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1. Introduction. In the classical geometry of Banach spaces the notions of smooth-
ness, uniform smoothness, strict and uniform convexity introduced by Day [1] and
Clarkson [2] play a very important role and are used in many branches of functional
analysis ([3,4,5], for example). In recent years a lot of papers have appeared containing
interesting generalizations of these notions in terms of a measure of noncompactness.
These new concepts investigated in this paper as near uniform smoothness, local near
uniform smoothness and modulus of near smoothness have been introduced by Stachura
and S§kowski [6] and BanaS [7] (see also [8,9]).

The main aim of this paper is to provide an estimate of the modulus of near
smoothness of the so-called lp product of a sequence of Banach spaces. Further, we prove
that the notions of local near uniform smoothness and convexity are hereditary in an F
product of spaces. Apart from that we calculate the exact formula for the modulus of near
smoothness for the space /P(/Pi).

2. Notation, definitions and auxiliary facts. Let £ be a given real Banach space with
norm || • || and the zero element 9. The dual space of E will be denoted by E*. For brevity,
the symbols B, B*,S and 5* will denote the unit balls and the unit spheres in the spaces E
and E*, respectively.

For a given bounded subset X of E let XE(X) denote the Hausdorff measure of
noncompactness, i.e. infimum of numbers e > 0 such that X can be covered by a finite
collection of balls having radius less than or equal to e. Let / e S* and e e [0,1]. By the
slice F(f, e) we will understand the set {x e B :f(x) ^ 1 - e}. Similarly, F*(x, e) denotes
the slice {/ e B*:f(x) > 1 — e} in the space E* provided x e S. Now we recall the
following definition [9].

DEFINITION 1. The function Z:[0,1]—* [0,1] defined by the formula

will be called the modulus of near convexity of the space E.

Obviously, we take x = XE* in the above definition.
The function 2 £ is nondecreasing on [0,1]. Moreover, for every space E the estimate

S^e) > £ holds to be true. Moreover, 2Co(e) = e, e e [0,1] [9]. In the space I" the
following formula is valid

(1)

where 1 <p < °° and - + - = 1.
P R

Now we recall the second definition [9].
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DEFINITION 2. A Banach space E is said to be nearly uniformly smooth (NUS) if

lim 2£(e) = 0
£->0

i.e. if lim %(F*(x, e)) = 0 uniformly with respect to x e 5.
e-»0

For example, the spaces lp, Lp(0,1), p > 1, c0 are NUS. On the other hand the spaces
r, c and C[0,1] fail to have this property.

Let us recall [7] that a space E is described as nearly smooth (NS) if for any x e 5 we
have Z£(0) = 0, i.e. XE-U/ e B* :f(x) = 1}) = 0. Obviously, every NUS space is NS but not
conversely.

In what follows we will need the following two definitions [7].

DEFINITION 3. A Banach space E is called locally nearly uniformly smooth (LNUS) if

\imXE.(F*(x,e)) = 0
£-.0

for every x e S.

DEFINITION 4. We say that a Banach space E is locally nearly uniformly convex (LNUC) if

£-.0

for every / e 5*.

The basic relation between the concepts of LNUC and LNUS spaces is contained in
the following assertion:

E is LNUC if and only if E* is LNUS. (2)

3. An estimate of the modulus of near smoothness of the space lp{Et). At the
beginning let us introduce a few basic facts needed further on. Assume that (£,, ||-||,)
(i = l ,2 , . . . ) is a sequence of Banach spaces. For a fixed number p, \<p<<*>, let

= lp(EuE2,...) denote the Banach space of all sequences x = (*,-), *, E £,

(i = 1,2,...), such that 2 ||x,-||? < °°, furnished with the norm

if)"'

Recall [5] that (/"(£,))* = l"(Ef), where - + - = 1.
P Q

One of the most important problems considered in the geometry of Banach spaces is
connected with the following question:

Which properties of the spaces £, (/ = 1,2,...) are transmitted to the product /"(£,-)?
Let us quote some positive results in this direction. First recollect that in [12, 8] it was

shown that if £, has the property H (or //*) for / = 1,2,... then lp{Et) also has these
properties. In the paper [11] Partington showed that if the £,'s are UKK and satisfy some
additional conditions, then lp{Et) is UKK. Let us also mention that in the paper [9] an
estimate of the so-called modulus of UKK-ness was obtained.
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In order to recall the next result obtained in the paper [9] let us denote by r = r(e)
the function acting from the interval [0,1] into itself and defined by the formula

r(e) = sup{2£,(e):ieN}.

