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Abstract

This paper investigates spatial data on the unit sphere. Traditionally, isotropic Gaussian
random fields are considered as the underlying mathematical model of the cosmic
microwave background (CMB) data. We discuss the generalized multifractional
Brownian motion and its pointwise Hölder exponent on the sphere. The multifractional
approach is used to investigate the CMB data from the Planck mission. These data
consist of CMB radiation measurements at narrow angles of the sky sphere. The
results obtained suggest that the estimated Hölder exponents for different CMB regions
do change from location to location. Therefore, the CMB temperature intensities are
multifractional. The methodology developed is used to suggest two approaches for
detecting regions with anomalies in the cleaned CMB maps.

2020 Mathematics subject classification: primary 60G60; secondary 60G15, 60G22,
62M40, 83F05, 62P35.

Keywords and phrases: random fields, multifractionality, Hölder exponent, spherical
statistics, cosmic microwave background radiation, CMB anomalies.

1. Introduction

The notion of fractional Brownian motion (FBM) was introduced by Mandelbrot and
Van Ness in 1968 [31]. The Hurst parameter H can be used to define the Hölder
regularity of the FBM [7]. The multifractional Brownian motion (MBM) was first
considered by Péltier and Lévy Véhel in 1995, extending the FBM [38]. The concept of
multifractionality allows local fractional properties to depend on space-time locations.
Multifractional processes were used to study complex stochastic systems which exhibit
nonlinear behaviour in space and time. Multifractional behaviour of data has been
found in many applications, such as image processing, stock price movements and
signal processing [7, 41].
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The generalized multifractional Brownian motion (GMBM) is a continuous
Gaussian process that was introduced by generalizing the traditional FBM and
MBM (see [7]). In comparison to MBM, the Hölder regularity of GMBM can vary
substantially. For example, GMBM can allow discontinuous Hölder exponents. This
has been an advantage in certain applications, such as medical image modelling,
telecommunications, turbulence and finance, where the pointwise Hölder exponent
can change rapidly. A Fourier spectrum’s low frequencies control the long-range
dependence of a stochastic process while the higher frequencies control the Hölder
regularity. Therefore, GMBM can be used to model processes that exhibit erratic
behaviour of the local Hölder exponent and long-range dependence [7].

The aim of this paper is to introduce new applied methodology based on the local
Hölder exponent, and illustrate it by applying it to cosmic microwave background
(CMB) radiation data. The following brief physics background is provided to enable a
better understanding of the CMB data.

The universe originated about 14 billion years ago and was characterized by an
extremely high temperature. The cosmological theory that is generally accepted is
given, for example, in the book by Weinberg [45]. From 10−35 seconds (s) after
the original singularity up to 10−32 s, there was rapid exponential inflation by a
factor greater than e60, driven by an as yet unidentified inflation quantum field.
Correlation lengths following from vacuum energy fluctuations rapidly expanded to
separations that are now observed in the CMB to be well beyond the horizon of light
signals. Inflation is an answer to the horizon puzzle as well as the flatness puzzle
and the absence of magnetic monopoles. From 10−5 s after the singularity, hadron
particle–antiparticle pairs could form, followed by lepton pairs from 1 s. By 10 s, the
universe had cooled enough so that pair annihilation led to photons being the dominant
component of energy within the plasma for the next 380,000 years. During this time,
within the plasma, the photon mean free path was relatively short, so the system was
opaque. However, from 100,000 years onwards, He atoms and then neutral H atoms
began to form. In the final stage of “recombination”, at temperature almost 4000
kelvin (K), after 378,000 years the photons propagated freely and can be observed
in the CMB. Due to cosmological expansion, their wavelengths have now stretched
to the microwave part of the electromagnetic spectrum, exhibiting a high-accuracy
blackbody spectrum of a thermalized environment, matching with a temperature of
2.725 K. However, small anisotropic perturbations of that temperature are now of
most interest. They indicate large-scale density variations within the plasma universe
that are associated with preferred locations in the subsequent formation of galaxies.
Further back, anisotropy relates to the formation of matter, separating rival quantum
field theories.

On a sphere, a scalar function such as temperature is most conveniently expanded
in a basis of spherical harmonics in polar coordinates Ym

l (θ,ϕ). The largest variation
from isotropy is a dipole structure at l = 1. That dipole can be transformed away by
choosing a reference frame that has a speed of 368 km/s relative to our own frame.
There is significant structure in the spherical harmonic spectrum up to at least l = 1000.
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There is a consistent interpretation that we are now in a dark-energy-dominated era,
consisting of 73% or more of the mass energy, around 23% dark matter, the small but
important remainder being ordinary matter and radiation.

In the microwave region, the CMB spectrum closely follows that of a black
body at equilibrium temperature 2.735 K, tracing back to a plasma temperature
of around 4000 K at a time corresponding to redshift z = 1500 at 50% atomic
combination. Although the equilibrium spectrum is essential, there are important
departures from equilibrium that give information on the state of the early universe.
Relative anisotropic variations of spectral intensity from that of a black body are of
the order of 10−4. Calculations by Khatri and Sunyaev [25] showed that outside of a
relatively small range of redshifts, external energy inputs from sources such as massive
particle decay would dissipate by Compton and double Compton scattering and other
relaxation processes to affect the signal by several lower orders of magnitude. The
primary sources of anisotropy were large-scale acoustic waves whose compressions
in the plasma universe were associated with raised temperatures. Using the current
angular widths of anisotropies in the CMB, the current standard model ΛCDM
(cold dark matter plus dark energy) affords an estimate of the Hubble constant at
H0 = 67.4 ± 1.4 km/s/MPc [4]. This agrees well with data from the POLARBEAR
Antarctica telescope that give H0 = 67.2 ± 0.57 km/s/MPc [2]. However, estimates
from more recent emissions from closer galaxies, using both cepheid variables and
type Ia supernovae as distance markers, give H0 = 74.03 ± 1.42 km/s/MPc [40]. This
unexplained discrepancy will eventually be resolved by newly found errors in the
methodology of one or both of the competing large-z and small-z measurements, or
in new physical processes that are currently unidentified.

Within a turbulent plasma, there are electrodynamical processes that are far more
complicated than the large-scale acoustic waves. When radiation by plasma waves is
taken into account, useful kinetic equations and spectral functions can no longer be
constructed by Bogoliubov’s approach of closing the moment equations for electron
distribution functions (see [26, Ch. 5]). Even in controlled tokamak devices, the
dynamical description of magnetic field lines has fractal attracting sets [43], and
charged particle trajectories may have fractal attractors under the influence of multiple
magnetic drift waves [34]. At CMB frequencies below 3 GHz (that is, wavelengths
larger than 10 cm), there have been indications of spectral intensities much higher
than that of a 2.7 K black body [8]. Although there is a high level of confidence
in measuring the universe’s expansion factor from the CMB since the decoupling of
photons from charged particles, the level of complexity of magnetohydrodynamics in
plasma suggests that this subject might not be a closed book. Multifractal analysis is
a tool that might contribute to understanding the multiscale data that are becoming
successively finer-grained with each generation of radio telescope.

The Planck mission [39] was launched in 2009 to measure the CMB with an extraor-
dinary accuracy over a wide spectrum of infrared wavelengths. The signal obtained has
been filtered by astrophysics teams using the best available technology. We feel that
it is worthwhile to analyse the full signal that is currently available. Higher-resolution
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measurements in the future will distinguish which details of the analysis are due to
physical causes, or various sources of galactic noise and measurement errors. Either
way, a retrospective correction of our analysis could guide future signal processing.

