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EXTENDED f-ORBITS ARE APPROXIMATED BY ORBITS
KEN SAWADA

Introduction

Let f be a C"-diffeomorphism, r < 1, on a compact differentiable mani-
fold M with dimM = 2. In [9] F. Takens introduced the concept of
extended f-orbits and conjectured the following.

If f is an AS-diffeomorphism, then the set E; of all extended f-orbits
is equal to the set O, of the closure of all f-orbits in C(M), where C(M)
is the metric space of all non empty closed subsets of M.

In this paper we give an affirmative answer for this conjecture.

§ 1. Definitions and the main Theorem

We fix a metric d on M induced by a Riemannian metric, and we
define a metric d on the set C(M) of all non empty closed subsets of M
as follows; for closed non empty subsets A and B of M,

- d(A, B) = max (max d(a, B), max d(b, A))
ac4d bEB

where d(a, B) = min,.; d(a, b). We identify a closed subset of M with an
element of C(M). Here Z denotes the integers, N the natural numbers.
For a diffeomorphism f and x € M, we define the f-orbit of x, O,(x), to be
the closure of {f*(x)|ne Z}. By definition, O/(x) € C(M). Then we denote
the closure of {O,(x)|x e M} in C(M) by O,. Oy is a closed subset of C(M).
We say that a closed subset A — M is an e-orbit of f, ¢ > 0, if there is a
sequence {x;};c; such that d(f(x)), x;,,) <e¢ for any jeZ and {x;},c; is
dense in A. We say that a closed subset A — Mis an extended f-orbit
if for any ¢ > 0 and & > 0, there is an e-orbit A, of f such that d(4, A,)
< 8. Note that extended f-orbits are identified with elements of C(M).
Let E; be the set of all extended f-orbits. By definition, E; is a closed
subset of C(M) and O, c E,. See [9]. We recall that f is an AS-diffeo-
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morphism if f satisfies Axiom A and strong transversality condition. Then
our main result is

TueoreM. If f is an AS-diffeomorphism, then E, = O,.

We shall prove Theorem in section 5.

§2. More definitions and a sketch of the proof

In this section we give some notations and definitions used through-
out the paper and give a sketch of the proof of Theorem.

The nonwandering set of a diffeomorphism f is denoted by £2(f) or 2
and the set of the periodic points of f is denoted by Per (f). For xe M,
define a(x) = a(x, f) = {y € M: there is a sequence of integers n, — o such
that f"((x) —y as i — oo}. Let w(x) = o(x,f) = a(x,f!). The nonwander-
ing set of f satisfying Axiom A and no cycle property can be written as
a disjoint union of closed subsets 2(f) = 2, U --- UR,, such that each
£, is invariant by f, and f is topologically transitive on each 2,. Then
we call each 2, a basic set and may define an order on the set {2, ---

I

2,} as follows:
2,92, if WuR,)N W2, + ¢

where W*(£2,) and W*(2,) are the unstable manifold and the stable mani-
fold of £, and 2; respectively. We may renumber £, such that 2, £ 2,
if i <j. Henceforth we shall assume that 2, is numbered as above for
any diffeomorphism f satisfying Axiom A and no cycle property.

We say that a sequence X = {x;}}., (@ = — o or b = + oo is per-
mitted) of points in M is an e-pseudo orbit if

d(f(x;), ;) <e  for any je€[a, b-1].
A point x € M J-shadows a sequence X if
d(f/(x), x;,,) < &  for any jela, b].

See [1, Page 74].

We define a relation < on M, induced by f, as follows: x, y € M, then
x < y if and only if for any ¢ > 0, there is an e-pseudo orbit {x,}7., with
x=2x %, =y and n=1. We define N(f) = {xe M|x < x}. Note that
x < f*(x) for any n =1 and N(f) D £(f). See [9] for details.

Now let f be an AS-diffeomorphism and let A be an extended
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f-orbit with A ¢ 2. Then there are k-points x,e€ M such that A — Q=
Wiy Unez F™(x;) and such that o(x;) and a(x,,,) belong to the same basic set
2,, 18, < -+ <8 < m) by Proposition 3.6 in section 3. In section 4
we obtain that for A, = AN £,,, any ¢ > 0 and small ¢ > 0, there is an
e-pseudo orbit & = {«,}}., such that

d(A,,, closure of {x,}’.,) < 4.

