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Free energy, widely used as a measure of turbulence intensity in weakly collisional
plasmas, has been recently found to be a suitable basis to describe both linear and
nonlinear growth in a wide class gyrokinetic systems. The simplicity afforded by this
approach is accompanied by some drawbacks, notably the lack of any explicit treatment
of wave—particle effects, which makes the theory unable to describe things like stability
thresholds or dependence on the geometry of the background magnetic field. As a step
toward overcoming these limitations, we propose an extension of the theory based on
a generalization of the free energy. With this, it is demonstrated that resonance effects
are recovered, and the bounds on growth are significantly reduced. The simplicity and
efficient computation of the associated ‘optimal” growth rates makes the theory potentially
applicable to stellarator optimization.
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1. Introduction

This is the third paper in a series (Helander & Plunk 2022; Plunk & Helander 2022),
in which we develop a linear and nonlinear stability theory based on gyrokinetic energy
balance. The last two papers used Helmholtz free energy, and introduced the concept of
optimal mode growth for fully electromagnetic gyrokinetics. The present paper proposes
a generalized energetic measure of fluctuations, allowing the inclusion of additional
instability mechanisms. We do this first for a simple case, namely the electrostatic limit
(low plasma g) with only one kinetic species (ions), with the electrons being treated
adiabatically. These simplifications limit the application to ion-temperature-gradient (ITG)
driven turbulence, although the central result of the paper is capable of treating completely
general details of the magnetic geometry.

Free energy is a useful concept for understanding nonlinear and linear aspects of plasma
turbulence. At the level of linear instabilities it is common to speak of a source of free
energy that drives modes. Indeed, without a source of free energy, provided by background
plasma gradients (density, temperature, flows), there can be no linear instabilities
(nor can there be subcritical turbulence Landreman, Plunk & Dorland 2015; Plunk &
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2 G.G. Plunk and P. Helander

Helander 2022). However, there is usually another ingredient that arises in the detailed
analysis of normal linear instabilities, namely the wave—particle resonance. In gyrokinetic
theory, this involves parallel motion (along the magnetic field) and magnetic drift, and
the resonance is physically linked to the work that the electrostatic field performs on
gyrocentre motion. However, the terms needed to capture this do not contribute to free
energy balance, and the influence of resonance therefore cannot be accounted for by the
optimal modes that we introduced in our previous works.

In this work, we propose a new measure of gyrokinetic fluctuations, a generalization
of the concept of free energy, that incorporates the resonance mechanism, and, via the
magnetic drift, the full details of the background magnetic geometry. We demonstrate the
existence of a class of quadratic measures closely related to the Helmholtz free energy
that behave as positive—definite norms for fluctuations in the distribution function. The
corresponding energy balance equation is then used to derive a theory of optimal modes
that most efficiently extract this energy from its source. The growth rate of these optimal
modes provides a rigorous upper bound on the growth rate of linear instabilities, and this
bound is shown to be lower than that obtained previously from the Helmholtz free energy.
By studying some simple limits, we show that we recover some expected behaviour of
both the slab and toroidal branches of the ITG mode.

2. Definitions and gyrokinetic energy balance

We follow closely the conventions of the first paper in this series (Helander & Plunk
2022), focusing on local gyrokinetic theory in the geometry of a flux tube, whereby
fluctuations in the distribution function may be considered small, and periodic in the
coordinates perpendicular to the field line. Essential definitions are summarized in what
follows, but more detail and background can be found in §§ 2 and 3 of Helander & Plunk
(2022) (henceforth also called ‘Part 1°).

The ion gyrokinetic equation in the electrostatic limit is written

0
gk+

+ 10) + E B.(kx k)5¢ ey s +iw! 5¢ (2.1)
1 = 1 .
Bt || 81 dgk kgk K * k>

T, at

where g is the gyrocentre-dependent part of the perturbed ion distribution function, i.e.
fi=U —edp(r)/T)Fin+ gR, E;, u;, t). Its phase space variables are the energy E, =
mev?/2 + e,® () and the magnetic moment , = mavi /(2B), and the perpendicular
wavenumber is k =k, =k, Vy + k,Va with k, and k, independent of the arc length
[ along the magnetic field, and v and o defined via B = Bb = Vi x Va. We neglect
collisions here,! and used the simplified notation g; = 8ik and w, = w,;, etc. because
the adiabatic approximation g, = O is assumed throughout; note that it is not necessary
here to include the customary correction for the zonal component (i.e. for k, = 0; see
Dorland & Hammett 1993) because the growth of this component is zero due to the
fact that it has no source of free energy (see below). We will also assume kp; ~ 1,
implying kp, < 1.