The CMB data can be utilized to understand how the early universe originated and
to find out the key parameters of the Big Bang model [37]. Numerous researchers have
suggested that the CMB data either are non-Gaussian or cannot be accurately described
by mathematical models with few constant parameters (see [3, 29, 32, 36]). The
classical book by Weinberg [45] explained that this anisotropy in the plasma universe
was significant enough to produce anisotropy in current galaxy distributions. For some
recent results and discussion of fundamental cosmological models of the universe
see [12]. To detect departures from the isotropic model in actual CMB data several
approaches can be employed (see, for example, [21, 29]). Different approaches can give
different results, and suggest to cosmologists sky regions for further investigations.
The motivation of this paper is to check for multifractionality of the CMB temperature
intensities from the Planck mission. Theoretical multifractional space-time models
which differ from the standard cosmological model [15] have suggested that the
universe is not expanding monotonically, which produces multifractional behaviour.
Calcagni et al. [15] used the CMB data from the Planck mission and the Far Infrared
Absolute Spectrophotometer to establish speculative constraints on multifractional
space-time expansion scenarios. Further, fractional stochastic partial differential
equations (SPDEs) were employed to model the CMB data [5]. The fractional SPDE
models considered exhibited long-range dependence.

In the literature, the most widely used model for describing CMB temperature
intensities is isotropic Gaussian spherical random fields (see, for example, [3, 27,
33] for more details). Mathematical analysis of spherical random fields has attracted
significant research attention in recent years (see [21, 28, 33] and the references
therein). This paper continues these investigations. It develops methodology to
investigate fractional properties of random fields on the unit sphere. The presented
detailed analysis of actual CMB temperature intensities suggests the presence of
multifractionality.

The methodology developed was also used to detect anomalies in CMB maps. The
results obtained were compared with a different method from [21]. Both methods
found the same anomalies, but each detected its own CMB regions of unusual
behaviour. Applications of the methodology developed resulted in spatial clusters that
matched very well with the temperature confidence mask (TMASK) of unreliable
CMB intensities.

Developing a methodology to detect multifractional behaviour and anomalies
within the random fields framework is quite natural. In the CMB research context,
determining areas with unusual Hölder exponent values can indicate locations of
seeds of galaxies or areas that are problematic for preliminary signal processing of
CMB maps. The anomalous locations detected are regions of potential interest for
further investigations by astronomers, in particular, using analytic tools that are not yet
routinely used.

https://doi.org/10.1017/S1446181122000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181122000104


94 P. Broadbridge, R. Nanayakkara and A. Olenko [5]

The structure of the paper is as follows. Section 2 provides the main notation and
definitions related to the theory of random fields. Section 3 introduces the concept
of multifractionality and discusses the GMBM. Section 4 presents results on the
estimation of the pointwise Hölder exponent by using quadratic variations of random
fields. Section 5 discusses the suggested estimation methodology. Numerical studies
including computing the estimates of pointwise Hölder exponents for different one-
and two-dimensional regions of the CMB sky sphere are given in Section 6. This
section also demonstrates an application of our methodology to detect regions with
anomalies in the cleaned CMB maps. Finally, the conclusions and some future research
directions are presented in Section 7.

All numerical studies were carried out by using Python version 3.9.4 and R version
4.0.3, specifically, the R package RCOSMO [18, 19]. A reproducible version of the
code in this paper is available in the “Research materials” folder at the website
https://sites.google.com/site/olenkoandriy/.

2. Main notation and definitions

This section presents background material in the theory of random fields, fractional
spherical fields and fractional processes. Most of the material included in this section
is based on the papers [6, 27, 30, 33].

Let R3 be the real three-dimensional Euclidean space and s2(1) be the unit sphere
defined in R3. That is, s2(1) = {x ∈ R3, ‖x‖ = 1} where ‖·‖ represents the Euclidean
distance in R3. Let SO(3) denote the group of rotations on R3.

Let (Ω,F , P) be a probability space. The symbol d
= denotes equality in the sense of

the finite-dimensional distributions.

DEFINITION 2.1. A function T(ω, x) : Ω × s2(1)→ R is called a real-valued random
field defined on the unit sphere. For simplicity, it will also be denoted by T(x),
x ∈ s2(1).

DEFINITION 2.2. The random field T(x) is called strongly isotropic if, for all
k ∈ N, x1, . . . , xk ∈ s2(1) and g ∈ SO(3), the joint distributions of the random variables
T(x1), . . . , T(xk) and T(gx1), . . . , T(gxk) have the same law.

It is called 2-weakly isotropic (in the following it will be just called isotropic) if the
second moment of T(x) is finite, that is, if E(|T(x)|2) < ∞ for all x ∈ s2(1) and if for all
pairs of points x1, x2 ∈ s2(1), and for any rotation, g ∈ SO(3), we have

E(T(x)) = E(T(gx)), E(T(x1) T(x2)) = E(T(gx1)T(gx2)).

DEFINITION 2.3. The random field T(x) is called Gaussian if for all k ∈ N and
x1, . . . , xk ∈ s2(1) the random variables T(x1), . . . , T(xk) are multivariate Gaussian
distributed, that is,

∑k
i=1 aiT(xi) is a normally distributed random variable for all ai ∈ R,

i = 1, . . . , k, such that
∑k

i=1 a2
i � 0.

Let T = {T(r, θ,ϕ) | 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, r > 0} be a spherical random field that
has zero mean, finite variance and is mean-square continuous. Let the corresponding
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Lebesgue measure on the unit sphere be σ1(du) = σ1(dθ · dϕ) = sin θ dθ dϕ, with
u = (θ,ϕ) ∈ s2(1). For two points on s2(1), we use Θ to denote the angle formed
between two rays originating at the origin and pointing at these two points, and Θ is
called the angular distance between these two points. To emphasize that a random field
depends on Euclidean coordinates, the notation T̃(x) = T(r, θ,ϕ), x ∈ R3, will be used.

REMARK 2.4. In the following, for analysis of cosmological data, we will also be using
the galactic coordinate system with the Sun as the centre to locate the relative positions
of objects and motions within the Milky Way. This consists of galactic longitude
l, 0 ≤ l < 2π, and galactic latitude b, −π/2 ≤ b ≤ π/2. They are related to the spherical
coordinates by l = φ and b = (π/2 − θ).

REMARK 2.5. A real-valued second-order random field T̃(x), x ∈ s2(1), with
E(T̃(x)) = 0 is isotropic if E(T̃(x1)T̃(x2)) = B(cosΘ), x1, x2 ∈ s2(1), depends only on
the angular distance Θ between x1 and x2.

The spherical harmonics are defined by

Ym
l (θ,ϕ) = cm

l exp (imϕ)Pm
l (cos θ), l = 0, 1, . . . ; m = 0,±1, . . . ,±l,

with

cm
l = (−1)m

(2l + 1
4π

(l − m)!
(l + m)!

)1/2
,

and the Legendre polynomials Pm
l (cos θ) having degree l and order m.

Then the following spectral representation of spherical random fields holds in the
mean-square sense:

T(r, θ,ϕ) =
∞∑

l=0

l∑
m=−l

Ym
l (θ,ϕ)am

l (r),

where am
l (r) is a set of random coefficients defined by

am
l (r) =

∫ π
0

∫ 2π

0
T(r, θ,ϕ)Ym

l (θ,ϕ)r2 sin θ dθ dϕ =
∫

s2(1)
T̃(ru)Ym

l (u)σ1(du),

with u = x/‖x‖ ∈ s2(1), r = ‖x‖.