By [1, Proposition 3.6], X is d-shadowed by some ze€ £,,, We shall select
x’ € M such that

(—i_(of(x,)7 Aso U Of(xl) U Asl) < g

so that we can select x € M such that d(O,(x), A) < & by induction. Hence
AeO,;. Since we obtain in section 5 that if A is an extended f-orbit
with A C 2, then A€ O,, therefore A€ O, for any extended f-orbit A.
Since O, C E;, O, = E,.

§3. Nonwandering sets and extended f-orbits

In this section we give some results about N(f) and extended f-orbits.
We recall that f has no C°-2-explosion if for each ¢ > 0, there is a neigh-
borhood U(f) of f in Diff” (M) with C°’-topology such that 2(g) C U.(2(f))
for any ge U(f), where Diff" (M) is the set of C7-diffeomorphisms with
C7-topology and U,(.) is an e-neighborhood of (.).

The following lemma is due to Z. Nitecki and M. Shub [6]. For the
proof, the hypothesis dim M = 2 is needed.

LemmA 3.1. Suppose a finite collection {(p;,q)eMXM:i=1,.-- k}
of pairs of points on M is specified, together with a small positive constant
o > 0 such that:

(1) For each i, d(p,, q;) <6

(i) If i+ j, then p, + p, and q, + q;.

Then there exists a diffeomorphism 7»: M — M such that

(&) dn(x), x) < 26 for every xe M

(b) 7(p) = q fori=1,---,k.

Proposition 3.2. If f has no C°-Q-explosion, then N(f) = 2(f).

Proof. It is sufficient to show that N(f) C 2(f). Let xe N(f) and
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¢ > 0 be given. Since f has no C°-2-explosion, there is a neighborhood
U(f) of f in Diff"(M) with C°-topology such that 2(g) C U.(2(f)) for any
ge U(f). Take d > 0 such that if d(g(x), f(x)) < for any xec M, then
ge U(f). From definition of N(f), there is a (§/2r)-pseudo orbit {x,}7.,
with x, = ¥ and x, = x. We may assume that x; # x, if i #+ j. By Lemma
3.1, there is a diffeomorphism » on M such that 7(f(x;)) = x,,, and d(y(x), x)
< 6 for every xe M. Then the composition g = »of is a diffeomorphism
on M such that

(a) d(glx),f(x) <é for any xe M

(b) g"x) = (9of)"(x)) = %, = x.
Hence g € U(f) and x € Per (g). Since x € 2(g) C U.(2(f)) and 2(f) is closed,
x € 2(f).

If f satisfies Axiom A and no cycle property, then f has no C°-Q2-
explosion [8]. Therefore we have

CororLARY 3.3. If f satisfies Axiom A and no cycle property, then

N(f) = Q).

We shall assume throughout the remainder of this section that f
satisfies Axiom A and no cycle property.

LEmMmA 3.4.
(i) If f*(x) <y for any neN, then u <y for any u € o(x).
(ii) For any x, ye2,, x <y and y < «x.

Proof. Let acw(x) and ¢ > 0 be given. Since f(a) € w(x), d(f(a), f™(x))
< ¢ for some m e N. Then there is an e-pseudo orbit {x}}?., with x; = f™(x)
and x, = y. Define a sequence {x,}7%; by

Xo=@a, X, = Xj_, forany 1<j<n+1.

Then {x,}32} is an e-pseudo orbit with x, = v and x,,, =y. As ¢ is arbi-
trary, a <y.

(i) By [1, page 72], 2, = X,,, U--- U X,,,; with X, , ’s pairwise dis-
joint closed sets, f(X,.) = X,.1,; (X,,.1,: = Xi,;) and f*4 X, topological
mixing i.e., for any open sets U, V of X, (i.e. in 2), there is £ > 0 such
that U N f***(V) = ¢. Hence for any x,ye 2,, x <y and y < x.

LemmA 35. If x, ye W(2,) — 2, and x <y, then f"(x) =y for some
neN.
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Proof. Suppose, on the contrary, that f*(x) = y for any neN. Clearly
if x <y and f(x) # y, then f(x) <y. Hence by induction, if x <y and
f*(x) #+ y for any ne N, then f"(x) <y. By Lemma 3.4 (i), we have

x<u<y<w for any u e o(x) and any w e o(y) .
Since uew(x) C 2, and wew(y) C £,
u<w, w<u by Lemma 3.4 (ii) .
Hence y < w <u <y and ye N(f) = 2(f), a contradiction.