As derived for the general case in § 3 of Part 1, the gyrokinetic free energy balance
equation obtained in this limit reads

- H_ZZD (2.2)

'We do not retain collisions, since we will not be able to fix the sign of its contribution in our later analysis.
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where the drive term D is

D(k,t) = Ime; < / Q! 3¢, d3v>, (2.3)
and the free energy, expressed in terms of the gyrocentre distribution function
Hoen = (1, [ B, Z”“—egww : (24)
F, — T,

where the space average is defined as (extensions are discussed in § 3 of Part 1)

. L d/ Lar
(...)=L1an}o _L(...)E//_LE. (2.5)

The diamagnetic frequencies are

k,T,dInn,
Wyq = dw )
€q
5 (2.6)
I = |1+ Hal E
(I)*a - *a na 2Ta 2 ’
and the magnetic drift frequency is

d)d =k- Vy, (27)

where the magnetic drift velocity is v, = b x ((v2/2)VInB + vﬁlc)/.Q,-, k=b-Vhband
2, = e,B/m, is the gyrofrequency. Noting bx (VInB— Kk — ug /B*Vp) =0, we can
assume b x VInB =~ b x k in the appropriate limit of low plasma 8, which allows us to

separate the drift frequency into velocity-dependent and space-dependent factors following
Plunk et al. (2014):?

vi Y
wg=w;) | =+ |. (2.8)
2vi  vi
The gyro-averaged electrostatic potential is denoted
— kiv
5 =Jo ( ;2%) S 2.9)
and the quasi-neutrality condition is
n.e? 3
Z T S =e; [ godv, (2.10)

a

where J, = J,(k v, /£2;) is a Bessel function. Following our previous convention, we
define the free energy as twice that which appears in some other publications. Henceforth,
we suppress the k-subscripts.

2 Actually, there is spatial dependence in both v, and v|, since these are not the proper gyrokinetic phase-space
variables, but a separation like this is useful to make contact with known limits from gyrokinetic theory of the ITG mode.
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2.1. Electrostatic energy and positive—definiteness of free energy

It is useful to decompose the free energy into a part associated with a perturbed distribution
function and a part associated with fluctuations in the electrostatic field, i.e.

H=G+E, (2.11)
where
I8F|*
G=-TS,=(T, | ——d’v (2.12)
Fy
n,-ez 2
E={((t+1-1Y) #|8¢| . (2.13)

Recall the conventional definitions I7,(b) = exp(—b)1,(b) and b = k7 p? = k3 T,/ (m:2}),
and T = (eT})/(e;,T,). Note that 8F = g — (e;¢/T;)F, is the gyro-averaged perturbed
distribution function, and these two contributions to H can be identified as the gyrokinetic
perturbed entropy and the gyrokinetic field energy.

Although the general electromagnetic free energy admits a similar form as (2.11) ((3.11)
Part 1), we note that the electrostatic limit is distinguished by the fact that the field
contribution E is itself a nonlinear invariant of the gyrokinetic system (Schekochihin et al.
2009), by which we mean that it is conserved under the sole action of the nonlinearity,
but not by all the linear terms; the same applies for the Helmholtz free energy. The
conservation of £ may be viewed as an additional constraint on the nonlinear dynamics,
with consequences e.g., for the cascade and production of large-scale £ x B flows (Plunk
et al. 2010).

For what follows, we need the electrostatic energy balance equation. This is obtained
by multiplying the ion gyrokinetic equation by e, integrating over velocity, averaging
over the parallel coordinate / and summing over perpendicular wavenumber k&, yielding
(Helander, Proll & Plunk 2013)

d
SN E=2% k. 2.14
a2 E=2 Q.14

where the drive term K is

K= —Ree </ 5¢" (:;,,% + ia)d) gd3u>. (2.15)

This is composed to two contributions, one coming from the parallel streaming term, and
the other coming from the magnetic drift term. The first contribution has a simple physical
interpretation, as the rate of energy exchanged between particles and the parallel electric
field (i.e. the volume average of the parallel current multiplied by the parallel electric
field), while the second term describes an analogous process in the perpendicular direction
associated with the drift motion of gyrocentres.

Equation (2.11) is a physically transparent form that makes it clear that the free energy
H is a positive—definite norm for the distribution function g,* i.e.