DEFINITION 2.6. A real-valued random field T̃(x), x ∈ R3, has stationary increments,
if the equality

T̃(x + x′) − T̃(x′) d
= T̃(x) − T̃(0), x ∈ R3,

holds for all x′ ∈ R3.

REMARK 2.7. When T̃(x), x ∈ R3, is a second-order random field with stationary
increments, then one has E(T̃(x + x′) − T̃(x′))2 = VT̃ (x) for every (x, x′) ∈ R3 × R3,
whereVT̃ is called the variogram of the field T̃ .
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DEFINITION 2.8. A real-valued random field T̃(x), x ∈ R3, is said to be globally
self-similar if, for some fixed positive real number H and for each positive real
number a, it satisfies

a−HT̃(ax)
d
= T̃(x), x ∈ R3. (2.1)

REMARK 2.9. Beside the degenerate case, the scale invariance property (2.1) holds
only for a unique H which we declare as the global self-similarity exponent.

DEFINITION 2.10. For each fixed H ∈ (0, 1), there exists a real-valued globally
H-self-similar isotropic centred Gaussian field with stationary increments. This is
called the fractional Brownian field (FBF) of Hurst parameter H, and is denoted
by BH(t), t ∈ R3. The corresponding covariance function, is given, for all (t′, t′′) ∈
R

3 × R3, by

E(BH(t′)BH(t′′)) = 2−1 Var(BH(e0))(‖t′‖2H + ‖t′′‖2H − ‖t′ − t′′‖2H),

where e0 denotes an arbitrary vector of the unit sphere s2(1).

REMARK 2.11. In the particular case where H = 1/2, the FBF is denoted by B(t),
t ∈ R3, and is called Lévy Brownian motion.

Similarly, one can introduce an H-self-similar process in the one-dimensional case.
We also denote it by BH(t), t ≥ 0. It will be called the fractional Brownian motion
(FBM).

DEFINITION 2.12 [38]. The FBM with Hurst parameter H(0 < H < 1) is defined by
the stochastic integral

BH(t) =
1

Γ(H + 1/2)

{ ∫ 0

−∞
((t − s)H−1/2 − (−s)H−1/2) dW(s) +

∫ t

0
(t − s)H−1/2 dW(s)

}
,

where t ≥ 0 and W(·) denotes a Wiener process on (−∞,∞).

The Hurst parameter specifies the degree of self-similarity. When H = 0.5, the FBM
reduces to the standard Brownian motion. In contrast to the Brownian motion, the
increments of FBM are correlated.

3. Multifractional processes

This section provides definitions and theorems related to multifractional processes.
Most of the material presented in this section is based on [6, 9, 10, 38].

Let C1 be the class of continuously differentiable functions and C2 be the class of
functions where both first and second derivatives exist and are continuous.

First, we introduce multifractional processes in the one-dimensional case. These
will be used to analyse the CMB temperature intensities using the ring ordering
Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme.
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DEFINITION 3.1 [9]. A multifractional Gaussian process X(t), t ∈ [0, 1], is a real
Gaussian process whose covariance function C(t, s) is of the form

C(t, s) =
∫
R

f (t, λ)f (s, λ) dλ,

where

f (t, λ) =
(eitλ − 1)a(t, λ)
|λ|1/2+α(t) .

The smoothness of the process is determined by the function α(·) which is from
C1 with 0 < α(t) < 1, t ∈ [0, 1]. The modulation of the process is determined by the
function a(t, λ) which is defined on [0, 1] × R and satisfies a(t, λ) = a∞(t) + R(t, λ),
where a∞(·) is C1([0, 1]) with, a∞(t) � 0 for all t ∈ [0, 1], and R(·, ·) ∈ C1,2([0, 1] × R)
is such that there exists some η > 0 that for i = 0, 1 and j = 0, 2 we have

∣∣∣∣∣ ∂
i+j

∂ti∂λj R(t, λ)
∣∣∣∣∣ � C
|λ|η+j .

DEFINITION 3.2 [38]. Multifractional Brownian motion (MBM) is given by

BH(t)(t) =
σ

Γ(H(t) + 1/2)

{ ∫ 0

−∞
((t − s)H(t)−1/2 − (−s)H(t)−1/2) dB(s)

+

∫ t

0
(t − s)H(t)−1/2 dB(s)

}
,

where B(s) is the standard Brownian motion and σ2 = Var(BH(t)(t))|t=1.

For the MBM, E(BH(t)(t)) = 0 and Var(BH(t)(t)) = σ2|t|2H(t)/2. The FBM is a special
case of the MBM where the local Hölder exponent H(t) is a constant, namely,
H(t) = H. The MBM, which is a nonstationary Gaussian process, does not have
independent stationary increments, in contrast to the FBM.

DEFINITION 3.3. A function H(·) : R→ R is a (β, c)-Hölder function, β > 0 and
c > 0, if

|H(t1) − H(t2)| � c|t1 − t2|β

for all t1, t2 satisfying |t1 − t2| < 1.

The MBM admits the following harmonizable representation (see, for example,
[10]). If H(·) : R→ [a, b] ⊂ (0, 1) is a β-Hölder function satisfying the assumption
sup H(t) < β, then the MBM with functional parameter H(·) can be written as

Re
( ∫
R

(eitξ − 1)
‖ξ‖H(t)+1/2 dW̃(ξ)

)
,
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where W̃(·) is the complex isotropic random measure that satisfies

dW̃(·) = dW1(·) + idW2(·).

Here, W1(·) and W2(·) are independent real-valued Brownian measures.
We now introduce the concept of the generalized multifractional Brownian motion

(GMBM), which is an extension of the FBM and MBM. The GMBM was introduced to
overcome the limitations existed in applying the MBM to model data whose pointwise
Hölder exponent has an irregular behaviour.

The following definitions will be used to analyse the CMB temperature intensities
using the ring and nested ordering HEALPix schemes for d = 1, 2, respectively.

DEFINITION 3.4 [7]. Let [a, b] ⊂ (0, 1) be an arbitrary fixed interval. An admissible
sequence (Hn(·))n∈N is a sequence of Lipschitz functions defined on [0, 1] and taking
values in [a, b] with Lipschitz constants δn such that δn � c12nα, for all n ∈ N, where
c1 > 0 and α ∈ (0, a) are constants.

DEFINITION 3.5 [7]. Let (Hn(·))n∈N be an admissible sequence. The generalized
multifractional field with the parameter sequence (Hn(·))n∈N is the continuous Gaussian
field Y(x, y), (x, y) ∈ [0, 1]d × [0, 1]d, defined for all (x, y) as

Y(x, y) = Re
( ∫
Rd

( ∞∑
n=0

(cixξ − 1)
‖ξ‖Hn(y)+1/2 f̂n−1(ξ)

)
dW̃(ξ)

)
,

where W̃(·) is the stochastic measure defined previously.
The GMBM with the parameter sequence (Hn(·))n∈N is the continuous Gaussian

process X(t), t ∈ [0, 1]d defined as the restriction of Y(x, y), (x, y) ∈ [0, 1]d × [0, 1]d to
the diagonal, X(t) = Y(t, t).

Compared with the FBM and MBM, one of the major advantages of the GMBM
is that its pointwise Hölder exponent can be defined through the parameter (Hn(·))n∈N.
For every t ∈ R2, almost surely,

αX(t) = H(t) = lim inf
n→∞

Hn(t).