ProposiTiON 3.6. For each A € E; such that A ¢ £, there are k-point
x; €M (B < m — 1) such that

A—0=UU f(x)

i=1n€Z

moreover there are S, - -+, s, (1 < s, <m) such that a(x)) C 2, o(x;) C 2,
and both o(x;) and a(x;.,) are contained in £, for any 1 < i<k — 1

Proof. We define an equivalence relation on M before we prove. For
x, ¥’ € M, we say that x is orbitally related or O-related to x’ (write x ~
x) if either f*(x) = x’ or f*(x’) = x for some n, n"e N. Let A®= W2,
NA—$9. Since M= \Jr, Wi(2,), A — 2=, A". By definition of
extended f-orbits, if x, ye A, then either x <y or y <x. If x, ye A,
then x, ye W(2,) — 2;. Hence by Lemma 3.5, if x, yc A%, then x ~ y.
Hence either A? = {f"(x)|ne Z} for some xe A* or A* = ¢ so that there
are k-points x; of M (¢ < m — 1) such that

A-0=UU fx).
i=1nezZ
Let 2, be the basic set with o(x;) C £2,, and let 2,, be the basic set with
a(x;) C 2,,, We may assume that s, <s, < - - <s,.. If a(x;) and a(x))
are contained in the same basic set, then x; ~ x; by Lemma 3.5 applied
to f~'. Hence 2, # 2,, (i #j). By the ordering on the basic sets, 2,, #
Q,, for i <j. Hence 2,, N Oyx;) = ¢ for i=2, .-,k and £2;,, N O(x;) =
¢ for i = 3, ---, k. Therefore there is 6 > 0 such that O,(x;) N U,(2;,) =
¢pfori=2---,k and Oxx;)) N U,s(2,,) = ¢ for i =3,---, k. We choose
r > 0 such that U,(2,,) C f(U(2,)) N Uy, for i =1, 2. Then there is
N’ e N such that f~"(x,) € U,x(2;) and f~"(x,) € U,(2,) for any n= N'.
Since N(f) = 2(f) and ¥ (x)&e 2(f) (= 1,2), ¥ (x;) Ku; for any u;e
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£2,,. Hence there is ¢ > 0 such that there exists neither ¢’-pseudo orbit
{x}3-0 with x, = f~¥(x,) and x, = u, nor ¢-pseudo orbit {x/}*., with x; =
" (x;) and x,, = u,. Let ¢ = min{7/2, ¢/2} and let A, = closure of {y,},cz
be an e-orbit of f such that d(A., A) <e. Then there is ne Z such that
¥.€ U(A N 2,). Suppose that there is £ < n such that y,e U(2,) and
Vo1& U(2,). Then y, ;e U(2,) because f(y,..) € U,(2,). Since d(A., A)
< ¢, there is ze A N U(y,.,). Clearly z& U, (2;) and ze U,(2,). Since
Ofx:) N Up(2;,) =¢ for i =2, ---, k, 2= f"?(x) for some p <N’. Since
y.€ U(A N 2,), there is u, € A N £, such that d(u,y,) <e Now we
define a sequence {z;}].o (J=p — N’ 4+ n — ¢ + 1) as follows;

(zl): ) zJ) = (f—Nl(xl): o 'yf_p.—l(xl), Yoo * 5 Va-1, ul)

Then {z,}]_, is an e-pseudo orbit with 2z, = f~*'(x,) and 2z, = u,. Since ¢ <
¢, {z;}J=0 is an ¢-pseudo orbit with z, = f~¥(x,) and z, = u,. This con-
tradicts to the choice of ¢. Hence y, e U(%2,) for any j < n. Now if 2,,+#
2, then O/(x;) N 2,,=¢ for i=1,3,---, k. We can assume that O,(x;)
N Uy(2,) = ¢ for i =1,8,---, k. Then applying the same argument in
case of £2,, we have that there is n’ € Z such that y, € U,(£,,) for any j <
n’. This contradicts to the fact that y, € U(%2,) for any j<n. Hence £,,
= ,,. Similarly 2,,,, = 2,,. We write s, for ¢, Then a(x,) C 2,, w(x;)
C 2, and o(x) U a(x;,) T 2,, for any 1 <i< k— 1,