H>0 and H=0iffg=0, (2.16a,b)

over all of phase space, £ and v. To see this, note that the quantities G and E are both
positive, i.e. G = 0, obviously, and £ > 0 because I < 1. Therefore, if H = 0 then both

3By the same argument, using (2.10), H can be shown to also be a positive—definite norm for the total deviation of
the distribution function §f = g — (e;6¢/T;)Fy from the zeroth-order Maxwellian.
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E = 0and G = 0. The first implies 6¢p = 0 everywhere, while the second implies §F = 0
over all of phase space; §¢p = 0 and 6F = 0 obviously implies g = 0.

We note that positive—definiteness is a desirable property of an energetic measure that
can be useful for setting bounds on the growth rate of fluctuations; if a non-zero fluctuation
(g # 0) has zero measure M, while dM /dt # 0, then the rate M~' dM /dt is unbounded, so
that the problem of optimal modes (i.e. determining the form of g that maximizes growth)
is ill posed. For an example of this, consider M = E. One may find functions g, such that
|6¢| < € for arbitrarily small € > 0, while g. ~ 1 is itself not small. In this case dE/dt ~ €
while E ~ €2 so the rate E~! dE/dt is divergent in the limit € — 0.

Although we mainly consider a plasma with a single kinetic ion species and adiabatic
electrons, the concepts and the formalism carry over to the more general case of a plasma
with an arbitrary number of kinetic species, as shown in Appendix A. An important
limitation, however, is that magnetic fluctuations and collisions are neglected.

2.2. Generalized free energy

The positive—definiteness of H suggests a family of related quadratic energetic measures
that are also positive—definite. In particular it is clear that something of the form

H=H — AE, (2.17)

will be positive—definite, by the same arguments as the previous section, for particular
values of the parameter A. For instance the choice A < 1 allows trivial generalization of
the arguments, but we will see that the value can be extended beyond this.

To find a range of permissible values of A, and to help simplify subsequent derivations,
we will consider a linear transformation on the distribution function, i.e. we define a
new distribution function g in terms of which the energy H may be expressed using the
Euclidean (or L?) norm

H=112I”=@G.3. (2.18)
where we have introduced the inner product
- - g8
(81, 8) = <T,»/ 1—2d3v> . (2.19)
Fy

We will refer to (2.18) as a ‘diagonal’ form of the norm, as it does not involve additional
linear operations on the distribution function, compared with the form given by (2.11). To
find the relationship between g and g, we introduce the ansatz g = g — vloFoe;8¢/T;, and
substitute this into (2.18). By evaluating velocity integrals using quasi-neutrality (2.10) and
(2.13), one can find the free parameter v that yields the form (2.17), that is

1

v=F(l+r—\/(1+r—F0)(1+r—AFO)), (2.20)
0

where we have taken the negative root for convenience. Observe that in order for v to be

real, we must have

AL (1+1)/Th. (2.21)
The parameter A can of course be negative, in which case its magnitude is unbounded.
Noting that Iy generally depends on k, we may also assume the more restrictive A <

(1 4+ 7) to ensure that H remains a nonlinear invariant.
We pause to note that the choice A =0 yields a novel form of the conventional
(Helmholtz) free energy, immediately suggesting what can be considered as the
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phase-space density of free energy, namely the quantity T;|g|>/F, for which there is not
yet an expression available.*
It is useful now to write quasi-neutrality in terms of g

e; A ~ 3
789 == [ @odv, (2.22)

where
B 1
SO+t -Top(d+rt- ALy
Finally, we can show that H is positive—definite. First, positivity follows from (2.18), and
it is obvious from (2.10) that if g = 0 then 6¢p = 0 so that £ and H both vanish, implying
H = 0. On the other hand, if we assume that H = 0, then (2.18) 1mphes that g = 0, and

(2.22) implies that 8¢ = 0, from which we conclude g = 0. In summary, H > O and H = 0
iff g =0.

(2.23)

3. Modes of optimal growth

A key point in introducing the generalization of free energy H is that this quantity
introduces wave—particle effects (parallel resonance and drift resonance) that enter the
electrostatic energy balance equation, (2.14).

We note that, for the choice A = 0, the energy H reduces to the conventional Helmholtz
free energy that we have studied in the previous papers. For this choice the modes of
optimal growth correspond exactly to the modes introduced in § 6 of Part 1, and studied
in fully electromagnetic limit in Plunk & Helander (2022) (Part 2). Because those modes
are included as a limit of our present analysis, we can be assured that the most stringent
bound on growth obtained from the generalized free energy will be at least as good as the
known bound obtained from the Helmholtz free energy.