4. The Hölder exponent

This section presents basic notation, definitions and theorems associated with the
pointwise Hölder exponent; see [7, 9, 24] for additional details. The pointwise Hölder
exponent determines the regularity of a stochastic process. It describes local scaling
properties of random fields, and can be used to detect multifractionality.

DEFINITION 4.1 [7]. The pointwise Hölder exponent of a stochastic process X(t),
t ∈ R, whose trajectories are continuous, is the stochastic process αX(t), t ∈ R, defined
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for every t as

αX(t) = sup
{
α

∣∣∣∣∣ lim sup
h→0

|X(t + h) − X(t)|
|h|α = 0

}
.

The Hölder regularity of FBM can be specified at any given point t, almost surely,
and αBH (t) = H is constant for FBM. The pointwise Hölder regularity of MBM can be
determined by its functional parameter similarly to FBM where αX(t) is the pointwise
Hölder exponent. In particular, for every t ∈ R, almost surely, αX(t) = H(t).

In the literature, the method of quadratic variations is a frequently used technique to
estimate the Hölder exponent [9, 24]. The following definition is used to compute the
total increment in the one-dimensional case and will be applied for the ring ordering
scheme of HEALPix points.

DEFINITION 4.2 [7]. Let t ∈ [0, 1]. For every integer N ≥ 2, the generalized quadratic
variation V (1)

N (t) around t is defined by

V (1)
N (t) =

∑
p∈vN (t)

(∑
k∈F

ekX
(p + k

N

))2
, (4.1)

where F = {0, 1, 2}, e0 = 1, e1 = −2, e2 = 1, and

vN(t) = {p ∈ N |0 � p � N − 2 and |t − p/N | � N−γ}.

The following definition is used to compute the total increment in the
two-dimensional case and will be used for the nested ordering scheme of HEALPix
points.

DEFINITION 4.3. Let t = (t1, t2) ∈ [0, 1]2. For every integer N ≥ 2, the generalized
quadratic variation V (2)

N (t) around t is defined by

V (2)
N (t) =

∑
p∈vN (t)

(∑
k∈F

dkX
(p + k

N

))2
, (4.2)

where p = (p1, p2), ε = (ε1, ε2), (p + ε)/N = ((p1 + ε1)/N, (p2 + ε2)/N), F = {0, 1, 2}2
and, for all k = (k1, k2) ∈ F, dk =

∏2
l=1 ekl with e0 = 1, e1 = −2 and e2 = 1. Here,

vN(t) = v1
N(t1) × v2

N(t2) and, for all i = 1, 2,

vi
N(ti) = {pi ∈ N |0 � pi � N − 2 and |ti − pi/N | � N−γ}.

The pointwise Hölder exponents are estimated for the one-dimensional ring
ordering and two-dimensional nested ordering of HEALPix points by considering
sufficiently large N and d = 1, 2, respectively, in the following theorem which is a
specialization of [7, Theorem 2.2] with δ = 1.

THEOREM 4.4 [7]. Let X(t), t ∈ [0, 1]d, be a GMBM with an admissible sequence
(Hn(·))n∈N ranging in [a, b] ⊂ (0, 1 − 1/2d). Then, for a fixed γ ∈ (b, 1 − 1/2d) and the
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sequence (Hn(t))n∈N convergent to H(t), we have

H(t) = lim
N→∞

1
2

(
d(1 − γ) −

log(V (d)
N (t))

log(N)

)
(4.3)

almost surely.

5. Data and methodology

This section presents an overview of the data and key ideas of the suggested
methodology to study multifractionality of the CMB data that is based on theoretical
results from Section 4. This and the next sections also provide a detailed justification
of this methodology and its assumptions and required modifications of the formulas
for the spherical case and CMB data.

In the cosmological literature, it is widely accepted that CMB data are a realization
of random fields on a sphere. This paper follows this approach to study the local
properties of the corresponding spherical random field. We have developed and
implemented a method of computing local estimators in a neighbourhood of each
pixel.

The CMB data are referenced by a very dense grid of pixels with equal areas on
the sky sphere. They are stored according to the HEALPix format on the sphere. Each
CMB pixel has a set of attributes, such as its unique location, temperature intensity
and polarization data, which describe its properties. In this analysis the temperature
intensities are used. The resolution parameter Nside defines the number of pixels Npix
on the sphere and their size. For example, for a given resolution Nside = 2048, there are
Npix = 12 × (Nside)2 = 50 331 648 pixels observed on the CMB sky sphere [18, 20, 22].
The CMB data are stored at 5 and 10 arc minutes resolution on the CMB sky for the
resolution parameters Nside = 2048 and Nside = 1024, respectively. To estimate local
Hölder exponent values one needs a sufficient number of observations in a neighbour-
hood of a given point. The dense HEALPix grid provides such high-resolution data to
reliably estimate local Hölder exponent values. For all numerical results and estimates,
the highest available resolution Nside = 2048 was used.

The Planck CMB intensity measurements vary in frequency from 30 to 857 GHz.
They were obtained by separating the Planck CMB measurements from the foreground
noise using several methods (COMMANDER, NILC, SEVEM and SMICA) [3].
In applied cosmological research, it’s assumed that after separation, the residual
foreground noise component of Planck CMB temperature intensities is negligible.

For multifractional data, H(t) changes from location to location and H(t) � constant,
where t ∈ s2(1). Several methods to estimate the local Hölder exponent are available
in the literature. Different methods often give different results regarding inconsistent
estimation results of the Hölder exponent (see, for example, discussions in [11, 42]).
Inconsistent results by different techniques are due to their different assumptions [11].
We propose an estimation method based on the generalized quadratic variations given
by (4.1) and (4.2) and their asymptotic behaviour in (4.3). The results of this method
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(a) HEALPix ring ordering (b) HEALPix nested ordering

FIGURE 1. HEALPix ordering schemes.

are also compared with another conventional method that uses the rescale range
(R/S) to estimate the Hölder exponent. This method is realized in the R package
FRACTAL [17].

The CMB data exhibit variations of the temperature intensities at very small scales
(± 1.8557 × 10−3). To get reliable estimates of H(t), a large number of observations
in neighbourhoods of each t is required. Thus, in this paper, we do not discuss the
preciseness of the local estimators of H(t), but only pay attention to differences in the
estimated values at different locations.

For computing purposes, the temperature intensities were scaled as

scaled intensity(t) =
intensity(t)

maxs∈s2(1)|intensity(s)| .

It is clear from Definition 4.1 that this scaling does not change the values of αX(t).
Also, by (4.1) and (4.2) the generalized quadratic variation of the scaled process cX(t)
is c2V (d)

N (t), d = 1, 2. By (4.3),

lim
N→∞

log(c2V (d)
N (t))

log(N)
= lim

N→∞

( log(c2)
log(N)

+
log(V (d)

N (t))
log(N)

)
= lim

N→∞

log(V (d)
N (t))

log(N)
, (5.1)

which means that this scaling also does not affect H(t).
As mentioned before, for small values of log(N) the estimates of H(t) can be biased,

which is now evident from the term log(c2)/log(N) in equation (5.1). However, this
bias is due to the scaling effect only and is exactly the same for all values of t. Even
if it might result in some errors in estimates Ĥ(t), it will not affect the analysis of
differences in H(t) values for different locations, which is the main aim of this analysis.