For simplicity, we write the 2, for the £2,, in Proposition 3.6. Through-
out the remainder of this paper we assume that there are k-points x; of
M (k< m — 1) such that

&

A—-Q= f™(x0)

i=1n€zZ

[

moreover a(x,) C 2y, o(x,) C 2, and o(x;) U ax;,) T 2; for any 1 <i <
k— 1

§4. Extended f-orbits in nonwandering set

Let A be an extended f-orbit. Then there are k-points x; of M such
that A — 2 = ¥, Urez[™(x) and w(x;) U ax;,) € 2; and let A; = A N
Q2

Levma 4.1. For any 6§ > 0 and ¢ > 0, there is 1 >0 with 0<y <4
such that for any 0 <7y <y, there is an e-orbit A, of f; A, = closure of
{¥;};ez satisfying the followings;
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@) dA,A) <y
(2) lf Yms Yn € l]r'(Ai)’ then Y; € ZJJ(Ai) = for any m <J < n.

Proof. Let 6 >0 and ¢ > 0 be given. There is He N such that f"(x;)
€ U,(w(x)) and f"(x;,,) € Up(a(x;,,) for any n = H. Then for any ue
2;, f(x) < uwand u <f #(x;,,). Since f#(x,) and f~#(x,,,) are not elements
of 2 and N(f) = 2(f), u X f*(x;) and f~#(x;,,) X u. Therefore there is ¢,
> 0 such that there exists neither ¢-pseudo orbit {x,}7., with x, = v and
x, = f#(x;) nor e-pseudo orbit {x}}7-, with x; = f~#(x;,,) and x, = u. We
choose 7, > 0 such that for any pair (p, q) of points on M with d(p, q) <
7 d(F(D), (@) < &/2. Let 7 = min {3/2, &/2, 7} and ¢ = min{e, &/2}. By
definition of extended f-orbits, for any 0 < 7’ < 7, there is an ¢-orbit A,
of f; A, = closure of {y,},cz such that d(A4, A,) < . Suppose that there
are m, j and n with m <j < n such that y,, y.€ U.(A;) and y, & U,(A,).
Since d(A, A,) < 7/, there is ze U,(y,) N A. Clearly z& U,,(A;) because
U.(y) N U;p(A) = ¢. Then either z < f#(x,) or f#(x;.,) <z We can
assume that z < f#(x,) without loss of generality. Then there is an ¢'-
pseudo orbit {x,}5_, with x, = z and x, = f#(x,). Since y,, € U.(A,), there
is u € A, such that d(y,, u) <7'. Since 7 <71, d(f(yn), f(©)) < &/2. Hence

d(f(U), ym+1) < d(f(u)r f(ym)) + d(f(ym)7 ym+1) < sl/2 +¢ <eg.

Now we define a sequence {2}/, (L =j — m + s + 1) as follows;

(ZO’ °e ',zL) = (U,ymu, . '3yj—19 Xoy ** " xs)

Then {z;}}., is an ¢-pseudo orbit with 2z, = u and z, = f#(x;). This is a
contradiction.

By Lemma 4.1, for 6 > 0, small ¥ > 0 and small ¢ > 0, there is an
e-orbit A, of f; A, = closure of {y,},.z satisfying the followings;

(1) d(A,, closure of {y}x_.)<3d

@2 dA,{y)tn)<é foranyl<i<k—1

(8) d(A,, closure of {y}i=,) <o
where m; = min {j:y;€ U,(4,)} for any 1<i <k, and n, = max{j:y;¢€
U(A)} for any 0 i<k — 1.

We denote y,, by L#(y,¢) and y,, by L; (7, ¢).

LemmA 4.2. If 7, and e, — 0 as n— oo, then the cluster points of the
sequence Lj(7.,¢e,) are contained in wo(x;).

Proof. Let L;j be the set of the cluster points of the sequence L; (7., ¢.),

https://doi.org/10.1017/5S0027763000018912 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018912

40 KEN SAWADA

y*eL} and « > 0 be given (« is sufficiently small). Now let | T,f| =
sup {|T-f(v): ve T.M and |[v|| £ 1} where ||. || is the Riemannian metric on
M. Let K = max {|T.f|, |T.f'{}. Then there is ¢ € N such that L; (1}, ¢,)
is in U,(y*) and 7/, ¢, < «/4K. For L;(yi,¢,), there is m, € Z such that y,,
e A, N Uy A) and yn,. € A,, — U (A). Since 7, and ¢, are small, there
is pe N such that f?(x;)) € U,(yn,-1). Then

Ao F27(2)) < A Ymis [Ymi-1)) + A (Ymi-0), [P7H() < &0 + Ky, < /2.
Hence
d(y*, 7' (%)) < A", Ymd) + AYmi [P (x)) < @2 + a2 < .