Observe that the following inequality holds

for ; E N and e e [0,1]. It was shown in [9] that if £, is a reflexive NUS space (i = 1,2,...)
then /p(£,) is NUS if and only if lim r(e) = 0. The authors of [9] raised also the question if

£-.0

the assumption on reflexivity can be dropped in this result. In what follows we provide the
affirmative answer to the above mentioned question. It is contained in the following
theorem.

THEOREM 1. Let (£,-, ||-||,) be a sequence of arbitrary Banach spaces. Then

Z,,(£f)(£) < 2(r«(V£) + 4(1 - (1 - V^) ) 1 * . (3)

Particularly, i/lim r(e) = 0 then lp{Et) is NUS.
e-»0

Before the proof let us introduce some notation. Namely, denote by B and B* the
closed unit balls in the spaces /p(£,) and (/p(£,))*, respectively. Moreover, for
convenience we will write lp instead of /p(£,).

Proof. Let us fix a number e e (0,1] and a number 17 > 0 small enough. We can
choose x = (xi) E Sp> and a number y such that

X(F*(x, e))>y>2,P(£i)(e) - ij, (4)

where x =
 XPHETY This implies that there exists a sequence (/") c B* such that

f ( x ) > l - e and ||/n -fm\\q> y,

f o r n , m e N , n ^ m . Putting / " = (/?), where f" e Ef for every i e N (n = 1,2,...), we
can rewrite the last inequalities in the form

i/7(x,)a=l-e and f 11/7-/711?> y"> (5)
1=1 1=1

for n,m e N , n / m .
Let us observe that applying the same argument as in [11] without loss of generality

we may assume that

11/r 11 <->*/, /?(*,)-* */, (6)
if n -»00, and

\\fi-m\i^ch (7)

when n, m -»°° (i = 1,2,...). For 5 > 0 there exists a number n(S) e N such that

lim/i(5) = « and 2 II*. 11? "S- (8)
*-»0 \=n(S) + l '
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Consider the sets Ss, Ts and Ws defined as

Ss = {/ e N:i < n(S), a, > 0 and xt ¥> 6),

7i = {/6N:/< n(S), a, = 0 and JC, * 6},

WB = {i e N: i < n(5) and JC, = 0}.

Keeping in mind that a, = 0 for i e Ts, we have for m e N large enough the inequality
2 /TOO ^ 5 which together with (5) and (8) gives

i -e* 2/r(*,)+2/n*,)+ 2 /rfe)
leSj le7i i=n(6) + l

2 ii/rii? .( 2 n*/iif)
• =^s i=n(6) + l ' \/=n(S)+l '

Hence

Putting 5 = {/ e N:a,- > 0 and xt ¥> 0} we have that [J S8 = S and a s m - x » and S->0 we
deduce from the last inequality and (6) that 6>0

( 2 j • (9)

The Holder's inequality, (8) and IK/71) II, s 1 imply

Hence, in view of (5) we obtain

.1/9
_ e _ s < i _ e _ V fP(x)< y fm(r\= T fm(r\<( V llfmll^

i'=n(5)+l i'sn(6) /sn(8) ^/sn(6) '

= ( 2 n/niz- 2 II/TII?)

