of interest is the inner heliosphere and solar corona,
currently being explored by the Parker Solar Probe (Fox et al. 2016). Our results show
that whether ion-coupled or electron-only reconnection, or a mixture of the two, occur
in this turbulent setting depends crucially on the length of the inertial range between
the injection scale and the ion scales.

However, a detailed picture of electron-only reconnection onset in turbulence in
the range of scales between ρs and de requires a model of how the aspect ratios
of typical turbulent structures evolve in this range in the absence of reconnection
(or, indeed, after ion-coupled reconnection decreases the typical aspect ratio, see e.g.
Mallet, Schekochihin & Chandran 2017): this will be the focus of future work.
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Appendix A. Steady-state reconnecting sheet
Let us perform a scaling analysis of (2.1)–(2.3), similarly to Parker (1957) and

Sweet (1958), and find a steady-state reconnecting configuration. The existence of
this hypothetical configuration is quite reassuring, but as we have shown in § 4, this
steady-state configuration is not realisable, because it is violently unstable. This is
reminiscent of the results of Loureiro, Schekochihin & Cowley (2007), Pucci & Velli
(2014) and Uzdensky & Loureiro (2016) on the resistive plasmoid instability. We will
work in two dimensions, i.e. ∂/∂z= 0, and for simplicity set ge= 0. Our configuration
will the same as in § 4.2, namely a current sheet of thickness a and a length L� a,
with upstream field Bin, and electrons flowing into the sheet at uin, and out at uout. The
analysis of (4.4)–(4.7) to determine the outflow velocity in terms of a is therefore still
valid.

We additionally require a steady state, ∂/∂t = 0. To achieve this, we balance the
nonlinear terms in (2.2),{

A‖,
[

1+
Z
τ
(1− Γ̂0)

]
φ

}
∼ {φ, d2

e∇
2
⊥

A‖}. (A 1)

This gives

a∼

de, de� ρi,
de

√
1+ Z/τ

, de� ρi,
(A 2)
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using the small- and large-argument expansions of Γ̂0. Thus, these steady-state sheets
have a constant thickness a∼ de, and an arbitrary length L, i.e.

uin

uout
∼

de

L
. (A 3)

The dimensionless reconnection rate as usually defined is

R∼
uin

vAy
∼

{
de/L, de� ρi,

ρi/L, de� ρi.
(A 4)

We have managed to derive a Sweet–Parker-like scenario for collisionless reconnection.
The result for de � ρi has been previously discovered by Wesson (1990), while
Bulanov, Pegoraro & Sakharov (1992) and Avinash et al. (1998) also derived the
scaling (A 3) for electron MHD (i.e. in the whistler frequency range).

Note that in the case de� ρi, the outflow velocity is

uout ∼

√
βi

2

(
1+

Z
τ

)
vAey, (A 5)

of order the electron Alfvén velocity vAey. In § 4, we show that this steady-state
configuration is not realisable, because reconnection onset occurs at a somewhat
larger thickness.

Appendix B. Tearing mode in a sheet with thickness below the ion scales
Let us analyse the tearing mode of (2.1)–(2.3) – we will study the two-dimensional

case, ∂/∂z= 0, and use as our equilibrium

φ0 = 0, ge0 = 0, A‖0 = A‖0(x), (B 1a−c)

where A‖0(x) is controlled by a dimensionless function f (x), varying on the
equilibrium scale length a,

By0 =−
dA‖0
dx
= baf (x). (B 2)

Due to the symmetry of this equilibrium, our perturbations take the form

φ1
A‖1
ge1

=
 φ(x)A‖(x)

ge(x)

 eiky+γ t. (B 3)

We will discuss two different regimes,

(i) a� ρs� de, (B 4)
(ii) ρs� a� de, (B 5)

where (i) has already been treated by ZS11 (and references therein), while (ii)
represents the tearing of sub-ion-scale sheets we are interested in the present work.
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The linearised equations may be written8

2
d2

e

δ

af
Z
τ
(1− Γ̂0)φ̃ =

[
∂2

x − k2
y −

f ′′

f

]
A‖, (B 6)

δ

af
(1− d2

e∂
2
x )A‖ =

[
1+G

Z
τ
(1− Γ̂0)

]
φ̃, (B 7)

where
δ =

γ aB0

kybavthe
, φ̃ =−

c
vthe

iφ, (B 8a,b)

and the function G, which results from solving the linearised ge equation (Zocco &
Schekochihin 2011), is

G
(

a|f |
δ

)
=−2

[
δ2

a2f 2
+

1
Z′(iδ/a|f |)

]
, (B 9)

Z here being the plasma dispersion function. This has limiting values G(0) = 3,
G(∞) = 1. We will make further progress by, as usual, solving separately in an
‘outer region’ where x∼ a and an ‘inner region’ where x� a.

