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NORMAL HILBERT COEFFICIENTS AND ELLIPTIC IDEALS
IN NORMAL TWO-DIMENSIONAL SINGULARITIES

TOMOHIRO OKUMA , MARIA EVELINA ROSSI , KEI-ICHI WATANABE

and KEN-ICHI YOSHIDA

Abstract. Let (A,m) be an excellent two-dimensional normal local domain.

In this paper, we study the elliptic and the strongly elliptic ideals of A with

the aim to characterize elliptic and strongly elliptic singularities, according

to the definitions given by Wagreich and Yau. In analogy with the rational

singularities, in the main result, we characterize a strongly elliptic singularity

in terms of the normal Hilbert coefficients of the integrally closed m-primary

ideals of A. Unlike pg-ideals, elliptic ideals and strongly elliptic ideals are not

necessarily normal and necessary, and sufficient conditions for being normal

are given. In the last section, we discuss the existence (and the effective

construction) of strongly elliptic ideals in any two-dimensional normal local

ring.

§1. Introduction and notations

Let (A,m) be an excellent two-dimensional normal local ring, and let I be an m-primary

ideal of A. The integral closure Ī of I is the ideal consisting of all solutions z of some equation

with coefficients ci ∈ Ii: Zn+c1Z
n−1+c2Z

n−2+ · · ·+cn−1Z+cn = 0. Then I ⊆ Ī ⊆
√
I. We

say that I is integrally closed if I = Ī and I is normal if In = In for every positive integer n.

By a classical result of Rees [29], under our assumptions, the filtration {In}n∈N is a good

I -filtration of A and it is called the normal filtration.

We may define the Hilbert–Samuel function H̄I(n) := �A(A/In+1) for all integers n≥ 0,

and it becomes a polynomial for large n. (Here, �A(M) is the length of the A-module M.)

This polynomial is called the normal Hilbert polynomial

P̄I(n) = ē0(I)

(
n+2

2

)
− ē1(I)

(
n+1

1

)
+ ē2(I),

and the coefficients ei(I), i= 0,1,2, are the normal Hilbert coefficients.

A rich literature is available on the normal Hilbert coefficients ēi(I), and this study is

considered an important part of the theory of blowing-up rings (see, e.g., [2], [3], [10], [11],

[12], [17]–[19], [33]).

From the geometric side, any integrally closed m-primary ideal I of A is represented on

some resolution (see [16]). Let

f : X → SpecA
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be a resolution of singularities with an anti-nef cycle Z > 0 on X, so that I = IZ =

H0(OX(−Z)) and IOX =OX(−Z). We say that I = IZ is represented by Z on X. The aim

of this paper is to join the algebraic and the geometric information on A taking advantage

of the theory of the Hilbert functions and of the theory of the resolution of singularities.

For a coherent OX -module F , we write hi(F) = �A(H
i(X,F)). If I = IZ is an m-primary

integrally closed ideal of A represented by Z on X, one can define for every integer n ≥ 0

a decreasing chain of integers q(nI) := q(In) = h1(OX(−nZ)) where q(0I) := pg(A) is the

geometric genus of A. It is proved that q(nI) stabilizes for every I and n ≥ pg(A). We

denote it by q(∞I).

These integers are independent of the representation, and they are strictly related to

the normal Hilbert polynomial. The keys of our approach can be considered Theorem 2.2

and Proposition 2.6, consequences of Kato’s Riemann–Roch formula (see [14], [24]). In

particular, the following holds:

(1) P I(n) = �A(A/In+1) for all n≥ pg(A)−1.

(2) ē1(I)−e0(I)+ �A(A/I) = pg(A)− q(I).

(3) ē2(I) = pg(A)− q(nI) = pg(A)− q(∞I) for all n≥ pg(A).

Moreover, we have

ē0(I) =−Z2, ē1(I) =
−Z2+ZKX

2
.

This makes the bridge between the theory of the normal Hilbert coefficients and the

theory of the singularities. This is the line already traced by Lipman [16], Cutkosky [4], and

more recently by Okuma, Watanabe, and Yoshida (see [23]–[25]).

Let (A,m) be a two-dimensional excellent normal local domain containing an algebraically

closed field k=A/m. It is known that A is a rational singularity (see [1]) if and only if every

integrally closed m-primary ideal I of A is normal (see [4], [16]), equivalently ē2(I) = 0, that

is, I is a pg-ideal, as proved in [23], [24]. Inspired by a paper by Okuma [22], we investigate

the integrally closed m-primary ideals of elliptic singularities (see [38]) and of strongly

elliptic singularities (see [41]). All the preliminary results are contained in §2.
In §3, we prove the main results of the paper. We define the elliptic and the strongly

elliptic ideals aimed by the study of nonrational singularities. We recall that if Q is a

minimal reduction of I, then we denote by r̄(I) := min{r | In+1 = QIn , for all n ≥ r}, the
normal reduction number of I and this integer exists and does not depend on the choice

of Q. Okuma proved that if A is an elliptic singularity, then r̄(I) = 2 for any integrally closed

m-primary ideal of A (see [22, Theorem 3.3]). According to Okuma’s result, we define elliptic

ideals to be the integrally closed m-primary ideals satisfying r̄(I) = 2. In Theorem 3.2, we

prove that elliptic ideals satisfy ē2(I) = ē1(I)− e0(I)+ �A(A/I) > 0 attaining the minimal

value according to the inequality proved by Sally [35] and Itoh [12]. In particular, if I is

an elliptic ideal, then pg(A)> q(I) = q(∞I). If A is not a rational singularity, then elliptic

ideals always exist (see Proposition 3.3). In particular, we prove the following proposition.

Proposition 1.1 (See Proposition 3.3). If A is not a rational singularity, then for any

m-primary integrally closed ideal I of A, In is either a pg-ideal or an elliptic ideal for every

n≥ pg(A).
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NORMAL HILBERT COEFFICIENTS AND ELLIPTIC IDEALS 781

Yau in [41], Laufer in [15], and Wagreich in [38] introduced interesting classes of

elliptic singularities. An excellent two-dimensional normal local ring A is a strongly elliptic

singularity if pg(A) = 1, that is, pg is almost minimal.

Among the elliptic ideals, in Theorem 3.9, we define strongly elliptic ideals those for which

ē2 = 1 and equivalent conditions are given. The following result characterizes algebraically

the strongly elliptic singularities.

Theorem 1.2 (See Theorem 3.14). Let (A,m) be a two-dimensional excellent normal

local domain containing an algebraically closed field k = A/m, and assume that pg(A)> 0.

The following conditions are equivalent:

(1) A is a strongly elliptic singularity.

(2) Every integrally closed ideal of A is either a pg-ideal or a strongly elliptic ideal.

Notice that pg-ideals are always normal, but elliptic ideals are not necessary normal (see

Proposition 3.16 and Examples 3.15 and 3.25). Moreover, if A is strongly elliptic and I

is not a pg-ideal, then Proposition 3.16 and Theorem 3.23 give necessary and sufficient

conditions for being I normal.

Theorem 1.3. Let (A,m) be a two-dimensional excellent normal local domain contain-

ing an algebraically closed field k=A/m. Assume that A is a strongly elliptic singularity. If

I = IZ is an elliptic ideal (equivalently, I is not a pg-ideal) and D is the minimally elliptic

cycle on X, then I2 is integrally closed (equivalently, I is normal) if and only if −ZD ≥ 3

and if −ZD ≤ 2, then I2 =QI.

For any normal surface singularity which is not rational, pg-ideals and elliptic ideals exist

plentifully. But this is no longer true for strongly elliptic ideals.

In §4, we show that there exist excellent two-dimensional normal local rings having no

strongly elliptic ideals (see Example 4.8). Finally, Corollary 4.7 gives necessary and sufficient

conditions for the existence of strongly elliptic ideals in terms of the existence of certain

cohomological cycles. When there exist, we present an effective geometric construction (see

Example 4.9).