Note that, as long as the parameter A is independent of k, the quantity H is conserved
by the nonlinearity, i.e. under summation over k. This is because it is a linear combination
of two nonlinear invariants. One simply combines (2.2) and (2.14) to obtain

d -
& ;H =2 ;(D — AK), for A independent of k, 3.1

i.e. the change of this measure is due to the drive terms of electrostatic and free energy,
and is otherwise conserved by the turbulent interactions. It is potentially useful to also
consider A that does depend on k, for the purpose of obtaining bounds on linear growth,
but the nonlinear implications will be less clear in that case.

In direct analogy to how modes of optimal free energy growth were defined, we
introduce a rate A

= (D — AK)/H, (3.2)

to be optimized over the space of ion distribution functions g. We note the bound on
conventional gyrokinetic instability growth rates

v < m;le. 3.3)

Having already found a diagonal form of the generalized free energy, (2.18), we need
not use a variational approach to find the states of extremal A. We simply identify

“The idea for a phase-space density of free energy (i.c. a quantity that can be directly integrated over phase space to
yield the total free energy) was suggested by B. Teaca, private communication.
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the Hermitian linear operators associated with the input of free energy and electrostatic
energy, i.e.

D = (g, Dg), (3.4)
K = (g Kg). (3.5)
To obtain these forms note that, from (2.22), §¢p can be regarded as the result of a linear

operator on g. Then, using (2.22) and (2.3) and (2.15), and some straightforward algebra
(see Appendix B), we obtain explicit forms for the operators. First we have

/l 2 / 2
Dg = I—JOFOna)*/d%’Jf)gr’ [(1> — (v—) } (3.6)
Zl’li Uth Uth

where primes denote evaluation at v’ and vy, = +/2T;/m;. For convenience, the operator K
can be split into its parallel and perpendicular components as K = K + K, for which we

obtain
/ / 2
) () () ()
Uth ﬁvth Uth '

(3.7)

" id . V|
Kig = —w (O)FJy | &v' I8
a8 2niwd( )Fy o/ v Jp8 |:<ﬁvth

and

~ A 0 1 3.0 0y = 3.7 .7 8J6 by
= 5ot -3, (5 [ 0 ve) + [ @voie |
o Joﬁ/d%q’g' . (3.8)
A9l 0

In deriving (3.8), it is important to note that the parallel derivative is taken at fixed
magnetic moment and particle energy, and that the velocity-space volume element d*v
is proportional to B/v; in these variables. More details are given in Appendix A. The
kinetic eigenvalue problem can be stated now as

A= (D - AK)3Z. (3.9)

where solutions, i.e. pairs A, and g,(/, v), realize optimal growth of H. To see this, we
can decompose the distribution function g in terms of the orthogonal eigenmodes of (3.9),
g =), 8 to obtain (choosing ||g,|| = 1)

1 dH Y, e, 4,
20 dt Y lel?

from which it is clear that the rate of energy growth of the system is maximized by setting
the distribution function equal to the mode of largest growth rate, i.e.

(3.10)

1 dH
max — — = max A, = Anpax, (3.11)
¢ 2H dt n

which bounds the normal growth of the system, y;, in accordance with (3.3).
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3.1. Moment form of eigenproblem

The analysis of (3.9) is greatly simplified by adopting a moment form. As found in the
preceding papers, there are natural moments that appear in the energy input terms that can
be identified to reduce the dimensionality of the problem substantially. Upon inspecting
the energy balance equations one finds the following key dimensionless integrals:

Ky = /d3uJ0g/n,-, (3.12)
1)2
Ky = /d% (—2) Jog/n;, (3.13)
Uth
v? vy
Ky = /d% — + — | Jog/ni, (3.14)
<2vt2h Vi,
Ky = /d% (ﬂ) Joz/ms, (3.15)
Uth
K5:/d3v o\ Yo (3.16)
U[h 81

where k| is a density-like moment, «, and x5 are pressure-like, x4 is parallel ion flow while
K5 1S more abstract.