Estimates of pointwise Hölder exponent values were computed using one- and
two-dimensional regions of the CMB data and the HEALPix ring and nested orderings
[20]. The ordering schemes are demonstrated in Figure 1. For fast computations
we used the well-known advantages of these HEALPix ordering representations.
The method of quadratic variation for Hölder exponents was adjusted for the nested
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and ring representations on the sphere. Numerical studies showed that the proposed
estimators are robust to changes of neighbourhood sizes.

6. Numerical studies

This section presents numerical studies and applications of the methodology from
Section 5 to CMB data. The pointwise Hölder exponent estimates Ĥ(t) are computed
and analysed for one- and two-dimensional regions of the CMB temperature intensities
acquired from the NASA/IPAC Infrared Science Archive [23]. The estimated Hölder
exponents are used to quantify the roughness of the CMB temperature intensities.
The methodology developed is also applied to detect possible anomalies in the CMB
temperature intensities.

6.1. Estimates of Hölder exponent for one-dimensional CMB regions For the
one-dimensional case, the HEALPix ring ordered CMB temperature intensities were
modelled by a stochastic process X(t). Their Hölder exponents H(t) were estimated
by using the expression from equation (4.3) for the given large N with d = 1, where
V (1)

N (t) was computed using equation (4.1), which can be explicitly written as

V (1)
N (t) =

N−2∑
p=0

(
X
( p
N

)
− 2X

(p + 1
N

)
+ X
(p + 2

N

))2
.

As pixels on relatively small ring segments can be considered lying on approxi-
mately straight lines, the results from the case d = 1 can be used. The parameter N
was chosen to give approximately the number of pixels within a half ring of the CMB
sky sphere. The parameter r is the distance from a HEALPix point t that is the centre
of an interval in which we compute the total increment V (1)

N (t). By the expression for
vN(t) in Definition 4.2, the parameter γ was computed as γ = −(log(r)/log(N)) for
selected values of N and r. Then it was used in equation (4.3) to compute the estimated
pointwise Hölder exponent values.

According to the HEALPix structure of the CMB data with resolution Nside = 2048,
the HEALPix ring ordering scheme results in (4 × Nside − 1) rings [22]. That is, for
Nside = 2048, the CMB sky sphere consists of 8191 rings. Based on the HEALPix
geometry, the number of pixels in the upper part rings increases with the ring number,
Ring = 1, . . . , 2047, as 4 × Ring. The (2Nside + 1) = 4097 set of rings in the middle
part of the CMB sky sphere have equal number of pixels, 4 × Nside. The number of
pixels in each of the final (Nside − 1) = 2047 rings in the lower part decreases according
to the formula 4 × (8191 − Ring + 1).

For the one-dimensional case, the estimated pointwise Hölder exponent values Ĥ(t)
were computed as follows. First, a random CMB pixel was selected and its ring was
determined. Then pixels belonging to the half of that particular ring were selected.
Then, for each CMB pixel in this rim segment, the quadratic variation was computed
by V (1)

N (t) given in equation (4.1). When computing the generalized quadratic variation
for a CMB pixel, the pixels within a distance r = 0.08 from it were considered. For
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(c) Ĥ(t) values of ring 1275 (d) Ĥ(t) values of ring 5900

(a) Scaled intensities of ring 1275 (b) Scaled intensities of ring 5900

FIGURE 2. Examples of scaled intensities and Ĥ(t) values for one-dimensional CMB regions.

these pixels, the squared increments were computed and used to obtain the total of
increments. Finally, the Hölder exponents were estimated by substituting the total of
increments and the other parameters in equation (4.3).

First, three CMB pixels “552300”, “1533000”, “3253800” located in the corre-
sponding upper part rings 525, 875 and 1275 were chosen. Then for each CMB pixel in
these half rings, their corresponding estimated Hölder exponents Ĥ(t) were computed.
Next, another three pixels “10047488”, “32575488”, “39948288” were chosen in
the middle part of the CMB sky sphere. Their ring numbers were 2250, 5000 and
5900, respectively. Finally, three CMB pixels “47656664”, “48651704”, “49375304”
belonging to the lower part rings, 7035, 7275 and 7500 were selected and the pointwise
Hölder exponents of pixels in their rim segments were estimated.

For example, Figure 2 shows the plots of the scaled intensities and the estimated
pointwise Hölder exponents of the rim segments of rings 1275 and 5900, which belong
to the upper and middle parts of the CMB sky sphere, respectively. It can be seen
from Figures 2(a) and 2(b) that the majority of scaled intensities fall into the range
[−0.2, 0.2] and their fluctuations are random. Figures 2(c) and 2(d) show that the Ĥ(t)
values in both rim sections are changing and the dispersion range for ring 1275 is wider
than that of ring 5900. Similar plots and results were also obtained for other rings.

The summary of the estimated pointwise Hölder exponent values obtained by the
discussed methodology is shown in Table 1. It is clear that the dispersion range of
the Ĥ(t) values and the mean Ĥ(t) value change with ring numbers. These results
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TABLE 1. Summary of Ĥ(t) values for pixels in different rings of the CMB sky sphere.

Part of CMB sky Case Ring number γ [Ĥ(t)min, Ĥ(t)max] Ĥ(t)max − Ĥ(t)min Mean Ĥ(t)

Upper part 1 525 0.3631 [0.5681, 0.6215] 0.0534 0.5960
2 875 0.3382 [0.5443, 0.5782] 0.0339 0.5605
3 1275 0.3220 [0.5059, 0.5727] 0.0668 0.5439

Middle part 4 2250 0.3037 [0.4824, 0.5479] 0.0655 0.5137
5 5000 0.3037 [0.4372, 0.4847] 0.0475 0.4626
6 5900 0.3037 [0.4622, 0.5019] 0.0397 0.4835

Lower part 7 7035 0.3260 [0.5067, 0.5384] 0.0317 0.5234
8 7275 0.3361 [0.5256, 0.5553] 0.0297 0.5410
9 7500 0.3492 [0.5548, 0.5896] 0.0348 0.5701

TABLE 2. Summary of Ĥ(t) values for pixels in different rings of the CMB sky sphere using the R/S
method.

Part of CMB sky Case Ring number [Ĥ(t)min, Ĥ(t)max] Ĥ(t)max − Ĥ(t)min Mean Ĥ(t)

Upper part 1 525 [0.8106, 0.9035] 0.0929 0.8758
2 875 [0.8527, 0.9146] 0.0619 0.8867
3 1275 [0.8577, 0.9088] 0.0511 0.8898

Middle part 4 2250 [0.8757, 0.9148] 0.0391 0.8975
5 5000 [0.8656, 0.9079] 0.0423 0.8883
6 5900 [0.8702, 0.9072] 0.0370 0.8926

Lower part 7 7035 [0.8617, 0.9081] 0.0464 0.8889
8 7275 [0.8599, 0.9098] 0.0499 0.8897
9 7500 [0.8348, 0.9004] 0.0656 0.8714

suggest that the pointwise Hölder exponent values change from location to location.
The summary of the estimated pointwise Hölder exponent values obtained by the
conventional (R/S) method using the command RoverS from the R package FRACTAL
is given in Table 2. Note that the dispersion range and the mean Ĥ(t) value change
with the spiralling ring number. Similar results were also obtained for other available
estimators of the Hölder exponent. Although these numerical values are inconsistent
between different methods, they all suggest that the pointwise Hölder exponent values
change from location to location.