§2. Preliminaries and normal reduction number

Let (A,m) be an excellent two-dimensional normal local domain containing an alge-

braically closed field k = A/m, and let I be an integrally closed m-primary ideal of A.

With the already introduced notation, then there exists a resolution X → SpecA and

a cycle Z such that I is represented on X by Z. When we write IZ , we always assume

that OX(−Z) is generated by global sections, namely IOX = OX(−Z), and note that

IZ =H0(X,OX(−Z)). Recall that the geometric genus pg(A) = h1(OX) is independent of

the choice of the resolution.

Okuma, Watanabe, and Yoshida introduced a natural extension of the integrally closed

ideals in a two-dimensional rational singularity, that is, the pg-ideals. With the previous

notation,

pg(A)≥ h1(OX(−Z)),

and if the equality holds, then Z is called a pg-cycle and I = IZ is called a pg-ideal. In [23],

[24], the authors characterized the pg-ideals in terms of the normal Hilbert polynomial.
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They proved that A is a rational singularity if and only if every integrally closed m-primary

ideal is a pg-ideal. Starting by pg(A), we define the following chain of integers.

Definition 2.1. We define q(I) := h1(OX(−Z)) and more in general q(nI) := q(In) =

h1(OX(−nZ)) for every integer n≥ 1.

We put q(0I) = h1(OX) = pg(A). Notice that q(nI) is in general very difficult to compute,

but it is independent of the representation (see [23, Lemma 3.4]). These invariants are

strictly related to the normal Hilbert polynomial, and their interplay is very important in

our approach.

The following formula is called a Riemann–Roch formula. The result was proved in [14]

in the complex case, but it holds in any characteristic (see [40]).

Theorem 2.2 (Kato’s Riemann–Roch formula [40, Theorem 2.2]). Let I = IZ be an

m-primary integrally closed ideal represented by an anti-nef cycle Z on X. Then we have

�A(A/I)+ q(I) =−Z2+KXZ

2
+pg(A),

where KX denotes the canonical divisor.

We recall here the properties of the sequence {q(nI)}. Propositions 2.3 and 2.5 on I = IZ
follow from the long exact sequence attached to the short exact sequence

(†) 0→OX(−(n−1)Z)→OX(−nZ)⊕2 →OX(−(n+1)Z)→ 0

(see [24, Lemma 3.1]).

Proposition 2.3. With the previous notation, the following facts hold:

(1) 0≤ q(I)≤ pg(A).

(2) q(kI) ≥ q((k+1)I) for every integer k ≥ 0 and if q(nI) = q((n+1)I) for some n ≥ 0,

then q(nI) = q(mI) for every m ≥ n. Hence, q(nI) = q((n+ 1)I) for every I and

n≥ pg(A). We denote it by q(∞I).

We use the above sequence for computing the following important algebraic numerical

invariants of the normal filtration {In}. Let Z+ denote the set of positive integers.

Definition 2.4 (cf. [26]). Let I ⊂A be m-primary integrally closed ideal, and let Q be

a minimal reduction of I. Define:

nr(I) := min{r ∈ Z+ |Ir+1 =QIr},
r̄(I) := min{r ∈ Z+ | In+1 =QIn for all n≥ r}.

We call r̄(I) the normal reduction number and nr(I) the relative normal reduction number.

The normal reduction number exists (see [21], [29]), and it has been studied by many

authors in the context of the Hilbert function and of the Hilbert polynomial (see, e.g., [2],

[3], [10], [12], [19]). The main difficulty of the normal filtration with respect to the I -adic

filtration is that the Rees algebra of the normal filtration is not generated by the part of

degree one because IIn 
= In+1. By the definition, we deduce that nr(I)≤ r̄(I) and we see

that, in general, they do not coincide. Note that the definitions of nr(I) and of r̄(I) are

independent on the choice of a minimal reduction Q of I (see, e.g., [10, Theorem 4.5]). It

is also a consequence of the following result in [26, §2].
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Proposition 2.5. The following statements hold.

(1) For any integer n≥ 1, we have

2 · q(nI)+ �A(In+1/QIn) = q((n+1)I)+ q((n−1)I).

(2) We have

nr(I) = min{n ∈ Z+ |q((n−1)I)− q(nI) = q(nI)− q((n+1)I)},

r̄(I) = min{n ∈ Z+ |q((n−1)I) = q(nI)}.

From the propositions above, we have that r̄(I) ≤ pg(A)+1. In [26, Theorem 2.9], the

authors showed that pg(A)≥
(
nr(I)
2

)
.

Rossi [32, Corollary 1.5] proved the following upper bound on the reduction number

r(I) for every m-primary ideal I (here, r(I) denotes the reduction number for the I -adic

filtration) in a two-dimensional Cohen–Macaulay local ring A in terms of the Hilbert

coefficients:

r(I)≤ e1(I)−e0(I)+ �A(A/I)+1.

The bound gives, as a consequence, several interesting results, in particular a positive answer

to a long-standing conjecture stated by Sally in the case of local Cohen–Macaulay rings of

almost minimal multiplicity (see [32], [34]). Later, the inequality was extended by Rossi

and Valla (see [33, Theorem 4.3] for special multiplicative I -filtrations). The result does

not include the normal filtration. It is natural to ask if the same bound also holds for r̄(I).

The answer is negative as we will show later, but we prove that the analogue upper bound

holds true for nr(I). We need some preliminary results.

From Riemann–Roch formula (Theorem 2.2), we get

�A(A/In+1)+ q((n+1)I) =−(n+1)2Z2+(n+1)ZKX

2
+pg(A).

Using this, we can express ē0(I), ē1(I), ē2(I) as follows.

Proposition 2.6 [24, Theorem 3.2]. Assume that I = IZ is represented by a cycle Z > 0

on a resolution X of Spec(A). Let P̄I(n) be the normal Hilbert polynomial of I. Then:

(1) P I(n) = �A(A/In+1) for all n≥ pg(A)−1.

(2) ē0(I) = e0(I).

(3) ē1(I)−e0(I)+ �A(A/I) = pg(A)− q(I).

(4) ē2(I) = pg(A)− q(nI) = pg(A)− q(∞I) for all n≥ pg(A).

Moreover, we have

ē0(I) =−Z2, ē1(I) =
−Z2+ZKX

2
.

Theorem 2.7. Let (A,m) be an excellent two-dimensional normal local domain con-

taining an algebraically closed field k = A/m. Let I ⊂ A be an m-primary integrally closed

ideal. Then

nr(I)≤ ē1(I)− ē0(I)+ �A(A/I)+1.
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If we put r = nr(I), equality holds if and only if the following conditions hold true:

(1) �A(In+1/QIn) = 1 for n= 1, . . . , r−1 if r > 1,

(2) q((r−1)I) = q(∞I).

When this is the case, nr(I) = r̄(I), q(I) = pg(A)− r̄(I)+1, and ē2(I) = pg(A)− q(∞I) =

r(r−1)/2.

Proof. By virtue of Proposition 2.6, it is enough to show

nr(I)≤ pg(A)− q(I)+1.

If we put Δq(n) := q(nI)− q((n+1)I) for every integer n ≥ 0, then Δq(n) is nonnegative

and decreasing since �A(In+1/QIn) = Δq(n−1)−Δq(n). We have

nr(I) = min{n ∈ Z+ |Δq(n−1) = Δq(n)}, r̄(I) = min{n ∈ Z+ |Δq(n−1) = 0}.

Put a= pg(A)− q(I). Then Δq(0) = a≥ nr(I)−1 and nr(I) = a+1 if and only if

Δq(0) = a >Δq(1) = a−1> · · ·>Δq(a−1) = 1>Δq(a) = 0 =Δq(a+1).

Now, assume nr(I) = a+1. Then a = r− 1 and for every n with 1 ≤ n ≤ a = r− 1, we

have

�A(In+1/QIn) = Δq(n−1)−Δq(n) = (a−n+1)− (a−n) = 1.