It is easy to recognize these integrals on the right-hand side of (3.6), (3.7) and (3.8), and
straightforward to rewrite those equations in moment form. The dimensional reduction is
achieved by taking moments of the these equations to obtain a coupled set of five fluid
equations. These, which are given in Appendix C, can be combined, leading, after lengthy
algebra, to a relatively simple second-order ordinary differential equation, the main result
of this paper

4A2 2 2 2.2
— + (A0Gy = n0.G)” = Go [(10.)°G> = 280m@.Gs + A'wyGs] | ¢

0 (Gopde ng 0 G62
= AW GB | —— | —=— ——o——)1. 3.17
Y0 [ az( B az)“’ B Ya\'B G.17)

where ¢ = e€;6¢/T; = Ak, is the normalized electrostatic potential. The functions G,, ,,
G,,, and G, . which depend on arc length via b(/) and B(l), are defined in terms of
integrals involving Bessel functions, and are evaluated in Appendix D; see, in particular,
(D3)—(D4) and (D9)—~(D12). The other b-dependent factors (Go—Gs) can be expressed
in terms of G, ,, and are evaluated in terms of more elementary Bessel functions in
Appendix D.1.

In (3.17) we see the eigenvalue A entering quadratically, reflecting the fact that there will
be two real roots, one positive and one negative, owing to Hermiticity and time-reversal
symmetry of the full eigenproblem, (3.9). Note that the terms arising from the parallel
drive of electrostatic energy are placed on the right-hand side. In the following section, we
will consider some simple limits of this equation, and leave its more general solution for a
future publication.

4. Simple limits

In this section we will consider some simple limits applied to (3.17), and draw some
comparison with linear theory of the main instability targeted by limit of this paper, the
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ITG mode (see for instance Plunk et al. 2014). To start, we note that taking A = 0, so that
H becomes the conventional Helmholtz free energy, yields

- (nw,)?
401+ 7 —To)(d+1)
which matches (6.20) of Part 1.

In considering other simplifications, we first should note that the adiabatic electron
approximation already neglects the contribution from a trapped electron population, which
requires either large electron collisionality, or uniform magnetic-field strength as measured
along the field line. Let us assume the latter for simplicity

B
ol
Making this assumption simplifies somewhat (3.17), where all the explicit factors of B

drop out of the right-hand side. A more significant simplification is achieved by assuming
unsheared and uniform magnetic geometry, in particular

(GoG, — GY), (4.1)

0. 4.2)

ab

9% _o. 43
51 4.3)
dou _ (4.4)
al '

In this limit, all of the coefficients of (3.17) are constants, and a simple dispersion relation
is the obtained by taking d¢ /0l = ik p. We find

2
41_12 + (Aw Gs — 10,G1)? — Gy [(0,)° Gy — 2A0mw, Gy + A*w;Gs| = A’kjvg Gy /2,
4.5)
were we have used Gy, = G(/2. As noted in § 2.2, the quantity A is a free parameter, over
which we can optimize A to improve the bounds on the growth rate of fluctuations.

4.1. Slab ITG mode
Setting w,; = 0 leaves only the slab branch of the ITG mode, driven by the temperature
gradient, and involving ion parallel resonance. Equation (4.5) reduces to

447 = GyG, — G* + A [*G?)2 4.6
W—oz— | T A%, 0/ 2, (4.6)

where k| = nw,./(kjvy). Because GoG, — G% > 0, the two contributions on the right-hand
side are both positive but the solution for which A is minimal is actually not obtained for
A = 0, due to the implicit dependence of A on A given by (2.23).

Although all values of the parameter A satisfying (2.21) yield a valid bound on the
growth rate of normal modes (y, < A), the lowest value is the most stringent and serves
as the closest approximation of y;. To obtain this ‘optimal bound’, we can consider the
extrema of A/ (nw,)?, i.e.

d [ GG, — G} + A% °G}/2
da\(+t -y +t—-ALy) )

4.7

This results in a quadratic equation for A that is still rather complicated so we will consider
the limit b — 0; see Appendix D.2 for the relevant limits of G, ,,, etc. Applying the limit
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to (4.6) yields
A? 3+ A%k}
= : (4.8)
(nwy)?*  8t(l+1t—A)
This solution diverges as A approaches 1 4 t; recall that this is the upper limit allowed
by (2.21). It also grows in an unbounded fashion as A — —oo. There is an optimal value
giving minimal | A|, obtained by solving (4.7) in this limit. This solution, denoted as A,y;,,

is
Apmn=14+7 —,/(1—|—r)2—|—3/<f, 4.9)

where the negative root has been selected to be consistent with (2.21). Substituting this
solution into (4.8) gives

2
Apin = 4/22(:?)—1*1” (\/T&cﬁ — 1) : (4.10)

where we define k| = «/(1 + 7); see figure 1. This reaches its maximum value in the
limit i, — 0, and is a decreasing function of |« |, i.e.