- l 1 " ^ Il/Tllfj
which gives

Now, let us put W = {/ e N:^f = 0}, Since W = \J Ws then letting m -> °° and 5 -> 0 we
get from the last inequality and (6) 6>0
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Hence, keeping in mind that c, ̂  2a, we ohtain

Now, by Holder's inequality and (8) we get
oo / \ U p / \ 1 / < 7

1 £ — ZJ J i W J + Z , Ji\xi) — \ 2 J \\xi\\i I - I ZJ WliWiJ

( oo \Up / <*> \Vq / oo \l/q

2 win .( 2 n/nin s ( i - 2 ii/rn?) +&
i=n(«)+l ' V=n(S) + l ' ^ i=n(S)+l '

Consequently

i=n(S) + l

Combining (5), the inequality (a + b)q <29(a« + 69) and (11) we derive

i=n(S) + l / = 1 /=n(6)+l

Hence

"2 11/? -/rilf > Jq - 2"+1(l - (1 - e - S)«). (12)
/=i

Combining the above inequality and (7) we obtain

This inequality together with (10) yields

2c7 = 2tf-
ieS ( = 1 leW

or, equivalently

Sc?>y'-3.2'(l-(l-£)«). (13)
ieS

Put 7 = \i e 5: -p— > 1 - Vej. Then, from (9) we get

i - e < 2 b,: < 2 6, + 2 — 7 - r • «•• • II^II.- ̂  2 6,- + (i - v^) • ( i - E « / • ii^ii/)
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Hence, after a simple calculation we obtain 1 - Ve ^ 2 b{. Because for every set K c N
we have that 2 bt: < ( 2 aq)Vq then we infer ieY

(
le/C le/C

This implies

and consequently

ieS\Y

Combining the above inequality and (13) we get

This yields

2 2 ^ . (14)
ieY

Now we consider two cases:
(i) y« -2" + 2 . ( l - ( l
(ii) 7* -2 9 + 2 . ( l - ( l

In the case (i), if TJ-»O we obtain from (4) that

what means that (3) holds.
Now suppose that the case (ii) is satisfied. Take 5 > 0 to be small enough and observe

that there exists i e Y such that

- > (y" - 2q+2. (1 - (1 - Ve)9))1'* - 8 > 0. (15)
a/

Indeed, suppose that

cq<aq. ((yq - 2q+2. (1 - (1 - Ve)q))xlq - 8)q for all i e Y.

This implies

2 cf < 2 a? • ((?* - 2*+2 • (1 - (1 -
l ey ieY

but this contradicts (14).
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For i G Y satisfying (15) let us put

- *l n ft
II v II ' II f l l '

IIXi Hi 117(11/
F r o m (6) and the definition of the set Y we infer that

£ l - \ / i , (16)
fl,.

and from (6), (7) and (15) we have

Us" - r t - * - ; * ( y ' - 2 9 + 2 . (l - (l - V^)) 1 / 9 - 5, (17)
«/

when n,m—>°°. The inequality (16) means that for n e N large enough we have that
gn e F*(x, VB) which together with (17) implies

i((y« - 2 ' + 2 . (1 - (1 - Ve")'))1'* - 8)<XEr(F*(x, Ve)) <= r(Vi).

The last inequality can be written in the form

yq < (5 + 2r(Ve))9 + 2q+2. (1 - (1 - Vc)*),

which in conjunction with (4) gives

< y + v < ((S + 2r(Ve)y + 2"+2. (1 - (1 -

The arbitrariness of TJ and 8 allows us to deduce the inequality (3) which completes the
proof of Theorem 1.

4. Local near uniform smoothness and convexity in the lp product of Banach
spaces. This section is devoted to the study of the concepts of local near uniform
smoothness and convexity in the product space /p(£,). The main result is contained in the
following theorem.

THEOREM 2. If E, is LNUS (j = 1,2,...) then /"(£,) is LNUS.

Proof. Suppose contrary, i.e. there exists A: = (*,) e S? and a number y > 0 such that

i.e. x{F*{x,e))> y >0 for e e (0,1].
£-.0

Take 8 > 0 such that for £ e [0,5]

y" - 2*+1. (1 - (1 - e - 8)") - 2". (1 - (1 - e)«) > (*) ' . (18)

Fix e G (0,5]. Similarly as in proof of Theorem 1 we can show that there exists a sequence
(/") c B*, f" = (/?), /? <= £? such that

1=1 1=1

and
ll/7ll/-»a,, ft{xt)^bh \\ft-f?h-*clt

when n-»°° and n,m-»°° (/ = 1,2,...).

https://doi.org/10.1017/S0017089500032043 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032043


160 LESZEK OLSZOWY

In what follows we will need the following lemma.