It is expected that temperature intensities are positively dependent/correlated
in close regions; see the covariance analysis in [13]. Therefore, running standard
equality-of-means tests under independence assumptions will provide even more
significant results if the hypothesis of equal means is rejected.
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TABLE 3. The p-values for Wilcoxon tests between different rings.

1275 3.048 × 10−15

2250 7.939 × 10−11 3.606 × 10−12

7500 1.533 × 10−8 4.605 × 10−10 3.717 × 10−13

525 1275 2250

FIGURE 3. The distribution of Ĥ(t) values of four rim segments.

To prove that distributions of Ĥ(t) are statistically different between different sky
regions, we carried out several equality-of-means tests. Before that, the Shapiro test
was used to ensure that the Ĥ(t) values satisfy the normality assumption. For all the
cases considered in Table 1, their Ĥ(t) values failed the normality assumption. Since
the CMB pixels close to each other can be dependent, to get more reliable results, we
chose CMB pixels at distance 50 apart on a ring. The Shapiro test confirmed that in all
the considered upper and lower part cases in Table 1, Ĥ(t) values at step 50 satisfied the
normality assumption, whereas the Ĥ(t) values in the middle part failed the normality
assumption.

Let μ1 and μ2 be the mean(Ĥ(t)) values of the rim segments of rings 525 and 1275,
respectively. To test the hypothesis H0 : μ1 = μ2 against H1 : μ1 � μ2, we carried out
the Wilcoxon test. The obtained p-value (3.048 × 10−15) is significantly less than 0.05
and suggests that the means are different at the 5% level of significance. Similar results
were obtained for the Wilcoxon tests between all pairs of the cases in Table 1. For
example, Table 3 shows Wilcoxon test results for selected four rings, two in the upper
part, and the other two correspondingly in the middle and lower parts of the CMB sky
sphere. Figure 3 shows the distribution box plots of the Ĥ(t) values in the rim segments
of rings 525, 1275, 2250 and 7500. It is clear from Figure 3 that the mean(Ĥ(t)) values
are different from each other in these cases.
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Analogously to Table 3, for all Wilcoxon tests between the rim sectors in the upper,
middle and lower parts, p > 0.05. Therefore, there is enough statistical evidence to
suggest that the pointwise Hölder exponents change from location to location. While
we compared Hölder exponents for different rings, from Figure 2 it is clear that Ĥ(t) is
also changing for pixels within the same rings.

6.2. Estimates of Hölder exponent for two-dimensional CMB regions For
two-dimensional sky regions, pointwise Hölder exponent values H(t) were estimated
according to equation (4.3) with d = 2, where V (2)

N (t) was computed using equation
(4.2). Equation (4.2) in Definition 4.3 can be written in the following explicit form:

V (2)
N (t) =

∑
p∈vN (t)

{ ∑
k1∈{0,1,2}

∑
k2∈{0,1,2}

ek1 ek2 X
(p1 + k1

N
,

p2 + k2

N

)}2

=
∑

p∈vN (t)

{
X
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N
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p2

N

)
− 2X
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N
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N
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,
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,

p2 + 2
N

)}2
.

To compute quadratic increments of spherical random fields, relatively small
parts of the sphere can be approximately considered as regions of the plane
and the above formula can be applied. Note that the internal summation set
{((p1 + k1)/N, (p2 + k2)/N) | k1, k2 ∈ {0, 1, 2}} can be very efficiently represented by
the HEALPix nested structure. Indeed, all pixels have either seven or eight neighbours
(see Figure 4). The 3 × 3 configuration with eight neighbours perfectly matches the
internal summation set and can be directly used in computations of V2

N(t). For the case
of seven neighbours, an additional eighth neighbour, the intensity of which equals to
that of its adjusted pixel, was imputed. For the resolution Nside = 2048 only 24 out
of 50 331 648 pixels have seven neighbours. For such a small number of pixels, the
imputation has a negligible impact on the results.

Circular regions with radius R = 0.23 were used in the computations in this section.
Let N denote the number of pixels within such circular regions. Then, N ≈ 662 700
pixels. To reduce the computation time, we chose a grid of 1000 CMB pixels with
step 662 = [662 700/1000], where [·] denotes the integer part, over the total number
of pixels. To compute local estimators Ĥ(t), for each chosen CMB pixel, a circular
window with radius r = 0.01 was selected. The value of γ was computed as γ =
−(log(

√
πr/2)/log(

√
N)) for given values of N and r. The factor

√
π/2 appeared as

the number of pixels is proportional to a window area. To match the number of pixels
in circular window regions that were used in computations and square regions used
for summation in V (2)

N (t), the length 2d0 of the side of squares should satisfy the
equation (2d0)2 = πr2. The γ obtained was substituted in equation (4.3) to compute
the estimated pointwise Hölder exponent values. For r = 0.01, there are approximately
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FIGURE 4. Examples of pixels with seven and eight neighbours for Nside = 4.

2836 pixels in each specified window. For each of these pixels, the squared increment
was computed and the total of increments was obtained by the expression for V (2)

N (t).
Initially, the two-dimensional regions were selected randomly. Then, from those

candidates, regions with majority warm, majority cold, a mixture of temperatures, and
borderline regions were selected. The paper presents only results about those selected
regions. Similar results were obtained for other analogous regions, but, due to space
restrictions, are not given here.

First, a circular CMB sky window of radius R = 0.23 from a warm area with a
majority of high temperature intensities was selected. The mean temperature intensity
in the selected CMB sky region covering the warm area was 5.978 61 × 10−5. The
window is shown in Figure 5(a). The number of pixels in that specific window was
662 685. Then different circular CMB sky windows having a radius of R = 0.23
covering cold, mixture, and borderline regions shown in Figures 5(b), 5(c) and 5(d)
were chosen. In each of the cold, mixture of warm and cold and a borderline having
warm and cold regions, the number of pixels were 662 697, 662 706 and 662 725,
respectively. The value of γ was computed as γ = 0.705 for each CMB sky region. The
corresponding mean temperature intensities were −8.340 55 × 10−5, −1.740 35 × 10−5

and 7.598 51 × 10−6.
The plots of the estimated pointwise Hölder exponent values for each case

are displayed in Figure 6. These Ĥ(t) values are mostly dispersed in the interval
[0.36, 0.86]. Figure 6 shows an erratic and an irregular behaviour in the distribution
of Ĥ(t) values. It can be observed that the estimates in Figures 6(a) and 6(d) with
substantial warm temperatures have larger Ĥ(t) fluctuations than the Ĥ(t) values for
cold regions.

The summary of the estimated pointwise Hölder exponents for each selected region
is given in Table 4. It shows the mean CMB temperature intensities of each circular
window. Table 4 also presents the estimated minimum, maximum and mean Ĥ(t)
values computed by using the selected 1000 CMB pixels. It is clear from this table
that the mean Ĥ(t) value from the warm region is the highest and it is the lowest for
the borderline region. The mean Ĥ(t) values of the cold region and mixture case lie in
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(a) A sky window from the

warm region

(c) A sky window with a mixture

of temperatures

(d) A sky window with the

borderline region

(b) A sky window from the

cold region

FIGURE 5. Sky windows used for computations.

between. It is apparent from Table 4 that the range of the estimated pointwise Hölder
exponent values changes with respect to the temperature of the chosen regions of the
CMB sky sphere.

To further investigate the estimated pointwise Hölder exponents, they were com-
puted for 100 random CMB pixels in each of the regions considered. It was apparent
that even if one accounts for variation by considering these 100 CMB pixels, the Ĥ(t)
values between different regions are different. The analyses suggested that all Ĥ(t)
values for 100 and 1000 CMB pixels were consistent. Therefore, the results suggest
that the estimated pointwise Hölder exponent values change from place to place.