Moreover, for every n≥ a+1, we have

�A(In+1/QIn) = Δq(n−1)−Δq(n) = 0,

and thus In+1 =QIn. Hence, r̄(I) = a+1 = nr(I). Furthermore,

ē2(I) = pg(A)− q(∞I) = q(0I)− q((r−1)I) =
r−2∑
i=0

Δq(i) =
r(r−1)

2
.

One can prove the converse similarly.

Note that, if the equality holds in the previous result, then the normal filtration {In}
has almost minimal multiplicity following the definition given in [33, 2.1]. In the following

example, we show that Theorem 2.7 does not hold if we replace nr(I) by r̄(I). The example

shows that for all g ≥ 2, there exist an excellent two-dimensional normal local ring A and

an integrally closed m-primary ideal I such that nr(I) = 1, r̄(I) = g+1, q(I) = g− 1 and

�A(A/I) = g.

The following ideal I satisfies ē1(I) = ē0(I)− �A(A/I)+1, but r̄(I) 
≤ 2.

Example 2.8 [27, Example 3.10]. Let g ≥ 2 be an integer, and let K be a field of

charK = 0 or charK = p, where p does not divide 2g+2. Then R = K[X,Y,Z]/(X2 −
Y 2g+2−Z2g+2) is a graded normal K -algebra with degX = g+1, degY = degZ = 1. Let

A=R(g) be the gth Veronese subring of R:

A=K[yg,yg−1z,yg−2z2, . . . , zg,xyg−1,xyg−2z, . . . ,xzg−1],

where x,y,z denote, respectively, the image of X,Y,Z in R. Then A is a graded

normal domain with Ak = Rkg for every integer k ≥ 0. Let I = (yg,yg−1z) +A≥2 and
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Q= (yg−z2g,yg−1z). Then the following statements hold:

(1) pg(A) = g.

(2) nr(I) = 1 and r̄(I) = g+1. Indeed,

(a) I = I and In = In =QIn−1 for every n= 2, . . . ,g.

(b) �A(Ig+1/QIg) = 1 (Ig+1 = Ig+1+(xyg
2−1)).

(c) In+1 =QIn for every n≥ g+1.

(3) ē0(I) = 4g−2, ē1(I) = 3g−1, ē2(I) = g, and �A(A/I) = g.

(4) q(nI) = g−n for every n= 0,1, . . . ,g; q(gI) = q(∞I) = 0.

The first statement follows from that a(A) = 0 and g = g(Proj(A)). For the convenience

of the readers, we give a sketch of the proof in the case of g = 2 (see [27, Proof of Example

3.10]). Let A = K[y2,yz,z2,xy,xz] = R(2) with degx = 3 and degy = degz = 1, and I =

(y2,yz,z4,xy,xz) ⊃ Q = (y2 − z4,yz). Then one can easily see that e0(I) = �A(A/Q) =

4g−2 = 6, �A(A/I) = pg(A) = g = 2, and I2 =QI, I = I. In particular, nr(I) = 1.

Claim 1. f0 ∈K[y,z]2n∩ In =⇒ f0 ∈ In for each n≥ 1.

The normality of I0 = (y2,yz,z4)K[y,z]⊂K[y,z] implies the above claim.

Claim 2. 0 
= f1 ∈K[y,z]2n−3, xf1 ∈ In =⇒ n≥ 3.

By assumption and Claim 1, we have (y6+ z6)f2
1 = (xf1)

2 ∈ I2n∩K[y,z]2·2n ⊂ I2n. The

degree (in y and z ) of any monomial in I2n = (y2,yz,z4,xy,xz) is at least 4n = deg(y6+

z6)f2
1 . Hence, (y

6+z6)f2
1 ∈ (y2,yz)2n, and the highest power of z appearing in (y6+z6)f2

1

is at most 2n. Therefore, n≥ 3.

Claim 3. If n≤ 2, then In∩An ⊂ In∩An.

Any f ∈ In ∩An can be written as f = f0 + xf1 for some f0 ∈ K[y,z]2n and f1 ∈
K[y,z]2n−3). Let σ ∈AutK[y,z](2)(A) such that σ(x) =−x. Then, since σ(I) = I, we obtain

σ(f) = f0−xf1 ∈ In. Hence,

f0 =
f +σ(f)

2
∈ In and xf1 =

f −σ(f)

2
∈ In.

By Claims 1 and 2, we have f0 ∈ In and f1 = 0. Therefore, f = f0 ∈ In∩An, as required.

Claim 4. xy3 ∈ I3 \QI2.

Since (xy3)2 = (y6)2 + (y3z3)2 ∈ (I3)2, we get xy3 ∈ I3. Assume xy3 ∈ QI2 = (a,b)I2,

where a = y2− z4 and b = yz. Then axy+ bxz3 = xy3 = au+ bv for some u,v ∈ I2. Since

a,b form a regular sequence, we can take an element h ∈ A1, so that u− xy = bh and

xz3−v = ah. So we may assume u,v ∈A2, and thus u,v ∈ I2∩A2 ⊂ I2. However, this yields

xy3 = au+ bv ∈QI2 = I3, which is a contradiction.

Claim 5. q(I) = 1, q(2I) = q(∞I) = 0, �A(I3/QI2) = 1, and In+1 =QIn for each n≥ 3.

By Proposition 2.3, we have 2 = pg(A) = q(0 · I) ≥ q(I) ≥ q(2 · I) ≥ 0. If q(I) = q(2 · I),
then q(2 · I) = q(3 · I). This implies �A(I3/QI2) = 0 from Proposition 2.5. This contradicts

Claim 4. Hence, q(I) = 1 and q(2 · I) = 0. The other assertions follow from Proposition 2.5.

In particular, r̄(I) = 3.

Claim 6. ē1(I) = 3g−2 = 5 and ē2(I) = g = 2.
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By Proposition 2.6, we have

ē1(I) = e0(I)− �A(A/I)+pg(A)− q(I) = 6−2+2−1 = 5,

ē2(I) = pg(A)− q(∞I) = 2−0 = 2.

§3. Elliptic and strongly elliptic ideals

We define the Rees algebra R̄(I) and the associated graded ring Ḡ(I) associated with

the normal filtration as follows:

R̄(I) :=
⊕
n≥0

Intn ⊂A[t].

Ḡ(I) :=
⊕
n≥0

In/In+1 ∼= R̄(I)/R̄(I)(1).

R̄(I) (resp. Ḡ(I)) is called the normal Rees algebra (resp. the normal associated graded

ring) of I. We recall that the a-invariant of a graded d -dimensional ring R with maximal

homogeneous graded ideal M was introduced by Goto and Watanabe [9] and defined as

a(R) := max{n|[Hd
M(R)]n 
= 0}, where [Hd

M(R)]n denotes the homogeneous component of

degree n of the graded R-module Hd
M(R).

It is known that A is a rational singularity if and only if r(A) = 1 (see [27, Proposition

1.1]). In [23], [24], the authors introduced the notion of pg-ideals, characterizing rational

singularities.

Theorem 3.1 (cf. [7], [10], [23], [24]). Let (A,m) be a two-dimensional excellent normal

nonregular local domain containing an algebraically closed field k = A/m. Let I = IZ be an

m-primary integrally closed ideal of A. Put Ḡ = Ḡ(I) and R̄ = R̄(I). Then the following

conditions are equivalent:

(1) r̄(I) = 1.

(2) q(I) = pg(A).

(3) I2 =QI and In = In for every n≥ 1.

(4) ē1(I) = e0(I)− �A(A/I).

(5) ē2(I) = 0.

(6) Ḡ is Cohen–Macaulay with a(Ḡ)< 0.

(7) R̄ is Cohen–Macaulay.

When this is the case, I is said to be a pg-ideal.

Proof. Since QIn−1 ⊂ In ⊂ In for every n≥ 2, (1) ⇔ (3) is trivial. (1) ⇔ (5) (resp. (6)

⇔ (7)) follows from [7, Part II, Proposition 8.1] (resp. [7, Part II, Corollary 1.2]). Moreover,

the equivalence of (4), (5), and (7) follows from [7, Part II, Theorem 8.2]. (2) ⇔ (4) follows

from Proposition 2.5.

