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Embedding Coverings in Bundles
Allan L. Edmonds

Abstract. If V → X is a vector bundle of fiber dimension k and Y → X is a finite sheeted covering map of
degree d, the implications for the Euler class e(V ) in Hk(X) of V implied by the existence of an embedding
Y → V lifting the covering map are explored. In particular it is proved that dd ′e(V ) = 0 where d ′ is a certain
divisor of d − 1, and often d′ = 1.

1 Introduction

It is a natural and intuitively attractive problem to decide whether a given “abstract” cov-
ering space Y → X can be made “concrete” by embedding it in a vector bundle V → X,
especially in the trivial bundle X × Rk. In this paper we examine a particular aspect of
the general problem, previously studied in some detail by V. L. Hansen [4], P. Duvall and
L. S. Husch [2], [3], and P. Zhang [8]. In much of the work cited it was assumed that the
vector bundle in question admitted a non-vanishing section. The question remained just
how necessary or appropriate that assumption actually was. We offer the following answer
to this question.

Theorem 1 Let p : V → X be the projection of an oriented k-plane vector bundle over a
space X, with Euler class e(V ) ∈ Hk(X; Z). Let f : Y → X be a degree d covering map, where
Y and X are connected and d ≥ 2. If there is an embedding g : Y → V such that pg = f , then
dd ′e(V ) = 0 in Hk(X; Z), for some integer d ′ dividing d − 1.

Remark 2 In addition, there is a covering Z → Y of degree d ′ such that the pullback of
V all the way to Z admits a non-vanishing section. The integer d ′ will be described more
precisely in Section 3.

In the case when V is an n-plane bundle over the n-manifold X (the case k = n) and
f : Y → X is a regular covering, this is due, in essence, to P. A. Duvall and L. S. Husch [3].
In their case, the conclusion was that the pullback of the bundle V to Y itself admits a non-
vanishing section. Duvall and Husch explicitly ask whether their result is true for irregular
coverings. We see that it is, since the Euler class in question is a multiple of a top class
living in a torsion free cohomology group. But for other combinations of dimensions more
subtle phenomena occur. We will give a simple example to show that the Euler class need
not vanish. For general irregular coverings we have been unable to decide whether the Euler
class of the bundle V is of order d, or whether the extra factor d ′ is actually necessary in the
theorem, in general.
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2 An Example and a Question

Here we give an example that shows that in general a vector bundle into which a d-fold
covering space embeds need not have a non-vanishing section or a vanishing Euler class.

Example 1 A lifting of a covering to an embedding in a 2-plane bundle with nontrivial Euler
class. Consider the 2-fold covering map f : S3 → RP3. Let W = S3 × R2, and V be the
quotient of W by the involution (x, v) → (−x,−v). If v ∈ R2 is any nonzero vector, then
the quotient map restricted to S3 × {v} yields an embedding g : S3 → V lifting f . On the
other hand, the Borsuk-Ulam theorem implies that V → RP3 is not a trivial bundle. In
fact V is the Whitney sum of two copies of the canonical line bundle over RP3 and its Euler
class is the nonzero element in H2(RP3; Z) = Z/2. In this case the Euler class is necessarily
d-torsion, where d = 2. We refer the reader to [7] for basic facts about vector bundles and
their Euler classes.

Question 1 Is there an example of a lifting of a degree d covering to an embedding in a
nontrivial bundle whose Euler class is not d-torsion?

3 Proof of Theorem

We will need to make use of the transfer homomorphism associated with a covering map
f : Y → X of degree d > 0 that is not necessarily the orbit map of a group action. The
transfer is a “backwards” homomorphism tr : H∗(Y ) → H∗(X), with the crucial property
that tr ◦ f ∗ =multiplication by d. See [1] for an elementary exposition of the transfer map.

Proof of Theorem The proof will proceed by induction on the degree d of the covering
Y → X. We may assume that d is at least 2. The initial case when d = 2 is a consequence
of a more general result in the following construction that will precede and be used in the
inductive step.

Choose a base point x0 ∈ X and y0 ∈ Y such that f (y0) = x0. Set v0 = g(y0) in V .
Let p̃ : W → Y be the pullback of p : V → X. We identify W explicitly as {(y, v) | f (y) =
p(v)}, where p̃ is induced by projection on the first coordinate, and f̃ : W → V is induced
by projection on the second coordinate. Let w0 ∈W be a base point such that w0 = (y0, v0)
where f (y0) = p(v0), so that p̃(w0) = y0. Note that f̃ (w0) = v0 and also that p f̃ = f p̃.
Moreover, f̃ is the covering map corresponding to p−1

∗ f∗
(
π1(Y, y0)

)
⊂ π1(V, v0).