3
— 2 (qw)?, forik; — 0,
min —_ 3 B .
Elnw*kllvthL for |i)| > 1.

Physically, the first result implies that, when drive (nw.) is much smaller than the parallel
transit frequency (kjvy), the best bound is equal to that obtained by free energy (A = 0).
In this case, the bound is consistent from expectations of the growth rate of a resonant slab
ITG mode, i.e. y, ~ nw,.

In the opposite limit (x; >> 1), however, when the drive large, i.e. in the so-called
non-resonant or ‘fluid’ limit, we obtain a much lower bound, essentially the geometric
mean of the drive and the parallel transit frequency kjvy,. We note that this bound is not as
low as what is obtained from the non-resonant solution of the dispersion relation (without
a density gradient), i.e. y, ~ nw!3 (kjvy)*? (Plunk et al. 2014), but nevertheless captures
the expected weakening (relative to the resonant result) qualitatively. A plot of the optimal
bound of (4.10) is provided in figure 2. Note that the resonant stabilization at high k; (low
k) is not captured in this case.

It is interesting to observe that this latter limit corresponds to A, — —00, making H
in some sense dominated by the electrostatic component.

4.2. Toroidal ITG mode
Now taking kjvy, to be small, we can neglect the right-hand side of (4.5), leaving

4A2 2 2.2 2
= = Go [(n0.)°Gy — 2A0mw,Gy + A’w;Gs| — (Aw,Gs — nw.Gy)* . 4.12)

To derive the optimal choice of A, we again take the » — 0 limit and obtain from (4.12)

A? 3A% — 8Aky + 6k}
= 5 , (4.13)
(nws)? 16k t(t +1— A)

where we define k;, = nw,/w,. Note the similar qualitative behaviour with A as (4.6),
namely its divergence at the A — 1 + t, and unbounded growth as A — —oo. The key
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FIGURE 1. Bound of the growth rate of the slab ITG mode (blue), obtained from the optimal
growth of the generalized free energy, plotted vs the instability parameter k| = nws/[k)vm
(1 + 7)]. For comparison, the growth rate yy, is obtained by solving the linear dispersion relation
(E1), and the quantity (1 + 7)(yr/ na)*)z is plotted for the case 7 = 1 (dashed black).

03!
02!

01/

1

_—/,
R ‘ L Ra
| 3 4
FIGURE 2. Bound of the growth rate of the toroidal ITG mode, obtained from the optimal
growth of the generalized free energy, plotted vs the instability parameter k; = nws/[wy
(1 + 7)]. For comparison, the growth rate y, is obtained by solving the linear dispersion relation
(E1), and the quantity 7 (1 + r)()/L/na)*)2 is plotted for the case T = 1 (dashed black).

difference here arises in the linear term in the drive parameter «; this is expected from
the theory of the toroidal ITG mode since the sign of the drift frequency (associated with
so-called ‘good’ and ‘bad’ magnetic curvature) is important for the resonance.
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We now find the value of A that minimizes A

Apin = (1+7) (1 —\/2123 — 8ky/3 + 1), (4.14)
where we define the parameter k; = x;/(1 + 7). Substituting this into (4.13) yields

- w)2<8lzd(g(lzd)—1)+3(§(Ed)—1)2+6'?5)
min = (10, 167 (7 + D2 (%) ’

with ¢ = \/ 2ic2 — 8ky/3 + 1. This expression for A, is naturally separated into a factor
that depends only on the instability parameter k,, from which we can derive the asymptotic
behaviour. To show the behaviour of this factor we plot the quantity t(1 + ‘c)Arznm /(nw,)?
in figure 2. The overall behaviour of A, is captured by the following limits:

(4.15)

3V2 + 4o _
nwswg| | ———— |, for ksl > 1,
8t
2
A= ed” for &, — 0. (4.16)

24t(1 + 1)

3(nw,)?
M, for k, — 4/3,

8t(1 + 1)

where we denote 0 = %1 as the sign of «,. At large drive (|| > 1; [nw.| > |wy|(1 + 1))
we recover the expected non-resonant (‘fluid”) behaviour of the toroidal ITG mode with no
density gradient, namely y; ~ ,/nw.w,. Note that this growth rate is much smaller than
the bound found by merely considering the Helmholtz free energy (Helander & Plunk
2022). Although we do not see the complete stabilization (A = 0) at negative values
of k, (opposite sign of w, and nw,) expected from theory, there is a strong asymmetry,
with |A| having its larger values at positive k; and being comparatively much smaller for
negative k.