It is known that A is a rational singularity if and only if any integrally closed m-primary

ideal is a pg-ideal (see [23], [24]). We define

r(A) := max{r̄(I) |I is an integrally closed m-primary ideal}.

Then A is a rational singularity if and only if r(A) = 1 (see [27, Proposition 1.1]).

Okuma proved in [22, Theorem 3.3] that if A is an elliptic singularity, then r(A) = 2.

For the definition of elliptic singularity, we refer to [38, p. 428] or [22, Definition 2.1].
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We investigate the integrally closed m-primary ideals such that r̄(I) = 2 with the aim to

characterize elliptic singularities. Next result extends and completes a result by Itoh [12,

Proposition 10], by using a different approach.

Theorem 3.2. Let (A,m) be a two-dimensional excellent normal local domain contain-

ing an algebraically closed field k = A/m, and let I ⊂ A be an m-primary integrally closed

ideal. Put Ḡ= Ḡ(I) and R̄= R̄(I). Then the following conditions are equivalent:

(1) r̄(I) = 2.

(2) pg(A)> q(I) = q(∞I).

(3) ē1(I) = e0(I)− �A(A/I)+ ē2(I) and ē2(I)> 0.

(4) �A(A/In+1) = P̄I(n) for all n≥ 0 and ē2(I)> 0.

(5) Ḡ is Cohen–Macaulay with a(Ḡ) = 0.

When this is the case, I is said to be an elliptic ideal and �A([H
2
M(Ḡ)0) = �A(I2/QI) = ē2(I).

Proof. (1)⇐⇒ (2) : It follows from Proposition 2.5(2).

(2)⇐⇒ (3) : By Proposition 2.6, we have

ē1(I) = e0(I)− �A(A/I)+ ē2(I)−
{
q(I)− q(∞I)

}
.

ē2(I) = pg(A)− q(∞I)≥ 0.

The assertion follows from here.

(2) ⇐⇒ (4) : Assume I = IZ = H0(X,OX(−Z)) for some resolution X → SpecA. By

Kato’s Riemann–Roch formula, for every integer n≥ 0, we have

�A(A/In+1)+h1(OX(−(n+1)Z)) =−(n+1)2Z2+(n+1)KXZ

2
+pg(A).

Hence,

�A(A/In+1) = ē0(I)

(
n+2

2

)
− ē1(I)

(
n+1

1

)
+
{
pg(A)− q((n+1)I)

}

= P̄I(n)−
{
q((n+1)I)− q(∞I)

}
.

Assume (4). By replacing 0 to n in the above equation, we get q(I) = q(∞I), hence (2).

Conversely, if q(I) = q(∞I), then since q((n+1)I) = q(∞I) for all n≥ 1, the above equation

implies (4).

(1) =⇒ (5) : Put Q = (a,b). Since In+1 : a = In, a∗, the image of a in Ḡ is a nonzero

divisor of Ḡ.

By assumption, we have In+1∩Q=QIn∩Q=QIn for every n≥ 2. On the other hand,

we have I2 ∩Q = QI by [10, Theorem in p. 371] or [11, Theorem]. Then it is well known

that a∗, b∗ form a regular sequence in Ḡ, and thus Ḡ is Cohen–Macaulay (see also [37]) and

2 = r̄(I) = a(Ḡ)+dimA= a(Ḡ)+2. Thus, a(Ḡ) = 0, as required.

(5) =⇒ (1) : Since Ḡ is Cohen–Macaulay, we have r̄(I) = a(Ḡ)+dimA= 0+2 = 2.

We notice that if A is not a rational singularity, then elliptic ideals always exist.

Proposition 3.3. Let (A,m) be a two-dimensional excellent normal local domain

containing an algebraically closed field k = A/m, and let I ⊂ A be an m-primary integrally

closed ideal which is not a pg-ideal. Then there exists a positive integer n such that In is

an elliptic ideal. In particular, if A is not a rational singularity, then for any m-primary
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integrally closed ideal I of A, then In is either a pg-ideal or an elliptic ideal for every

n≥ pg(A).

Proof. Let n be a positive integer such that �A(A/In) = P̄I(n− 1). Since the integral

closure of (In)p coincides with Inp for p large, we have

ē0(I
n) = n2ē0(I); ē1(I

n) = nē1(I)+

(
n

2

)
ē0(I); ē2(I

n) = ē2(I).

After substituting the ēi(I
n)’s with the corresponding expressions in terms of the ēi(I)’s

we conclude that

ē2(I
n)− ē1(I

n)+ ē0(I
n)− �A(A/In) = ē0(I)

(
n+1

2

)
− ē1(I)n+ ē2(I)− �A(A/In)

= P̄I(n−1)− �A(A/In) = 0.

Since I is not a pg-ideal, then ē2(I
n) = ē2(I) > 0. Hence, by Theorem 3.2, then In is an

elliptic ideal.

We denote by M=m+ R̄+ the homogeneous maximal ideal of R̄. As usual, we say that

R̄ is (FLC) if �A(H
i
M(R̄))<∞ for every i≤ dimA= 2.

Proposition 3.4. Assume I is an elliptic ideal, then R̄ is (FLC) but not Cohen–

Macaulay with

H2
M(R̄) = [H2

M(R̄)]0 ∼= [H2
M(Ḡ)]0.

Proof. Note that R̄M is a universally catenary domain which is a homomorphic image

of a Cohen–Macaulay local ring. Hence, it is an (FLC) because R̄ satisfies Serre condition

(S2). Thus, H
0
M(R̄) =H1

M(R̄) = 0 and H2
M(R̄) has finite length.

Put N = R̄+. Then we obtain two exact sequences of graded R̄-modules.

0→N → R̄→ hA→ 0,

0→N (1)→ R̄→ Ḡ→ 0,

where hA can be regarded as R̄/N which is concentrated in degree 0. One can easily see

that H0
M(N ) =H1

M(N ) = 0, and we get

0→H2
M(N )→H2

M(R̄)→ hH
2
m(A)→H3

M(N )→H3
M(R̄)→ 0, (3.1)

0→H2
M(N )(1)→H2

M(R̄)→H2
M(G)→H3

M(N )(1)→H3
M(R̄)→ 0. (3.2)

For any integer n≤−1, the first exact sequence (3.1) yields

0→ [H2
M(N )]n → [H2

M(R̄)]n → 0.

In addition, the second exact sequence (3.2) yields

0 = [H1
M(Ḡ)]n → [H2

M(N )]n+1 → [H2
M(R̄)]n.

Then [H2
M(R̄)]−1 ⊂ [H2

M(R̄)]−2 ⊂ ·· · ⊂ [H2
M(R̄)]n = 0 for n � 0, and thus [H2

M(R̄)]n = 0

for all n≤−1.

For any integer n≥ 1, the first exact sequence (3.1) yields

0→ [H2
M(N )]n → [H2

M(R̄)]n → 0.
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Moreover, as a(Ḡ) = 0, we have

[H2
M(N )]n+1 → [H2

M(R̄)]n → [H2
M(Ḡ)]n = 0 (ex).

Hence, we get [H2
M(R̄)]n = 0 for all n≥ 1.

Since a(R̄) =−1, we have [H3
M(N )]1 ∼= [H3

M(R̄)]1 = 0. Hence, we get

H2
M(R̄) = [H2

M(R̄)]0 ∼= [H2
M(Ḡ)]0,

as required.

Corollary 3.5. Let (A,m) be a two-dimensional excellent normal local domain, and

let I ⊂A be an m-primary integrally closed ideal.

Then I is an elliptic ideal if and only if 0 
= H2
M(R̄) = [H2

M(R̄)]0 ↪→ H2
m(A), where the

last map is induced from the natural surjection R̄ → hA= R̄/R̄+.