To prove that Ĥ(t) is significantly different between different sky windows, we
carried out several equality-of-means tests. Initially, we carried out the Shapiro test
to ensure that the Ĥ(t) values satisfy the normality assumption. However, for all the
cases considered in Table 4, their Ĥ(t) values failed the normality assumption. Figure 7
displays the distribution box plots of the Ĥ(t) values in the CMB sky windows with
warm, cold, mixture and borderline regions. It can be observed from Figure 7 that the
Ĥ(t) distributions have extreme values in all four cases. Thus, we present only results
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(a) Ĥ(t) values from the warm region (b) Ĥ(t) values from the cold region

(c) Ĥ(t) values from the region with

mixture of temperatures

(d) Ĥ(t) values from the borderline region

FIGURE 6. Local estimates Ĥ(t) for two-dimensional regions.

from the Wilcoxon test as it is reliable amidst the nonnormality of data and in the
presence of outliers.

Let μ1 and μ2 be the mean(Ĥ(t)) values in the sky windows with warm and cold
regions, respectively. Testing the hypothesis H0 : μ1 = μ2 against H1 : μ1 � μ2 using
a Wilcoxon test, we obtained p < 2.2 × 10−16, highly significant at the 5% level. It
suggests that the means are different at 5% level of significance. Similar results were
obtained for the Wilcoxon tests between all pairs of the cases, and the corresponding
p-values are shown in Table 5. This suggests that the mean(Ĥ(t)) values are different
from each other in all the cases. Apart from variations between the cases, we observe
from Figure 6 and Table 4 that the estimated Hölder exponents do change within
individual sky windows as well.
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TABLE 4. Analysis of CMB sky windows with different temperatures.

Inspection Window Mean Intensity [Ĥ(t)min, Ĥ(t)max] Ĥ(t)min − Ĥ(t)max Mean Ĥ(t)

Warm region 5.978 6110-5 [0.5217, 0.7484] 0.2267 0.5994
Cold region −8.340 5510-5 [0.4534, 0.7806] 0.3272 0.5151
Mixture case −1.740 3510-5 [0.4302, 0.8592] 0.4290 0.5563
Borderline case 7.598 5110-6 [0.3629, 0.5158] 0.1529 0.4407

FIGURE 7. The distribution of Ĥ(t) values for chosen sky windows.

TABLE 5. The p-values for Wilcoxon tests between chosen sky windows.

cold < 2.2 × 10−16

mixture < 2.2 × 10−16 < 2.2 × 10−16

borderline < 2.2 × 10−16 < 2.2 × 10−16 < 2.2 × 10−16

warm cold mixture

Therefore, there is enough evidence to suggest that the pointwise Hölder exponents
change from location to location of the CMB sky sphere.

6.3. Analysis of CMB temperature anomalies As previously discussed in
Section 1, several missions have measured the CMB temperature anisotropies,
gradually increasing their precision by using advanced radio telescopes. This section
discusses applications of the multifractional methodology to detect regions of CMB
maps with “anomalies”. In particular, it can help in evaluating various reconstruction
methods for blocked regions with unavailable or too noisy data.

It is well known that the CMB maps are affected by interference from the Milky
Way, and radio signals emitting from our galaxy are much noisier than the CMB. Thus,
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the Milky Way blocks the CMB near the galactic plane. However, the smooth and
predictable nature of Milky Way’s radiation spectrum has enabled the cosmological
attributes to be found by subtracting the spectrum from the initially observed
intensities [16]. From Planck 2015 results, the CMB maps have been cleaned and
reconstructed using different techniques namely, COMMANDER, NILC, SEVEM
and SMICA (see [3] for more information). We are using the CMB map produced
from the SMICA method [23] with Nside = 2048.

To examine the random behaviour of isotropic Gaussian fields on the sphere,
a direction-dependent mathematical tool has been proposed in [21]. The authors
applied their probe to investigate the CMB maps from Planck PR2 2015 and PR3
2018 with specific consideration of cosmological data from the inpainted maps.
To detect departures from the traditional stochastic model of the CMB data, they
utilized the autocorrelation of the sequence of full-sky Fourier coefficients and have
proposed an “AC discrepancy” function on the sphere. For the inpainted Planck 2015
COMMANDER map, [21] shows the maximum “AC discrepancy” for the galactic
coordinates, (l, b) = (353.54, 1.79). Similarly, for the inpainted Planck COMMAN-
DER 2018, NILC 2018, SEVEM 2018 and SMICA 2018 with Nside = 1024, there
are significant departures at the galactic coordinates (12.57, 0.11), (61.17,−30.73),
(261.25,−2.99) and (261.34,−2.99), respectively. A majority of these locations are
the masked regions of the galactic plane. The galactic coordinates corresponding to
the largest deviations are different for each map depicting the discrepancies in the
underlying inpainting techniques.

The approach of Hamann et al. [21] used directional dependencies in CMB data
on the unit sphere. The results below are based on a different approach that uses
the local roughness properties of these data. Therefore, the detected regions of high
anomalies can be different for these two methods as they reflect different physical
anisotropic properties of CMB (see, for example, Figure 10). The estimated local
Hölder exponents on one-dimensional rings can be considered as directional local
probes of CMB anisotropy. However, the estimates for two-dimensional regions are
more complex and aggregate local information about roughness in different directions.

In the following analysis, we use estimated values of the Hölder exponent to detect
regions of possible anomalies in CMB maps. Figure 8 shows the plots of scaled
intensities and estimated Hölder exponent values Ĥ(t) in one- and two-dimensional
CMB regions of the great circle. We notice from Figure 8(a) that there is an
increase in the fluctuations of the scaled intensity values between the HEALPix range
[25 163 000, 25 164 000] of the great circle ring. A low plateau of estimated Ĥ(t) values
in Figure 8(b) corresponds to that range of HEALPix values. The equator rim segment
with the unusual plateau of Ĥ(t) values has CMB pixel numbers ranging from 25 163
208 to 25 163 852. Their corresponding galactic coordinates were found to be between,
(65.02, 0.01) and (93.32, 0.01).

Similarly, this unusual behaviour of Ĥ(t) values was observed in the two-dimensional
CMB regions near the galactic plane/equator. Figure 8(c) shows the plot of scaled
intensities in the two-dimensional space and a spike in intensities can be observed
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(a) Scaled intensities of great

circle/ring 4096

(b) Ĥ(t) values of great circle/ring 4096

(c) Scaled intensities of equator region (d) Ĥ(t) values of equator region

FIGURE 8. Scaled intensities and estimated Ĥ(t) values in one- and two-dimensional regions of the great
circle.

near the specified range of HEALPix values. The corresponding lower valley of Ĥ(t)
values can be seen in Figure 8(d). The four corners of the spherical region having
unusual Ĥ(t) values have HEALPix values 23 404 309, 23 391 936, 23 564 929 and
24 158 424. Their galactic coordinates were found as (85.91,−1.66), (76.82,−1.66),
(76.82, 4.05) and (85.91, 4.05), respectively.

Table 6 shows the summary of CMB intensities at these one- and two-dimensional
equatorial regions. The two-dimensional region around the unusual values was
extracted as a rectangular spherical region from the circular CMB window using
the previously identified galactic coordinates to split them as the unusual and the
remaining regions. It is clear that the range of temperature intensities is wider in
the one- and two-dimensional regions around the unusual values than in the regions
excluding them. Further, the variances of intensities in the anomalous regions are
larger than in the remaining regions. Moreover, Table 6 confirms that the mean Ĥ(t)
values in the anomalous regions are lower than in the remaining regions.