The value k; = 4/3 (i.e. nw, = 4(1 + 1)w,/3) achieves the maximal value of A, at
fixed nw,, and therefore is evocative of the resonance condition for the toroidal ITG modes
nw, ~ w, (Biglari, Diamond & Rosenbluth 1989). This value of k, is obtained by solving
for A, = 0, explaining why it produces the worst bound, i.e. that given by optimal growth
of Helmholtz free energy.

It is noteworthy that for the limit k; — 0 (w; > nw, /(1 + 7)) our method yields a value
of |A| that is a factor of 1/3 reduced as compared with the resonant case, again at least
qualitatively reproducing the expected stabilization of the toroidal ITG mode in this limit.

5. Conclusion

We have demonstrated that the use of a generalized form of free energy H introduces
some of the physics of wave—particleresonance that is missing in the theory of optimal
mode growth of the Helmholtz free energy (Helander & Plunk 2021, 2022; Plunk &
Helander 2022). The growth rates of optimal modes of the generalized free energy provide
a rigorous upper bound on the growth of conventional gyrokinetic instabilities (‘normal
modes’), which, for appropriate choice of A is less than or equal to the Helmholtz
bound. Moreover, optimal modes of generalized free energy depend on the magnetic-field
geometry to a greater extent than those associated with Helmholtz free energy. The
difference in growth rates can be very large. For instance, in the important case of a
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strongly driven toroidal ITG mode, the Helmholtz bound is larger by a factor of order
nwy/wg > 1.

A single ordinary differential equation has been derived for optimal modes, allowing
general magnetic geometry. We found solutions of this equation in some simple limits
to demonstrate that it indeed recovers, at least qualitatively, some of the physical effects
expected from the theory of linear ITG modes, including sensitivity to the ratio of the
frequencies associated with drive and resonance, and transition of the instability when
this ratio is near one. Density gradient dependence of the ITG mode is absent from both
the electrostatic and free energy input terms, assuming adiabatic electrons, so its effect is
not accounted for by the theory presented here.

The results of this work have possible implications for ‘turbulence optimization’, i.e. the
endeavour to shape the equilibrium magnetic geometry of stellarators for low turbulence.
The general result, (3.17), allows, in principle, for the inclusion of the complete geometric
information that is needed to run gyrokinetic simulations. However, the solution of this
equation should be far simpler and more efficient, due to the reduction of velocity space
to a single moment. Stellarator optimization requires a large number of calculations to
be performed, which so far has severely limited the use of direct gyrokinetic simulations,
even linear ones. The simplifications obtained here, which also include the removal of the
need for time integration, will need to be balanced against numerical costs associated with
eigenvalue problems, and possible costs associated with determining the optimal value of
the parameter A, if the absolute strongest bound is desired.

Our results found for the toroidal branch of the ITG mode hint at a possible
optimization strategy based on optimal modes. Consider fixed plasma conditions, i.e.
a given temperature gradient (nw,) and temperature ratio (t): at high drive (nw,/
(1+ 1) > 4w,/3), minimization of the optimal growth rate |A| is achieved by
minimization of the magnetic drift w, (i.e. magnetic curvature), corresponding to
minimization of the strongly driven(non-resonant) toroidal ITG mode. On the other hand,
at low drive (nw,/(1 + 1) < 4w,/3), the increase of w, is favoured, corresponding to
a weakening of the marginally unstable ITG mode, i.e. an increase of the threshold of
instability. The latter case corresponds to ‘critical gradient’ optimization, an idea which
has recently been developed (Roberg-Clark, Plunk & Xanthopoulos 2022a; Roberg-Clark,
Xanthopoulos & Plunk 2022b).

It is worth mentioning the larger context in which optimal modes are potentially
interesting to study, and applications besides their use to bound or estimate the growth rate
of normal instabilities. Although these modes (g,, A,)) do not arise as late-time-asymptotic
solutions of initial-value gyrokinetic simulations, as normal modes do, they are still
realizable in the sense that a gyrokinetic simulation initialized in one of these states g,
will temporarily exhibit an energy growth rate exactly equal to 2A,. These modes are
thus just as ‘real’ as conventional eigenmodes and may also be observed, to some extent,
in nonlinear simulations, where fluctuations are continually driven away by nonlinear
interactions from the form of normal linear instabilities. They are also potentially useful for
studying systems without any unstable normal modes, i.e. ‘subcritical’ turbulence (indeed
this is the context in which they were originally formulated). Furthermore, since optimal
modes are based on quadratic norms that are nonlinearly conserved by the gyrokinetic
equations, they can be used to bound the instantaneous growth rates observed in fully
nonlinear solutions; this point was made in Parts 1 and 2, but applies equally well here.