Proof. Assume I is an elliptic ideal, then from the proof of Proposition 3.4 and Theorem

3.2, we conclude our assertions. Conversely, by our assumption, we can conclude that Ḡ(I)

is Cohen–Macaulay with a(Ḡ(I)) = 0 by a similar argument as in the proof of Proposition

3.4. Hence, I is an elliptic ideal by Theorem 3.2.

For a cycle C > 0 on X, we denote by χ(C) the Euler characteristic of OC .

Definition 3.6. Let Zf denote the fundamental cycle, namely, the nonzero minimal

anti-nef cycle on X. The ring A is called elliptic if χ(Zf ) = 0.

The following result follows from Theorem 3.2 and [22, Theorem 3.3].

Corollary 3.7. If A is an elliptic singularity, then for every integrally closed ideal

I ⊂A, the following facts hold:

(1) Ḡ(I) is Cohen–Macaulay with a(Ḡ(I))≤ 0.

(2) I is elliptic or a pg-ideal.

Since there always exists an ideal I with q(I) = 0, we have r̄(A) = 2.

The result above gives some evidence about a positive answer to the following question:

Question 3.8. Assume r̄(A) = 2, is it true that A is an elliptic singularity?

We can give a positive answer to Question 3.8 if ē2(I) ≤ 1 for all integrally closed m-

primary ideals. In the following result, we describe the integrally closed m-primary ideals

satisfying this minimal condition.

Theorem 3.9. Let (A,m) be a two-dimensional excellent normal local domain over an

algebraically closed field. Let I ⊂ A be an m-primary integrally closed ideal, and let Q be

a minimal reduction of I. Put Ḡ = Ḡ(I) and R̄ = R̄(I). Then the following conditions are

equivalent:

(1) r̄(I) = 2 and �A(I2/QI) = 1.

(2) q(I) = q(∞I) = pg(A)−1.

(3) ē2(I) = 1.

(4) ē1(I) = e0(I)− �A(A/I)+1 and nr(I) = r̄(I).

(5) Ḡ is Cohen–Macaulay with a(Ḡ) = 0 and �A([H
2
M(Ḡ)]0) = 1.
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When this is the case, I is said to be a strongly elliptic ideal and R̄ is a Buchsbaum ring

with �A(H
2
M(R̄)) = 1.

Proof. (1) =⇒ (2) : By Theorem 3.2, we have pg(A) > q(I) = q(∞I). In particular,

q(2I) = q(I). By Proposition 2.5(1), pg(A)− q(I) = �A(I2/QI) = 1. Conversely, (2) =⇒ (1)

again by Proposition 2.5.

(2) =⇒ (3) : By Proposition 2.6(4), we have

ē2(I) = pg(A)− q(I) = 1.

(3)=⇒ (2) : Since pg(A)−q(∞I)= ē2(I)= 1, by assumption, we have pg(A)−1= q(∞I)≤
q(I)≤ pg(A). If q(I) = pg(A), then I is a pg-ideal, and thus ē2(I) = 0. This is a contradiction.

Hence, q(∞I) = q(I) = pg(A)−1, as required.

(1),(3) =⇒ (4) : It follows from Theorem 3.2 (1) =⇒ (3) and the fact that 1 < nr(I) ≤
r̄(I) = 2.

(4) =⇒ (1) : By Proposition 2.5(1), we have

�A(I2/QI) = (pg(A)− q(I))− (q(I)− q(2I)),

�A(I3/QI2) = (q(I)− q(2I))− (q(2I)− q(3I)),

... =
...

By a similar argument as in [10] and Proposition 2.6, we get

ē2(I) =
∞∑

n=1

n · �A(In+1/QIn),

ē1(I)− ē0(I)+ �A(A/I) =
∞∑

n=1

�A(In+1/QIn).

Thus, our assumption implies �A(In+1/QIn) = 1 for some unique integer n ≥ 1. On the

other hand, since nr(I) = r̄(I), we must have n= 1.

(1)=⇒ (5) : Suppose (1). Then Theorem 3.2 (1)=⇒ (5) implies that Ḡ is Cohen–Macaulay

with a(Ḡ) = 0.

We remark that
√
M=

√
Ḡ+ in Ḡ; hence, by [19, Proposition 3.1], we have [H2

M(Ḡ)]0 ∼=
I2/QI ∼= A/m has length 1. In particular, by Proposition 3.4, H2

M(R̄) becomes an A/m-

vector space, and thus R̄ is Buchsbaum.

(5) =⇒ (1) : By Theorem 3.2 (5) =⇒ (1), we have r̄(I) = 2. In addition, �A(I2/QI) =

�A([H
2
M(Ḡ)]0) = 1.

It is clear that if I is a strongly elliptic ideal, then I is an elliptic ideal. In some cases,

they are equivalent. Notice that the converse is not true in general. For instance, let A =

k[[x2,y2, z2,xy,xz,yz]]/(x4 + y4 + z4). Then A is a two-dimensional normal local domain

with the maximal ideal m= (x2,y2, z2,xy,xz,yz). Then m is a normal ideal, and Q= (x2,y2)

is a minimal reduction of m with m3 =Qm2. Moreover, r̄(m) = r(m) = 2 and �A(m
2/Qm) = 3

imply that m is an elliptic ideal but not a strongly elliptic ideal.

Notice that (1) is equivalent to (3) follows also from [13].

Proposition 3.10. Let (A,m) be a two-dimensional Gorenstein excellent normal local

domain. Then m is an elliptic ideal if and only if m is a strongly elliptic ideal.
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Proof. Assume m is an elliptic ideal and Q be its minimal reduction. Since r̄(m) = 2,

mm2 ⊂ Q, and we have m2/Qm ∼= (m2+Q)/Q ↪→ A/Q, whose image is contained in (Q :

m)/Q. Since the latter has length 1, �A(m2/Qm) = 1 and m is strongly elliptic.

Example 3.11. Let A = C[[x,y,z]]/(xa+ yb+ zc) be a Brieskorn hypersurface, where

2≤ a≤ b≤ c. Then:

(1) m is a pg-ideal if and only if (a,b) = (2,2),(2,3).

(2) m is an elliptic ideal (equivalently strongly elliptic) if and only if

(a,b) = (2,4),(2,5),(3,3),(3,4).

In particular, if p≥ 1 and (a,b,c) = (2,4,4p+1), then pg(A) = p and m is a (strongly) elliptic

ideal. It follows from [26, Theorem 3.1 and Proposition 3.8].

Example 3.12. Proposition 3.10 does not hold if I 
=m. Let A be any two-dimensional

excellent normal local domain with pg(A) > 1. Then there exist always integrally closed

ideals I with q(I) = 0. Since q(I) = q(2I) = 0, r̄(I) = 2, and ē2(I) = pg(A). Thus, 3.10 does

not hold for such I.

We recall that an excellent normal local domain for which every integrally closed m-

primary ideal is a pg-ideal is a rational singularity (pg(A) = 0). This result suggests to

study the next step.

Definition 3.13 (e.g., [41]). An excellent normal local domain A is a strongly elliptic

singularity if pg(A) = 1.

Note that any strong elliptic singularity is an elliptic singularity. The following result

characterizes algebraically the strongly elliptic singularities.

Theorem 3.14. Let (A,m) be a two-dimensional excellent normal local domain con-

taining an algebraically closed field k = A/m and assume that pg(A) > 0. The following

facts are equivalent:

(1) A is a strongly elliptic singularity.

(2) Every integrally closed ideal of A is either a pg-ideal or a strongly elliptic ideal.

Proof. It depends by the fact that always there exists an integrally closed ideal I of A

such that q(I) = 0. Thus, pg(A) = ē2(I).

If A is a rational singularity, then every integrally closed m-primary ideal is normal. This

is not true if A is an elliptic singularity, even if we assume A is a strongly elliptic singularity.

Example 3.15.

(1) Let A= k[X,Y,Z]/(X3+Y 3+Z3), then A is Gorenstein, pg(A) = 1, and the maximal

ideal m is normal. If we consider I = (x,y,z2), then I2 is not normal.