LEMMA 1. //*, ^ 0, a, > 0 then

Proof. Observe that

/?(*/) 2= 11/711/ • ll*,lli " e, for all i s N. (19)

Indeed, suppose the contrary, i.e. there is ; e N such that

/"(*,) < 11/711; -WxjWj-e.
Then

1 - E <f](Xj) + £/?(*<) < -e + E ||/?||, • Uih ^ 1 " e
ivy i=i

which gives a contradiction. ™
Assume now that xt # 9 and a,- > 0 and put g" — ' . From (19) we have

11// Hi

and for « E N large enough we have

g " t e ^ 1 " * wi" (20)

On the other hand

n«"-ni / -»-sc i t (21)

when /j,m-><». Combining (20) and (21) we obtain

and the proof of Lemma 1 is complete.
Taking (12) with n, m -»°° we have

2 cf^y"- 29+1. (1 - (1 - e - 8)"). (22)
i=i

Let us put P = {/ e N:i < n(S) and .x, ^ 0}. Then from (10) we obtain

2 (1-e) ' ) . (23)

Now, combining (22), (23) and (18) we can infer that

(A' ie y.
V2/' h
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y
Putting y0 = ,. we conclude from the above inequality that there exists i e P such

2(/i(5)) «that c, > y0 > 0. The number i depends on e, similarly as c,, then we will write i(e) and c(>e.
Because the set P is finite there exist the sequence (ek) converging to 0 and j e P such
that; = i(ek) and cjtBk > y0 for k = 1,2,... Applying Lemma 1 we obtain

which implies as A: —»» that

but this contradicts the fact that £, is LNUS. Thus the proof is completed.

As a simple consequence of Theorem 2 we have the following result.

THEOREM 3. / / £ , is LNUC (i = 1,2,...) then /"(£,) is LNUC.

Proof. If £, is LNUC then by (2) Ef is LNUS and by Theorem 2 /*(£?) is LNUS,
but l"(Ef) = (F(£,))* and again by (2) we have that /p(£,) is LNUC which ends the
proof.

REMARK 1. Applying similar methods as in the proofs of Theorem 1 and 2 we can
obtain analogous estimates of moduli of near smoothness of the product spaces co(£,). We
omit details..

5. Modulus of near smoothness of F{lPi). In this section we will calculate the
modulus of near smoothness of the product space lp(P"), pt > 1. Let us define

q = sup{<7,<7,:i = 1,2,...}, where —I—= 1. We will show that if q < °° then
Pi <7.

S;p(,Pl)(e) = (1 - (1 - ef)v\ (24)

and if q = °° then

for e e (0,1].

We start with the following fact which may be found in [10]. Let £ be a space with
the Schauder basis (en). Denote by Rn the n-remainder operator

) oo

= 2 Pfii-

In the case when ||| Rn\\\ = 1 for n = 1 , 2 , . . . we have

X(X) = lim sup (sup{\\Rnx \\ :x E X}), (26)
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for X<=E. Recall that (/"(/"•))* = lq(!"'), where - + - = 1 and - + - = 1 . The norm in
P Q Pi <li

lq{lq>) will be denoted by || • ||9. If / E /*(/*) we will write / = (/') = (/j), where f s I"' and
fj E R. Further, let emJi denote the natural basis in /*(/"). >-e.

for i = m and j = k,
for i¥=m or i^k,

and let /i denote a one-to-one mapping between N and N X N. Put

en = eh(n). (27)

Observe that (en) is the Schauder basis in lq{lqi) and ||| Rn ||| = 1.
In what follows we shall need the following lemma.

LEMMA 2. Ifq<<* and (en) is the basis in lq(lqi) defined in (27) then

ll*»/ll!+ll(/-/Wfllfs||/||f, (28)

forf slq(lqi)andneN.