Since « is arbitrary y* € o(x;). Hence L;j C w(x,).
Similarly the cluster points of the sequence L;(y,,¢,) are contained
in a(xi.”).

LemMA 4.3. For any 6 >0 and ¢ > 0, there is an e-pseudo orbit {xi}}-,
of f12;, a and b depend on i, such that

(1) d(A,, closure of {xi}.,) <

@) xecowlx;) forany 1<i<k

B) xiealx;,,) for any 0 < i< k— 1.

Proof. Let K be as in Lemma 4.2. For 6 > 0 and ¢ > 0, choose ¢
and ¢ such that 0< ¢ < d/2 and 0 <&’ <e— (1 + K)&'. As stated above,
there is ¢’-pseudo orbit {y;}}., such that

(i) d(A,, closure of {y}’_.) < ¥.

(a and b are depend on i). By Lemma 4.2, we may assume that y, € o(x;)
and y, € a(x;,,). By (i), there is z;€ A, in U,(y,) for any a < j < b. Then
we define a sequence {xi}}_, as follows; x} = y,, x} =y, and x! = 2, for
any a <j<b. Since d(f(x}),f(y,) < K&,
a(f(x5), x5+1) < A(F(x5), F(y)) + AF (¥, ¥i41)
+ Ay, i) < K&+ + 0 <e.

Since U, (y,) C Uy(x%), {xi}5., is an e-pseudo orbit of f|2, satisfying (1), (2)
and (3).

For any 1<i<k— 1, ¢ and b are finite. If i is equal to 0, then
o= — oo, Ifiis equal to k, then b = + co.

§5. Proof of Theorem
Throughout it is assumed that f is an AS-diffeomorphism and let 2(f)
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=0,U---U%R, such that if i <j, then 2, £ 2,. The stable manifold of
x is the set Wi(x,f) = Wi(x) = {ye M: d(f*(x),f*(y)) - 0 as n-—> o} for
any xe M. Let Wi(x) = {ye M: d(f"(x), [(y)) < for any n = 0}. The un-
stable manifold of x is the set W*(x, f) = W5(x, f") and W¥(x) = Wi(x, ).
For small § > 0 and x€ 2,

Wi(x) = {y e M: d(f"(x), f"(¥)) < 2”6 for any n = 0}

where 1 is a positive constant with 1¢(0,1). For small § > 0 there is a
u-disc family W2 through a compact neighborhood U, of £, in M which
reduces to W at £, and semi-invariant in the sense that

Vi(f(x) C f(Wi(x)  for xe U, N f(U).

See [2]. For xe M, let Oj(x) = closure of {f*(x): n = 0} and let O;(x) =
closure of {f*(x): n < 0}.
The following proposition is due to R. Bowen [1].

ProposiTioN 5.1. For any 6 >0, there is an ¢ >0 so that every
e-pseudo orbit of f| 2 is d-shadowed by some z¢ £.

COROLLARY 5.2. Let A be an extended f-orbit with A C 2. Then A
e 0,.

Proof. It is clear that A C 2 implies A C 2, for some 1< i < m.
By Lemma 4.3, for any é > 0 and any ¢ > 0, there is an ¢-pseudo orbit X
of f| £ such that

d(A, closure of X) < §/2.

By Proposition 5.1, taking sufficiently small ¢ > 0, ¥ is (5/2)-shadowed by
ze ;. Hence
d(A, O,(2)) < d(A, closure of %) + d(O,(2), closure of %)
<3248/2<5.

Since ¢ is arbitrary and O, is closed, A € O,.

Remark 5.3. Let ze £ d-shadows ¢-pseudo orbit {x,}3., of f| 2. Then
we may assume that
(1) if a and b are finite, then ze W*(x,) and f°~%(2) € Wji(x;) for small

a>0
(2) if b= + oo, then ze W(x,)
38) if a = — oo, then ze Wi(x;). See [1].
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We shall need the following lemma before we prove Theorem.