(2) Cutkosky showed that if A=Q[[X,Y,Z]]/(X3+3Y 3+9Z3) (Q rational numbers), then

for every integrally closed ideal I ⊂ A, I2 is also integrally closed and hence normal.

This is because the elliptic curve does not have any Q-rational point.

(3) Let A = k[x,y,z]/(x2+ y4+ z4), I = m = (x,y,z), and Q = (y,z). Then pg(A) = 1 and

mn = x(y,z)n−2+mn for every n≥ 2.

Proposition 3.16. Let (A,m) be a two-dimensional excellent normal local domain

containing an algebraically closed field k = A/m. Assume that I is a strongly elliptic ideal.
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Then the following conditions are equivalent:

(1) I2 = I2.

(2) In = In for some n≥ 2.

(3) In = In for every n≥ 2.

Proof. By Theorem 3.9(1), we have �A(I2/QI) = 1 and In =QIn−1 for n≥ 3. Hence, if

I2 = I2, then In = In for all n≥ 2.

Conversely, assume that I2 
= I2. Since �A(I2/QI) = 1, we should have I2 = QI. This

implies that G(I) := ⊕n≥0I
n/In+1 is Cohen–Macaulay with a(G(I)) = −1 (see [8], [37,

Proposition 2.6]) and hence

�A(A/I
n+1) = e0(I)

(
n+2

2

)
−e1(I)

(
n+1

1

)

with e0(I) = ē0(I) and e1(I) = e0(I)− �A(A/I).

On the other hand, by Theorem 3.2 and Corollary 3.9, we have

�A(A/In+1) = P̄I(n) = e0(I)

(
n+2

2

)
− e1(I)

(
n+1

1

)
+e2(I)

= e0(I)

(
n+2

2

)
− (e0(I)− �A(A/I)+1)

(
n+1

1

)
+1

= �A(A/I
n+1)−n.

This implies that In 
= In for all n≥ 2.

We can characterize the normal ideals in a strongly elliptic singularity. Before showing

the results, let us recall some definitions and basic facts on cycles and a vanishing theorem

for elliptic singularities. In the following, A is an elliptic singularity, and X is a resolution

of Spec(A).

For a cycle C > 0 on X, we denote by χ(C) the Euler characteristic χ(OC) = h0(OC)−
h1(OC). Then pa(C) := 1−χ(C) is called the arithmetic genus of C. By the Riemann–Roch

theorem, we have χ(C) = −(KX +C)C/2, where KX is the canonical divisor on X. From

this, if C1,C2 > 0 are cycles, we have χ(C1+C2) = χ(C1)+χ(C2)−C1C2. From the exact

sequence

0→OC2(−C1)→OC1+C2 →OC1 → 0,

we have χ(OC2(−C1)) =−C1C2+χ(C2).

If A is elliptic, then there exists a unique cycle Emin, called the minimally elliptic cycle,

such that χ(Emin) = 0 and χ(C) > 0 for all cycles 0 < C < Emin (see [15]). Moreover, we

have the following (see [15, Propositions 3.1 and 3.2 and Corollary 4.2], [36, (6.4) and (6.5)],

[38, p. 428]).

Proposition 3.17. Assume that A is elliptic. Then χ(C) ≥ 0 for any cycle C > 0 on

X and C ≥ Emin if χ(C) = 0.

Let us recall that the fundamental cycle Zf can be computed via a sequence of cycles:

C0 := 0, C1 = Ej1 , Ci = Ci−1+Eji , Cm = Zf ,
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where Ej1 is an arbitrary component of E and Ci−1Eji > 0 for 2≤ i≤m. Such a sequence

{Ci} is called a computation sequence for Zf . It is known that h0(OCi) = 1 for 1 ≤ i ≤m

(see [15, p. 1,260]).

The following vanishing theorems are essential in our argument.

Theorem 3.18 (Röhr [31, 1.7]). Let L be a divisor on X such that LC > −2χ(C) for

every cycle C > 0 which occurs in a computation sequence for Zf . Then H1(OX(L)) = 0.

If A is rational, then the converse holds, too.

From Theorem 3.18 and Proposition 3.17, we have the following.

Corollary 3.19. Assume that A is an elliptic singularity. Let L be a nef divisor on X

such that LEmin > 0. Then H1(OX(L)) = 0.

Proposition 3.20. Assume that A is an elliptic singularity and D the minimally elliptic

cycle on X. Let F be a nef divisor on X. If FD> 0, then H1(OX(F −D)) = 0, and from the

exact sequence 0→OX(F −D)→OX(F )→OD(F )→ 0, the restriction map H0(OX(F ))→
H0(OD(F )) is surjective.

Proof. If F −D is nef, since (F −D)D > 0, we have H1(OX(F −D)) = 0 by Corollary

3.19. Assume that F −D is not nef. As in [6, 1.4], we have a sequence {Di} of cycles such

that

D0 =D, Di =Di−1+Eji , (F −Di−1)Eji < 0 (1≤ i≤ s), F −Ds is nef.

Since F −Zf is nef, (F −Di−1)Eji < 0 implies Di−1Eji > 0, and D ≤ Zf , we see that

Ds ≤ Zf and Ds occurs in a computation sequence for Zf . Then the equalities χ(D) =

χ(Ds) = 0 and χ(Di) = χ(Di−1)+χ(Eji)−Di−1Eji imply that FEji = 0, Di−1Eji = 1, and

hj(OEji
(F −Di−1)) = 0 for j = 0,1 and 1≤ i≤ s. Since

0≤ χ(Ds+D) = χ(Ds)+χ(D)−DDs =−DDs,

we have (F −Ds)D > 0. Therefore, from the exact sequence

0→OX(F −Di)→OX(F −Di−1)→OEji
(F −Di−1)→ 0,

we obtain H1(OX(F −D)) =H1(OX(F −Ds)) = 0.

Theorem 3.21 [5, 2.7]. Let C be a Cohen–Macaulay projective scheme of pure

dimension 1, and let F be a rank 1 torsion-free sheaf on C. Assume that degF|W :=

χ(F|W )−χ(W )>−2χ(W ) for every subcurve W ⊂ C. Then H1(F) = 0.

To show the normality of an ideal I, the following is essential.

Proposition 3.22. Let L1 and L2 be nef invertible sheaves on the minimally elliptic

cycle D such that di := degLi ≥ 3 for i= 1,2. Then the multiplication map

γ :H0(L1)⊗H0(L2)→H0(L1⊗L2)

is surjective.

Proof. First, note that χ(W ) > 0 for any cycle 0 < W � D by the definition of the

minimally elliptic cycle. For any subscheme Λ⊂D, we denote by IΛ ⊂OD the ideal sheaf

of Λ. For any cycle W ≤ D and any p ∈ Supp(W ), we have deg(IpLi)|W = degLi|W − 1.

Therefore, it follows from Theorem 3.21 that H1(IpLi) = 0 for any point p ∈ Supp(D).
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Hence, Li is generated by global sections. Let s ∈H0(L1) be a general section and consider

the exact sequence

0→OD
×s−−→L1 →L1|B → 0, (3.3)

where B is the zero-dimensional subscheme of D of degree d1 = degL1 defined by s. Note

that since L1 is generated by global sections, each point of Supp(B) is a nonsingular point

of Supp(D) and there exists s1 ∈H0(L1) such that L1|B ∼= s1OB
∼= OB. Let p ∈ Supp(B)

be any point. The following fact makes our proof easier.

Claim 7. Let n⊂O :=OX,p be the maximal ideal. Then we can take generators x,y of

n, so that OD,p =O/(xnp) with np ≥ 1 and OB,p
∼=O/(xnp ,y). Hence, at p, the subschemes

of B correspond to monomials x� with �≤ np.