B.1. Outer region

Here, x∼ a and G≈ 1, and ∂2
x ∼ f ′′/f ∼ 1/a. We may therefore neglect d2

e∂
2
x � 1 in

(B 7). The structure of the equation depends on a/ρs. In case (i), a� ρs, one can
expand Γ̂0 for small argument and show that the left-hand side of (B 6) is smaller
than the right-hand side by γ /ωAy, where ωAy= kybaf /

√
4πn0imi is the in-plane Alfvén

frequency; assuming this is small (which may be checked afterwards), one just obtains
the same outer region equation as in the MHD tearing mode,[

∂2
x − k2

y −
f ′′

f

]
A‖ = 0. (B 10)

In case (ii), however, where a� ρs, Γ̂0 ≈ 0 and (B 7) becomes

δ

af
A‖ =

[
1+

Z
τ

]
φ̃. (B 11)

Substituting this into (B 6) (again taking Γ̂0 ≈ 0),

λ2 2
f 2

1
τ

Z + 1
A‖ = a2

(
∂2

x − k2
y −

f ′′

f

)
A‖, (B 12)

where λ2
= δ2/d2

e . The left-hand side may only be neglected in the outer region (where
f ∼ 1) if λ2

� 1. In this case, one can see that, because δBy=−∂xA‖ must change sign
at x= 0,

Aouter
‖
= A‖(0)

(
1+

1
2
∆′|x|

)
for x� a. (B 13)

We will determine when this is valid later. For kya� 1, ∆′a∝ (kya)−n with 16 n6 29.
8Neglecting k2

y d2
e and d2

e f ′′/f compared to unity.
9n= 1 corresponds to, for example, a ‘Harris’-type equilibrium f = tanh(x/a), while an example of an n= 2

equilibrium is f = sin(x/a).
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B.2. Inner region

Here, x� a, ∂2
x � k2

y , f ′′/f and f ≈ x/a. Our analysis will at first follow ZS11 exactly.
The equations become

2
d2

e

δ

x
Z
τ
(1− Γ̂0)φ̃ = ∂

2
x A‖, (B 14)

δ

x
(1− d2

e∂
2
x )A‖ =

[
1+G

Z
τ
(1− Γ̂0)

]
φ̃, (B 15)

where Γ̂0= Γ̂0(∂
2
x ). Let us rescale the coordinate to ξ = x/δin, where δin will be chosen

later. Replacing the term involving Γ̂0 in (B 15),

2δδin

d2
e

Z
τ
(1− Γ̂0)φ̃ = ξA′′

‖
, (B 16)

A‖
ξ
−
δin

δ
φ̃ =

d2
e

δ2
in

(
1+

δ2
in

2δ2
Gξ 2

)
A′′
‖

ξ
, (B 17)

where primes denote derivative with respect to ξ . If one wants to include the case
where δin ∼ ρs, the operator Γ̂0 is difficult to deal with analytically: we will follow
ZS11 and use the Padé approximant

Z
τ

(
1− Γ̂0

)
≈−

ρ2
s ∂

2
x

1− (1/2)ρ2
i ∂

2
x

. (B 18)

Let us make the helpful substitution χ = ξA′
‖
− A‖ = ξ 2(A‖/ξ)′, so that χ ′ = ξA′′

‖
.

Differentiating (B 17), using the approximant (B 18) in (B 16) and integrating once,
the equations in terms of χ are

−
2δρ2

s

d2
eδin

φ̃′ = χ − χ0 −
ρ2

i

2δ2
in
χ ′′, (B 19)

d
dξ

(
1
ξ 2
+
δ2

in

2δ2
G
)
χ ′ =

δ2
in

d2
e

χ

ξ 2
−
δ3

in

d2
eδ
φ̃′. (B 20)

Combining these two equations, we get

ξ 2 d
dξ

[
1
ξ 2
+
δ2

in

2δ2

(
G+

τ

Z

)]
χ ′ =

δ2
in

δ2

[
λ2χ +

1
2
ξ 2 δ

2
in

ρ2
s

(χ − χ0)

]
. (B 21)

Noting that ξ ∼ 1 in the inner region, we can compare the size of the two terms on
the right-hand side.