Set Z = f̃−1
(
g(Y )
)
⊂ W , that is Z = {

(
y ′, g(y)

)
| f (y) = f (y ′)}. Then p̃ maps Z

to Y as a d-fold covering, since, identifying g(Y ) with Y , we can recognize Z → Y as the
pullback of the covering f : Y → X over itself.

Now covering space theory implies that the component Z0 of Z containing w0 is actually
homeomorphic to Y via the map p̃.

Suppose there is a second component Z1 of Z homeomorphic to Y via p̃ (e.g., d = 2, the
initial case of our underlying inductive argument).

Then Z0 and Z1 are two disjoint sections of the bundle p̃ : W → Y . It follows that
e(W ) = 0, and more, that W admits a nonvanishing section. Naturality of Euler classes and
the existence of the transfer then show that 0 = tr

(
e(W )

)
= tr
(
e( f ∗V )

)
= tr( f ∗

(
e(V )
)
=

d · e(V ) = 0.
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(More generally, if the lift g takes its values in the complement of the zero-section of
V → X, then one can also show e(W ) = 0, since then Z0 is a section of W in the comple-
ment of the zero-section of W living over the 0-section of V . In particular W → Y admits
a non-vanishing section in this case.)

Otherwise, there is a second component Zi of Z mapping to Y via p̃ as a di-fold covering
for some di , where 1 < di < d. Note that the covering Zi of Y is naturally lifted to
an embedding in the bundle W over Y . Moreover, the lifting of the covering Zi → Y
to an embedding Zi → W takes its values in W − Z0. Thus the preceding observation
shows that the pullback of W to Zi has trivial Euler class and in fact admits a nonvanishing
section. Naturality of Euler classes and the same transfer argument as above then imply that
ddie(V ) = 0. But this holds for the degree of each component Zi other than Z0 itself. These
di thus satisfy

∑
di = d−1. In particular we see that dd ′e(V ) = 0 for d ′ = gcd{d1, . . . dr},

since we can write d ′ =
∑

nidi . In particular, dd ′e(V ) = 0 for some divisor d ′ of d− 1, as
required.

Remark 3 If the embedding g : Y → V takes its values in the complement of the 0-
section, then the pullback bundle W → Y itself admits a nonvanishing section, so that
e(W ) = 0, hence de(V ) = 0, in this case.

Remark 4 Using basic covering space theory one can interpret the integer d ′ as follows.
Let G = π1(X, x0) and H = f∗

(
π1(Y, y0)

)
< G. Then d = |G/H| and d ′ =

gcd{|H/(H ∩ gHg−1)| : g /∈ H}. In particular, d ′ = 1 if H is not equal to its own
normalizer in G.

4 Applications

Note that the pullback of a regular covering over itself is a trivial covering. In this case in the
proof of the theorem there are indeed already two trivial sheets in Z over Y . Thus e(W ) = 0

and, so, 0 = tr
(
e(W )

)
= tr
(

f ∗
(
e(V )
))
= de(V ). Thus we have the following corollary:

Corollary 5 Let p : V → X be the projection of an oriented k-plane vector bundle over a
space X, and let f : Y → X be a degree d regular covering map. If there is an embedding
g : Y → V such that pg = f , then d e(V ) = 0 in Hk(X).

Alternatively, one just observes that d ′ = 1 in this case. In particular, the conclusion of the
corollary holds if the image f∗

(
π1(Y )

)
has nontrivial normalizer in π1(X).

Now we specialize to the case of an n-plane bundle over an n-manifold. In particular
we show that the assumption that V admits a non-vanishing section (which appears in the
work of Duvall and Husch, of Zhang, and of Hansen) is completely justified in this case.

Corollary 6 Let V be the total space of an oriented n-plane vector bundle over a closed
oriented n-manifold X, with Euler class e(V ) ∈ Hn(X), and let p : V → X be the bundle
projection. Let f : Y → X be a connected d-fold covering space. If there is an embedding
g : Y → V such that pg = f , then e(V ) = 0 in Hn(X).
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Proof In this case Hn(X) ≈ Hn(Y ) = Z. By the Theorem dd ′e(V ) = 0, so that e(V ) = 0
since Hn(X) is torsion free. For n-plane bundles over n-dimensional spaces, the Euler class
is both the primary and only obstruction to constructing a nowhere vanishing section, and
the result follows.

In general there would be no reason for a bundle to admit a nonvanishing section just
because the primary obstruction to the existence of a section vanishes.

Corollary 7 If F is a connected Riemann surface, f : G→ F is a connected d-fold covering,
d > 1, and p : V → F is an orientable 2-plane bundle over F and if there exists an embedding
g : G→ V such that pg = f , then V is a trivial bundle.

Proof By Corollary 6, e(V ) = 0. But oriented 2-plane bundles are completely classified
by the Euler classes.

A quite different proof of Corollary 7 follows from the work in [6], where the bundle V
is completed to a closed 4-manifold and results of Roklin are applied to the multiples of the
homology class carried by the zero section.
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