Proof of Claim 7. Since E is nonsingular at p, we have the generators x,y ∈ n such

that OD,p = O/(xnp). Assume that OB,p = O/(xnp ,f), where f ∈ n. If �O(O/(x,f)) = 1,

we can put y = f . Assume that �O(O/(x,f)) ≥ 2. Let 0 < W ≤ D be any cycle, and let

OW,p = O/(xmp). Assume that p ∈ Supp(W ). Then the cokernel of (I2pL1)|W → L1|W is

isomorphic to O/n2+(xmp). If mp = 1, then deg(I2pL1)|W = degL1|W −2. If mp ≥ 2, then

deg(I2pL1)|W = degL1|W − 3 ≥ �O(O/(xmp ,f))− 3 ≥ 1. Thus, we have H1(I2pL1) = 0 by

Theorem 3.21, and the map H0(IpL1)→ IpL1/I
2
pL1 is surjective; however, this shows that

we can take f = y.

Tensoring L2 with the sequence (3.3), we obtain the exact sequence

0→H0(L2)
×s−−→H0(L1⊗L2)→H0(OB)→ 0,

sinceH1(L2) = 0. As seen above, we have general sections s1 ∈H0(L1) and s2 ∈H0(L2) such

that s1s2 �→ 1 ∈H0(OB). Thus, the sections of H0(L1⊗L2) which map to 1 ∈H0(OB) are

in the image of γ. It is now sufficient to show that for any subscheme B′ ⊂B of degB′ < d1,

the image of γ contains a section t ∈H0(IB′L1⊗L2) such that L1⊗L2/tOD
∼=OB′ ⊕OB,

where Supp(B) ∩ Supp(B) = ∅. To prove this, we write IB′ = IB1IB2 (B1,B2 ⊂ B′),

so that degIBiLi = di − degBi ≥ 2 for i = 1,2 (note that degB1 + degB2 < d1). Let

0 < W ≤ D be any cycle, and let p ∈ Supp(B). We use the notation of the proof of

Claim 7. Suppose that OB1,p = O/(x�p ,y). Then degL1|W =
∑

W mp, where
∑

W means

the sum over p∈ Supp(B)∩Supp(W ), and the cokernel of (IB1L1)|W →L1|W is isomorphic

to O/(xmp ,x�p ,y). Therefore,

deg(IB1L1)|W =
∑
W

(mp−min(mp, �p)).

Since degIB1L1 = d1−degB1 ≥ 2, by Theorem 3.21, we have H1(IqIB1L1) = 0 for any point

q ∈ Supp(B). Hence,H0(IB1L1) has no base points. Clearly, the same results for IB2L2 hold.

Therefore, for each i=1,2, we have a section ti ∈H0(IBiLi) such that Li/tiOD
∼=OBi⊕OBi

,

where Supp(Bi)∩Supp(B) = ∅. Then t := t1t2 satisfies the required property.

Theorem 3.23. Let (A,m) be a two-dimensional excellent normal local domain contain-

ing an algebraically closed field k=A/m. Assume that A is a strongly elliptic singularity. If

I = IZ is an elliptic ideal (equivalently, I is not a pg-ideal) and D is the minimally elliptic

cycle on X, then I2 is integrally closed (equivalently, I is normal) if and only if −ZD ≥ 3

and if −ZD ≤ 2, then I2 =QI.
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Proof. Assume that −ZD≤ 2. Since H1(OX(−Z)) = 0, by the Riemann–Roch theorem,

we have h0(OD(−nZ)) =−nZD for n≥ 1. Hence,

H0(OD(−Z))⊗H0(OD(−Z))→H0(OD(−2Z))

cannot be surjective. By Proposition 3.20, the map

H0(OX(−Z))⊗H0(OX(−Z))→H0(OX(−2Z))

cannot be surjective, too. Therefore, I2 
= I2Z , and hence I2 =QI.

Assume that−ZD≥ 3. By Propositions 3.20 and 3.22, we have the following commutative

diagram:

H0(OX(−Z))⊗H0(OX(−Z))
α−−−−→ H0(OX(−2Z))⏐⏐


⏐⏐

H0(OD(−Z))⊗H0(OD(−Z)) −−−−→ H0(OD(−2Z)),

where at least the maps other than α are surjective. By Proposition 3.20 and its proof,

we have I2Z = I2 +H0(OX(−2Z −D)), H0(OX(−2Z −D)) = H0(OX(−2Z −Ds)), and

−(Z+Ds)D ≥−ZD ≥ 3. We have as above a surjective map

H0(OD(−Z))⊗H0(OD(−Z−Ds))→H0(OD(−2Z−Ds))

and H0(OX(−2Z −Ds)) ⊂ IH0(OX(−Z −Ds)) +H0(OX(−2Z −Ds −D)). From these

arguments, for m > 0, we have I2Z ⊂ I2 +H0(OX(−2Z −mD)). We denote by H(m)

the minimal anti-nef cycle on X such that H(m) ≥ 2Z +mD. Then H0(OX(−2Z −
mD)) =H0(OX(−H(m))), and for an arbitrary n ∈ Z+, there exists m(n) ∈ Z+ such that

H(m(n))≥ nE. Therefore, H0(OX(−2Z−mD))⊂ I2 for sufficiently large m, and we obtain

I2Z = I2.

Remark 3.24. Assume that A is elliptic. It follows from Proposition 4.5 and Corol-

lary 3.19 that q(I) = 0 if and only if ZD 
= 0. By an argument similar to the proof of

Theorem 3.23, we can prove that if ZD 
= 0, then I = IZ is normal if and only if −ZD ≥ 3.

For elliptic ideals in an elliptic singularity (not strongly elliptic), Remark 3.24 cannot be

applied because the condition ZD 
= 0 does not hold in general. Next example shows that

the condition 0<−ZD < 3 is not necessary for IZ being not normal.

Example 3.25. Suppose that p≥ 1 be an integer. Let A= k[x,y,z]/(x2+y3+z6(p+1)),

and assume that X is the minimal resolution. Then E is a chain of p+1 nonsingular curves

E0,E1, . . . ,Ep, where g(E0) = 1, E2
0 =−1, g(Ei) = 0, E2

i =−2, Ei−1Ei =1, for 1≤ i≤ p, and

EiEj =0 if |i−j| ≥ 2. It is easy to see that A is elliptic and E0 is the minimally elliptic cycle.

Furthermore, m is a pg-ideal and pg(A) = p+1 by [26, 3.1 and 3.10]. Since A is not strongly

elliptic, there is a non-pg-ideal IZ such that −ZE0 = 0 (see Theorem 3.14 and Proposition

4.5). Let W =
∑p

i=0(p+1− i)Ei. Then −W ∼KX and the exceptional part of the divisors

divX(x), divX(y), and divX(z) are 3W , 2W , and E, respectively. For 1 ≤ n ≤ p+1, let

Dn = gcd(nE,W ) :=
∑p

i=0min(n,p+1− i)Ei. (Our cycle Dn coincides with Cn−1 in [22,

2.6].) Then OX(−2Dn) is generated (cf. [22, 3.6(4)]) and D2
n = −n. Let In = I2Dn . Since

the cohomological cycle of (Dn)
⊥ is W −Dn, we have q(In) = pg(A)−n by Proposition

4.5; note that −(W −Dn) ∼ KX on a neighborhood of Supp(W −Dn) = E0 ∪ · · · ∪Ep−n.

Then In = (x,y,z2n). We have DnE0 = 0 for 1≤ n≤ p and Dp+1E0 =E2
0 =−1. Therefore,
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it follows from Remark 3.24 that I2p+1 
= I2p+1, since −2Dp+1E0 = 2. However, the condition

0 < −ZE0 ≤ 2 is not necessary for IZ being not normal. In fact, we have I2n 
= I2n for all

1≤ n≤ p+1 because xzn 
∈ I2n and (xzn)2 ∈ I4n.

§4. The existence of strongly elliptic ideals

Motivated by the fact that in every two-dimensional excellent normal local domain which

is not a rational singularity elliptic ideals always exist, it is natural to ask if it is also true

for strongly elliptic ideals. We need some more preliminaries for proving that the answer

is negative, in particular there are two-dimensional excellent normal local domains with no

integrally closed m-primary ideals I with ē2(I) = 1. Assume (A,m) is a two-dimensional

excellent normal local domain over an algebraically closed field.