In case (i), a� ρs, we must allow a finite δin/ρs and must keep both of them. It
therefore makes sense to define δin= (

√
2ρsδ)

1/2, α= δin/
√

2δ, λ̃2
=λ2α2 and we obtain

the same equations as in ZS11,

ξ 2 d
dξ

[
1
ξ 2
+
α2

2

(
G+

τ

Z

)]
χ ′ = λ̃2χ + ξ 2(χ − χ0). (B 22)
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It is then possible to solve this analytically in terms of a nested ‘ion inner region’
and ‘electron inner region’, matched to each other and to the outer solution, via the
matching condition

1
χ0

∫
∞

0

χ ′

ξ
dξ =−

1
2
∆′δin. (B 23)

One can also (again, following ZS11) guess the scalings of the solution on
dimensional grounds. The width of χ ′/ξ in the integral above is x ∼ δ, or ξ ∼ 1/α.
From (B 22), χ ′/ξ ∼ λ̃2χ , whence λ̃2

∼ ∆′δinα. For ∆′δin � 1, the current cannot
depend on ∆′, and we cannot use (B 23); instead χ ′/ξ ∼ χ (the current is limited by
δin, A′′

‖
∼ A‖/δ2

in), and so λ̃2
∼ α. The resulting growth rates γ , inner widths δin, and

electron region widths δ are shown in table 1. The maximum growth rate, obtained
by inserting ∆′δin ∼ 1 into the small-∆′ expression (or alternatively by balancing the
small- and large-∆′ growth rates), is also shown.

One might also be interested in the dependence of the growth rates on τ/Z. It is
possible to solve this equation analytically (see ZS11), showing that in fact, the growth
rates are proportional to

H(τ/Z)=
√

1+ τ/Z. (B 24)

This factor is also shown in table 1.
In case (ii), a�ρs, there is no space for the ion inner region to form, and we must

instead match the solution in the electron inner region directly onto the outer solution.
Going back to (B 21), if δin� ρs (as it must be since ρs� a� δin), we can neglect
the second term on the right-hand side, and set δin = δ, obtaining

ξ 2 d
dξ

[
1
ξ 2
+

1
2

(
G+

τ

Z

)]
χ ′ = λ2χ. (B 25)

We can again guess the scalings on dimensional grounds, similarly to case (i). For
∆′δ� 1, λ2

∼∆′δ. Therefore, we may solve (B 25) perturbatively in powers of λ2
� 1,

to first order, i.e. χ = χ0 + χ1, with the boundary condition that the current χ ′/ξ is
even as ξ→0. Setting the right-hand side to zero, the zeroth-order solution χ0 is just a
constant. This means our solution is equivalent to taking a ‘constant-ψ’ approximation
(Furth, Killeen & Rosenbluth 1963). At the next order, using χ0 on the right-hand side
and the boundary condition, we obtain

χ ′1

ξ
=−

λ2χ0

1+ ξ 2/2(G+ τ/Z)
, (B 26)

and matching this to the outer solution using (B 23),

λ2
=
∆′δ

2I
, (B 27)

where

I =
∫
∞

0

dξ
1+ ξ 2/2(G+ τ/Z)

. (B 28)

This is precisely the same growth rate, including the prefactor, as for the small-∆′
case with a� ρs (cf. Zocco & Schekochihin (2011), equation B71). For τ/Z� 1, we
can neglect G and I ∼

√
Z/τ , while for τ/Z � 1, I ∼ 1. We include this effect in

table 1 by amending the scalings by the factor H(τ/Z) defined in (B 24).
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For ∆′δ � 1, on dimensional grounds, λ2
∼ 1: unfortunately, this invalidates the

neglect of the left-hand side in (B 12), meaning that our matching condition (B 23)
is no longer valid. We have not yet obtained an analytic solution to the equations
in this case. However, since on physical grounds the growth rate must decrease as
ky→ 0, it is reasonable to assume that the maximum growth rate of the tearing mode
may be estimated by setting ∆′δ ∼ 1 in the scalings obtained for the ∆′δ� 1 limit.
The scalings derived here for the tearing mode with a� ρs are also shown in table 1.

Boldyrev & Loureiro (2019) have derived a somewhat similar tearing mode for
the ‘inertial kinetic-Alfvén’ regime (Chen & Boldyrev 2017). The difference between
their equations and the KREHM equations (Zocco & Schekochihin 2011) is that theirs
are fluid (i.e. they do not contain heating), and, secondly, they order βi ∼ 1, which
introduces an additional term in our (B 16) (their equation 18) proportional to βiφ

′′

(b′′z in their variables). This means they can neglect the term on the right-hand side in
our equation, because in the inner region the gradients are large, and then makes their
equations structurally identical to the MHD tearing equations. They therefore obtain
different maximum growth rates γmax ∼ (de/a)1+1/nvAey/a that are a multiplied by a
factor β1/2

i compared to ours.
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