LeMMA 5.4. Let ye 2, te Wi(y) (a(t) C 2,,j 1) and let y' co(y), z€
W(y') N £, for small 6 > 0. Then for any r > 0, any u-disc D which is
C'-close to W“() N B,(t) and any s-disc D’ which is C'-close to W;(z) N
B,(2), there is ve D such that f"(v)e D' for some neN. Moreover

d(f'v), fi(t) <20  for any 0<j<n
where B,(.) is an r-ball of (.), u = dim T,(W*(¥)) and s = dim T,(W;(2)).

Proof. We shall first prove that for any r > 0, there is v' € W*({) N
B,(?) such that f*(v')e W;(z) N B,(2) for some neN. By generalized -
lemma [5, Proposition 2.3], there is u-disc D in W*(t) N B,(t) such that f*(D)
is C'-close to W(f"(y)) for large neN. Since f*(y) is near to ¥y (y' ¢
o(y)), Wf"(y)) is C'-close to W;«(y'). Hence f*(D) is C'-close to Wx(y)
so that f%(D) N (Wi(z) N B,(2)) # ¢. Taking sufficiently large n e N, there
is 9, 0 < ¢ < 1" such that W) N f(D) = ¢ for any ae Wi, (f*(y)) —
Wi(f*(y)) because f*(D) is C'-close to W(f*(y)). And there is g € Wi(f*(y))
such that

W) N f4(D) N (Wi(2) N By2)) # ¢.

Let v ef~(Wi(g)) N D N f~(Wi(2) N B,(2)). Then f/(v/) € f/(f-(W;(q)) for
any 0 < j < n. By semi-invariance of u-disc family W, f/(v') € W#(f!-"(g)).
Since t and f~"(q) are in W;(y), d(f/(t),f'""(q)) <4 for any 0 <j < n.
Hence d(f/(v"), f'(t)) < 26 for any 0 < j < n.

Secondly by strong transversality, there is ve D and n € N such that
fYv)e D' for any u-disc D which is C'-close to W*() N B.(t) and any
s-disc D’ which is C'-close to Wi(z) N B,(z). Moreover d(f'(v), fi(t)) <
20 for any 0 <5 j < n.

Proof of Theorem. Since O, C E,, it is sufficient to show that E, C
O,. If Ais an extended f-orbit with A C 2, then A € O, by Corollary 5.2.
Therefore we may assume that A is not contained in £. Then since AS-
diffeomorphisms satisfy Axiom A and no cycle property, by Proposition
3.6 there are k-points x; € M such that

A-2=0JU

moreover a(x;) C 2y, o(x,) C £, and o(x,) U a(x;,,) C 2, for any 1< <
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k — 1. For small § > 0, we choose a compact neighborhood U, of 2, such
that there is u-disc family W¢ through U, Let A, = A N 2.

By Lemma 4.3 for any 6 > 0 and small ¢ > 0, there is an e-pseudo orbit
(P, of f12,1ZLi<k—1, a and b depend on i, ¢ and b are finite)
such that x} € o(x,), x} € (x.,,) and d(4,, {x'}’..) < /2. We denote xi by v,
and x} by y/. By Proposition 5.1, taking sufficiently small ¢ >0, {xi}’_,
is 6/2-shadowed by z; € 2, with z,€ W(yi), f°~“(z;) € Wi(y)). Hence

(A, {fi(z):0=j<b—a}) <.

Similarly for A, and A,, there are z,€ 2, with z,€ W:(y)) () € a(x,)) and
2, € 0, with z, € W*(y) (¥ € o(x,)) such that

d(A,, closure of {f/(z):je(— oo, 0]}) <4
d(A,, closure of {fi(z):jel0, + o)} < 4.