Proof. Repeating the argument from the proof of the Minkowski inequality we
obtain that

( oo \ a / o o \ a / » \a

for a > l and sk, tk^0, k = 1,2, . . . . Fix n e N and / = (/') = (//) e /»(/*)• Putting
/* = {i e N:(* , i) E /J ({1, 2 , . . . , «} )} we get

\\(i-Rn)f\\q = (

<= \q/qk\Vq(
/t=i V,=iApplying the inequality (29) for

we infer that

( oo / / \qiqk I \qiqk\qiq\qiq

2 2 i/?r + 2i/*H • (30)
* = 1 \\eNU, ' \eJt I I I

q
Applying again (29) for a = —,

Qk

O forie/*, r = f l /^" f°r '"ei*.
|/f|« for JGNUH, ' 10 for i e N\/*,
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we get
qlqk I \QlQk

2 i/fi*V * + ( 2 LffI-)* ** *= ( S

which together with (30) gives (28). This completes the proof of our lemma.

Now assume that q < °°. Let x = (*') = (*j) e /P(/Pl) and ||JC ||p = 1. For TJ > 0 there is
r e N such that

2 ll*'ll?) **?• (31)

Further, we can find m e N such that

2 l* j ' ^ ^ F fori = l ,2 , . . . , r . (32)

Taking / = (/') = (/j) e F*(JC, e) we obtain from (31):

i - e s 2 W ) = 2 / V ) + ( 2 li/'llf - ( 2 ll*'
1=1 1 = 1 vi = r + l ' v i=r + l

=S 2 / ' ( * ' ) + T?,
1 = 1

i.e.

Hence, in virtue of (32) we obtain
r / oo

2 /5-x}
1/9, / m \l/p, r / oo \l/9, / °° \\/pi

* 2 ( 2 i/;rj • ( 2 m + 2 ( 2 \f'n •
,= 1 \j=\ I V;=l / , = 1 Vy = m+1 ' V

( r / oo \ 9/9A 1/9 / r / 00 \plp,\\

2 1 i/f . ( 2 ( 2 i*f
( rim \

2(2m
1=1 V=i '

r i m \qlqcs\lq

2(2 )
i.e.

r i m \9/9,\ 1/9( rim \qlqt\llq

2 (2 !/»*) ) •Next, take s s N s o large that

MU.2,...,*})=> {1,2 , . . . . r}x{l ,2 , . . . , /n} .
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For n ^ j w e have

( r i m \qlqi\\lq

2(2i/jH ^\\(i-Rn
,=1 \7=1 / /

Now, combining Lemma 2 and above inequality we derive that

for / e F*(x, e) and n^s. This inequality together with (26) and the arbitrariness of 17
allows us to deduce that x(F*(x, e)) s (1 - (1 - £)«)1/« for every JC e 5. This implies

On the other hand

2 P W £ ) s sup{2/P(e), H,Pi(e):i e N}

= sup{(l - (1 - eyy1", (1 - (1 - e)t")i"":i e N}
= (1 - (1 - £)')"«

which gives (24). Now suppose that q=&. Taking into account the formula (1) we get

e) = (1 - (1 - e)*)1'*:/ E N} = 1

for e e (0,1]. Keeping in mind that lPi is NS and the property NS is transmitted to the
lp-product of spaces, we obtain that lp(lPi) is NS which means 2,P(;Pl)(0) = 0 and (25) is
proved.

REMARK 2. Let us recall the definitions of the so-called moduli of near convexity of
the space E introduced in [7].

AE(e) = inf{l -dist(0,X):X^BE,X = ConvX,XE(X)> e},

pE(e) = sup{xE(X):XczBE, X = Conv X, dist(0,X) > l - e }

for e e [0,1]. It is easy to check that in the case of reflexivity of the space E we have
2 £ . = j8£. This gives immediately that

where p - sup{p,p,:i = 1,2,...}. Moreover, using the relations between A£ and /3£ ([7])
we obtain the following formula
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