Figure 9 shows the Planck 2015 map with blocked nonreliable CMB values. The
region of CMB values where the TMASK is applied by the SMICA reconstruction
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TABLE 6. Analysis of CMB intensities near the equatorial region.

Inspection [Imin, Imax] Imax − Imin Mean I Variance I Ĥ(t)min

Window (in 10−3) (in 10−3) (in 10−5) (in 10−8) [Ĥ(t)min, Ĥ(t)max] −Ĥ(t)max Mean Ĥ(t)

One-dimensional
region excluding
the region of
unusual values

[−0.3688, 0.7578] 1.1266 1.4846 1.5654 [0.3351, 0.4411] 0.1060 0.4168

One-dimensional
region around
unusual values

[−0.8865, 1.2851] 2.1716 −9.2156 4.9138 [0.3336, 0.3496] 0.0160 0.3384

Two-dimensional
region excluding
the region of
unusual values

[−0.3935, 0.2721] 0.6656 −3.6390 1.1433 [0.4097, 0.7448] 0.3351 0.5489

Two-dimensional
region around
unusual values

[−0.7310, 0.2751] 1.0061 −6.3779 3.6978 [0.3015, 0.5975] 0.2960 0.4398

(a) The anomalous sky window (b) The enlarged anomalous sky window

FIGURE 9. SMICA 2015 map with TMASK and the region of anomalies.

technique, is removed in Figure 9. The TMASK of the CMB intensities utilized by
the SMICA method determines the region where the inpainted CMB intensities in the
galactic plane are considered to be reliable. The rectangular window shows a possible
region of anomalies detected by the developed multifractional methodology.

We now apply this approach and investigate Ĥ(t) for all t ∈ s2(1). First, the
one-dimensional methodology was used. Ĥ(t) was estimated using the CMB intensities
on rims, similar to the analysis in Figures 8(a) and 8(b). The moving windows with
4096 consecutive pixels, which is approximately half of a full ring, were used to obtain
values of Ĥ(t). To clearly show local behaviours, after several trials, sets vN(t) with
61 HEALPix points, that is, where the radius equals 30 pixels, were selected. The
results obtained are shown in Figure 10(a). To compare them with the AC discrepancy
approach in [21], Figure 10(b) shows the corresponding map obtained by applying the
direction-dependent probe. The code from [44] was used to compute values of AC
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(a) Hölder exponent approach (b) AC discrepancy approach

FIGURE 10. Discrepancy maps for CMB intensities from SMICA 2015.

(a) ĤΔ discrepancy map (b) ĤΔ discrepancies over TMASK

FIGURE 11. ĤΔ discrepancy maps for CMB intensities from SMICA 2015.

discrepancies for SMICA 2015 CMB intensities. The first map highlights Ĥ(t) values
below the 5th percentile. AC discrepancy values above the 95th percentile were used
for the second map. Both approaches detected the region of anomalies in Figure 9.
However, from locations of other discrepancy values, it is clear that these approaches
detect different CMB anomalies.

Very sharp changes in Ĥ(t) values in Figure 8(b) motivated the second method
to detect anomalies, which is based on increments of Ĥ(t) values. Figure 8(b)
demonstrated substantial changes of Ĥ(t) for nearby t locations. These changes are
permanent as Ĥ(t) exhibits stable behaviour after a rapid “jump”. Such changes are
different from noise or outliers, when values in random distinct locations lie at an
abnormal distance from other values in their surrounding points.

To detect such rapid changes, we used the statistics ĤΔ(t) = mint1∈Δ(t)|Ĥ(t) − Ĥ(t1)|,
where t and t1 are indices of ring-ordered pixels and the set Δ(t) = {t + 10, . . . , t + 20}.
The delay of 10 was selected to detect jumps that occur over short distances. The
minimum over the set of consecutive points Δ(t) was used to eliminate outliers or
noise that can result in distinct large differences |Ĥ(t) − Ĥ(t1)|.

Figure 11(a) shows the computed ĤΔ(t) values for SMICA 2015 CMB intensities.
Here, ĤΔ(t) values above the 95th percentile are plotted.

https://doi.org/10.1017/S1446181122000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181122000104


[26] Multifractional spherical fields 115

It is well known that the galactic centre and equatorial region are the most
problematic and questionable areas of the CMB maps. Our methodology classified
the galactic centre as anomalous based on its Hölder exponent value above the 95th
percentile. The contextualization has been already provided by Hamann et al. [21]; it
is due to difficulties in producing correct cleaned CMB maps in this region.

In Figure 11(b), 5% of largest ĤΔ(t) values are shown on the TMASK map. Note
that in most cases, clusters of largest ĤΔ(t) values are within the TMASK. It seems
that ĤΔ indices rather accurately detected many regions with unreliable CMB values.
Analysis of other CMB maps gave similar results.

Summarizing, the methodology implemented to investigate multifractional pres-
ence within the CMB temperature intensities could also serve as a mechanism to detect
regions of anomalies in CMB maps.

7. Conclusion

In this paper, we examined multifractional spherical random fields and their
application to analysis of cosmological data from the Planck mission. The paper
developed the general methodology for estimation of pointwise Hölder exponents
of multifractional data observed on the unit sphere. It estimated pointwise Hölder
exponent values for the actual CMB temperature intensities and checked for the
presence of multifractionality. The estimators of pointwise Hölder exponents for
one- and two-dimensional regions were obtained by using the ring and nested
orderings of the HEALPix visualization structure. The analysis carried out conveyed
multifractionality in the CMB temperature intensities, since the computed pointwise
Hölder exponent values do substantially change from place to place in the CMB sky
sphere. The proposed method was used for numerical studies of the CMB data and
found anisotropies in the temperature intensities. In particular, validity and usefulness
of the method were evidenced by detecting numerous anisotropies in unreliable CMB
regions of the TMASK.

The approach developed and the computing techniques implemented can also be
used for other types of spherical data, such as solar data, planetary data, meteorological
data, pollution data and earth data. First, the R package RCOSMO [18] can be used to
transform spherical data into the HEALPix format. Then the methods developed can
be directly applied by using the publicly available R code for this paper.

Some numerical approaches that were used to speed up computations for big CMB
data sets will be reported in future publications. In future studies, it would be also
interesting to:

• develop the distribution theory for the estimators of H(t);
• investigate reliability and accuracy of various estimators of the Hölder exponent

for the CMB;
• study rates of convergence in Theorem 4.4 (see results on superconvergence by

McLean [35]);
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• investigate changes of the Hölder exponents depending on evolutions of random
fields driven by SPDEs on the sphere [5, 13, 14];

• study directional changes of the Hölder exponent by extending the results
obtained for the conventional ring ordering to rings with arbitrary orientations;

• apply our methodology to other spherical data, in particular, to new
high-resolution CMB data from future CMB-S4 surveys [1];

• explore relations between the locations of the detected CMB anomalies and other
cosmic objects.

At high values of l, the signal will be weakened by Silk damping and possibly
clouded by pressure variations due to turbulence within the plasma, as currently
observed in stars. We feel that it is worthwhile to analyse the full signal that is currently
available. Higher-resolution measurements in the future will distinguish how much of
the analysis is due to physical causes or currently remaining galactic noise.
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