Let π : X → SpecA be a resolution of singularity with exceptional set E =
⋃
Ei.

Definition 4.1. Let D ≥ 0 be a cycle on X, and let

h(D) = max

{
h1(OB)

∣∣∣∣B ∈
∑

ZEi, B ≥ 0, Supp(B)⊂ Supp(D)

}
.

We put h1(OB) = 0 if B = 0. There exists a unique minimal cycle C ≥ 0 such that h1(OC) =

h(D) (cf. [30, 4.8]). We call C the cohomological cycle of D. The cohomological cycle of E

is denoted by CX .

Note that pg(A) = h(E), and that if A is Gorenstein and π is the minimal resolution,

then the canonical cycle ZKX
= CX (see [30, 4.20]). Clearly, the minimally elliptic cycle is

the cohomological cycle of itself.

Remark 4.2. (1) If C1 and C2 are cohomological cycles of some cycles on X such that

C1 ≤ C2 and h1(OC1)< h1(C2), then Supp(C1) 
= Supp(C2).

(2) In general, for q < pg(A), cohomological cycle C with h1(OC) = q is not unique. For

example, there exists a singularity whose minimal good resolution has two minimally elliptic

cycles (e.g., [20]).

The following result is a generalization of [25, 2.6].

Proposition 4.3. Assume that pg(A) > 0, and let D ≥ 0 be a reduced cycle on X.

Then the cohomological cycle C of D is the minimal cycle such that H0(X \D,OX(KX)) =

H0(X,OX(KX +C)). Therefore, if gX ′ → X is the blowing-up at a point in SuppC and

E′ the exceptional set for g, then the cohomological cycle C ′ of g∗D satisfies that g−1
∗ C ≤

C ′ ≤ g∗C−E′ and h1(OC′) = h1(OC); we have C ′ = g∗C−E′ if OX(KX +C) is generated

at the center of the blowing-up.

Proof. Let F > 0 be an arbitrary cycle with Supp(F ) ⊂ D. By the duality, we have

h1(OF ) = h0(OF (KX +F )). From the exact sequence

0→OX(KX)→OX(KX +F )→OF (KX +F )→ 0

and the Grauert–Riemenschneider vanishing theorem, we have

h1(OF ) = �A(H
0(X,OX(KX +F ))/H0(X,OX(KX))). (4.1)

On the other hand, we have the inclusion

H0(X,OX(KX +F ))⊂H0(X \D,OX(KX)),
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where the equality holds if F is sufficiently large; if the equality holds, we obtain

h1(OF ) = h(D), because the upper bound �A(H
0(X \D,OX(KX))/H0(X,OX(KX))) for

h1(OF ) depends only on Supp(D). Clearly, the minimum of such cycles F exists as

the maximal poles of rational forms in H0(X \D,OX(KX)). Let D′ = g−1(D). Since

KX′ +g∗C−E′ = g∗(KX +C), we have

H0(X ′,OX′(KX′ +g∗C−E′)) =H0(X ′ \D′,OX(KX′)).

Hence, C ′ ≤ g∗C−E′. The inequality g−1
∗ C ≤ C ′ is clear. From (4.1), we have h1(OC′) =

h1(OC). If OX(KX +C) is generated at the center of the blowing-up, then OX′(KX′ +

g∗C−E′) has no fixed components, and the minimality of the cycle g∗C−E′ follows.

Definition 4.4. We define a reduced cycle Z⊥ to be the sum of the components Ei ⊂E

such that ZEi = 0.

From [24, 3.4], we have the following.

Proposition 4.5. Let I = IZ be represented by a cycle Z on X and denote by C the

cohomological cycle of Z⊥. Assume r̄(I) = 2, then OC(−Z)∼=OC and h1(OC) = q(I).

The converse of the result above is described as follows.

Proposition 4.6. If C is the cohomological cycle of a cycle on X with h1(OC) = q > 0,

then there exist a resolution Y → SpecA and a cycle Z > 0 on Y such that OY (−Z) is

generated and q(IZ) = q(∞IZ) = q.

Proof. There exists a cycle W on X such that WEi < 0 for all Ei and OX(−W ) is

generated (cf. the proof of [23, 4.5]). Let h ∈ IW be a general element. First, we show that

there exist a resolution Y → SpecA and a cohomological cycle D on Y with h1(OD) =

q such that if Zh is the exceptional part of divY (h), then Z⊥
h = Dred. We obtain the

resolution Y from X by taking blowing-ups appropriately as follows. Let H ⊂ X be an

irreducible component of the proper transform of divSpecA(h) intersecting C at a point p,

and let gX ′ →X be the blowing-up at p. Let C ′ be the cohomological cycle of g∗C. Then

h1(OC′) = q by Proposition 4.3. If the intersection number C ′(g−1
∗ H) is positive, then we

take again the blowing-up at the intersection point. By the property of the intersection

number of curves and Proposition 4.3, taking blowing-ups in this manner, we obtain a

resolution Y → SpecA and a cohomological cycle D which satisfy the conditions described

above; in fact, for an exceptional prime divisor F on Y, we have that F ≤ Z⊥
h if and only

if F does not intersect the proper transform of divSpecA(h). Thus, it follows from [22, 3.6]

(cf. [24, 3.4]) that OY (−nZh) is generated and h1(OY (−nZh)) = q for n≥ pg(A). Then the

cycle Z := pg(A)Zh satisfies the assertion.

Corollary 4.7. There exists a strongly elliptic ideal in A if and only if there exists a

cohomological cycle C of a cycle on a resolution Y → SpecA such that h1(OC) = pg(A)−1.

Example 4.8. Let C be a nonsingular curve of genus g ≥ 2 and D an divisor on C

with degD> 0. Let A=
⊕

n≥0H
0(C,OC(nD)), and assume that a(A) = 0. Then pg(A) = g

and A has no strongly elliptic ideals because any cycle F on any resolution has h1(OF ) = 0

or g. More precisely, if ZE0 = 0, where E0 ⊂ E denotes the curve of genus g, then IZ is a

pg-ideal; otherwise, q(∞IZ) = 0.

Next example shows that there are local normal Gorenstein domains that always have

strongly elliptic ideals.
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Example 4.9. Let C be a nonsingular curve of genus g ≥ 2, and put

A=
⊕
n≥0

H0(OC(nKC)).

Then A is a normal Gorenstein ring by [39]. Suppose that f :X → SpecA is the minimal

resolution. We have

pg(A) =
∑
n≥0

h1(OC(nKC)) = g+1

by Pinkham’s formula [28], E ∼= C, OE(−E) ∼= OE(KE), and KX = −2E (cf. [23, 4.6]).

Let Y → X be the blowing-up at a point p ∈ E, and let E1 be the fiber of p and E0 the

proper transform of E. By Proposition 4.3, we have CY = 2E0 +E1. It follows from (b)

of the theorem in [30, 4.8] that h1(OE0) ≤ h1(OnE0) < pg(A) for every n ≥ 1. Hence, the

cohomological cycle of E0 is E0 and h1(OE0) = g = pg(A)−1. Therefore, A has a strongly

elliptic ideal by Corollary 4.7.

Next, we construct a strongly elliptic ideal. Take a general linear form L ∈ A1 ⊂ A,

and suppose that sup(divX(L)−E)∩E consists of degKC points p1, . . . ,p2g−2 ∈ E. Let

φ :X ′ →X be the blowing-up at {p1, . . . ,p2g−2}, and let F0 be the proper transform of E and

Fi = π−1(pi). Let Z = F0+2(F1+ · · ·+F2g−2). Then OX′(−Z) is generated, ZCX′ 
= 0, and

ZF0 = 0. Thus, q(IZ) = g = pg(A)−1 (cf. [24, 3.4]). Moreover, we have that �A(A/IZ) = g

by Theorem 2.2 and IZ =m2+(L). Note that if C is not hyperelliptic, then m2 is normal,

because A is a standard graded ring.
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