And there is M, € N such that

(1) f(xs) € Uyo(x.) for any n= M,

(i) f"(x141) € Usjler(s,1)) for any n= M, .
Similarly for a(x;) and o(x), there are M,, M, e N such that

1Yy f(x) € Uspu(e(xr) for any n = M,

Gy f™(x) € Uslo(xy)) for any n= M, .
Then let ¢, = f7(x;) Q< i <L k), and let w;, = f"(x,,,) 0Zi<k—1) By
[3], there are y; and y; € 2, such that t,e Wi(y;/) and w, € Wi (y;). Since
o(t;) = o(yf) and a(x,,,) = a(y7), y; € o(y;) and y; € a(y;). Hence by Lemma
5.4, for any r > 0, there is ve W“(t,) N B.(t) such that f*(v) e Wi(z,) N
B,(z,) for some n;eN. Since f™()e Wi(z) N B.(z;), f***"%(v) is near
to f? %(z,) for sufficient small r>0. Let u,_,= dim T,(W*({)), s =
dim T,,(W;(z;)) and u, = dim T, (W#(z,)). Since u,., + s, = dim M by strong
transversality condition and u; + s, = dim M by the hyperbolicity of £,
u;.; = u;. By generalized i-lemma, we know that there is a u;,-disc D in
W (t,) N B,(t) such that

frvv-a(D) is C'-close to Wi(f2~(2y) .

The stable manifold and the unstable manifold of f are the unstable mani-
fold and the stable manifold of f~* respectively. Hence by Lemma 5.4
applied to f~!, there is v ef"*’ ¢(D) such that f"({v")e Ww,) N B, (w,)
(We(w,) € W(2,,,) for some n;eN. Hence there is a u,-disc in W“({&,) N
B,(t) such that f~(D) is C'-close to W*(w,) N B.(w;), where m’ = n, +
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b — a + nj. Therefore

(1) f~(D) is C'-close to W*(w,;) N B,(w,) for any u,-disc D which is
C'-close to D.
And if r is small, then

@ d(0;(t) U A, U O7(wy), {f(p): 0 <j < m’}) < 26 for any peD.

We shall choose a point x€ M such that d(4, O,(x)) <26. For any
1<i<k, let

Qi(x) = {y e M: d(f!(x), f(y)) <6 for any —M, <j < M;}.
Then there is r, > 0 such that
B, (t) C f"(Qs(x.), B, (w;) C 7@ ,1) -

By Lemma 5.4 applied to !, there is & € Wi(z) N B,(z) (r <r) such that

Fr(v) € We(w,) N B.(w,) for some n,e N. Hence there is a u,-disc D; in

W(z,) N B,(z,) such that f*(D;) is C'-close to W*(w,) N B,(w,). Since D; C
rsu (zo):

d(A,, closure of {f/(p/): — 0 <j=<0)<2 for any p’'eD;.

Hence if r is small, then

(3) d(A, U Oj(w,), closure of {f/(p”): — oo < j < ng}) <25 for any p”
e D;.
If f*(D;) is sufficiently C'-close to W*(w,) N B.(w,), then

frotMos ¥y Yy is C'-close to W*(t,) N B,(¢) .
Then by (1), there is a u,-disc D, in f™*¥°*¥(Dg) such that
(D, is C'-close to W*(w;) N B (w,)

(m@) = n; + |I,| + n} where || =b—a as I, = [a, b]). Hence there is a
u,~disc D, in D; such that

frovMormirmi (DY ig C'-close to W(w;) N Bw)) .
Therefore
fro(D,) is C'-close to W*(t,) N B.(t,)

where M(j) = ny, + M, + 2Xi21 M, + 33zl m@) + M,. By induction, there
iS a uk_"disc Dk_1 in W,;“(Zo) n BT(Z()) Such that

f29(D,_,) is C'-close to W*(t,) N B,(t) .
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By Lemma 5.4, there is yef”*®(D,_,) such that f*(y)e Wi(z,) N B,(2y).
Hence

d(A;, closure of {fi(y):0<j< + o))< 25.
Let x = f"%(y). Since xe Wi(z,) N B,(z),
d(A,, closure of {fi(x): — oo <j< ny}) < 20
by (3). Since f¥®-"i(x) e @,(x,) for any i by the choice of r, and r < r,
d(f!(x), f/(f*© ")) <3  for any — M,., <j< M,.
By (2), for any 1<i<k—1,
d(07(t) U A, U O (w), {F1(f"“(x): 0 <j < m@)) < 25.

Hence d(A, O/(x)) < 25. Since 4 is arbitrary and O, is closed in C(M), A €
O;. Hence E; C O,.

During the preparation of this paper, we heard that A. Morimoto
gave a proof of Theorem [4] but our proof is a different from his.

The author wishes to thank Professors Hiroshi Noguchi and Kenichi
Shiraiwa for helpful comments and suggestions and to thank Yoshio
Togawa for conversations helpful to this paper.
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