More general solutions of the optimal mode equation, and the application to
optimization, will be pursued in future works. Other special limits can also be
explored including the limit of large electron-bounce frequency, appropriate for
studying trapped-electron modes, or adiabatic-ion limits applied to universal instabilities.
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Electromagnetic generalizations are also possible: although it is not clear how to construct
a positive—definite electromagnetic form of the generalized free energy H that is a
nonlinear invariant, it is certainly possible to consider related measures that focus on linear
bounds.
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Appendix A. Several kinetic species

For a plasma with an arbitrary number of particle species, we multiply each gyrokinetic

equation
Dok |y D80k s+ = B (kX K)5Pgur & (A1)
97 || Y da8a,k 2 - K 8ak—FK
eaFaO a
= (at +io] >3¢k, (A2)

—_—% . .
by e8¢, integrate over velocity space, take the real part and the average (- --) over the
flux tube and sum over all species a and wave vectors k. In other words, we apply the

operator
Re Zea</6¢k D d > (A3)

Since the expression
Re(k x k/)%:’wkga,kfk’ = %(k x k) (%:’wkga,kfk’ + %k’%lﬁg;kfk’) (A4)
= 1k x k) (8¢ _ 1801 8ui—i + 8D18P 18 —k+k) (A5)

changes sign under an exchange of k and k’, the nonlinear terms cancel upon summation
over k and k£, and we obtain

8 a, 8 a . eélFll 88_
Re Zea </ 8¢k ( Bak + v”% + 1wga8ak — T 0 %) d3v> =0. (A6)
a,k a
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The quasi-neutrality equation (2.10) can be used to write the first term as

*8gak d naez b

R a | 6 = — —= 18 . A7
e;e/m oy dl;mwu (A7)

We thus arrive at the electrostatic energy balance equation
5% 11— bl 5l) (A8)

dr 2= 21, 0(Dak k
= —Re Z ea/%Z UHM +iwgegax | d*v), (A9)

— ol '

which is the generalization of (2.14) to several species. The right-hand side can be
interpreted as minus the work done by the electric field on the various particle species.
The first term in this expression contains

084 2noB au
/J0av|| Bak g U—Z id / dE/ & ey, (A10)

_pY 1/1 @ /8J°“ a (A11)
=85\ B 0aV||8a.k &V 31 V8ax AV,

which we used in (3.8), with o = v/|v|, E, = m,v*/2 and p, = m,v? /(2B).

Appendix B. Derivation of operators D and

We first write forms of D and K explicit in g, noting that the contribution to D
proportional to the density gradient is zero by use of quasi-neutrality with the adiabatic
electron approximation (the factor nw, o d7;/dys appears in what follows, but never
w, o dn;/dyr alone). The terms proportional to v, involved in the transformation from
g to g, are also zero, due to oddness in v, so expressing energy input in terms of g merely
has the consequence of introducing the overall factor A. The expressions are

il 2
D= <T§ /g(v)g () no, (:;)_2) JoJy d’v d3v’>+c.c., (B1)
i th
A d
K, :—<Ti2—n /~*(v>(v g(lv))JOJ’ d’vd’ ’>+cc (B2)
AT TP ' P dPy
K,=— T,-2— g Wwg()plgd’vd’v') +c.c., (B3)
n;

where we separate K = K + K, and ‘c.c.’ denotes complex conjugate. These can be
re-expressed in terms of linear operators by writing them in the form

D= (Dp = <T,- / d3ng§> | B4)
Fy

Ky = (g K8 = < i/d3v%lc||§>, (B5)
0

Ky = @ Kad) = <n / d3v§icdg>. B6)
Fo
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Identifying D and C, is simply a matter of exchanging labels of dummy variables of
integration (v for v’, etc.). Manipulating the expression for K to reveal K is more

involved. We also need to integrate by parts in / and will need to use the fact

that 8/d1

is performed at fixed phase-space variables E; and u = m;v? /(2B). The velocity-space
volume element contains an important factor of 1/v;, which generally depends on / and

does not itself commute with d/91
27B dEl d,bLl

d3U = 2'JTUJ_ va_U” = E >
—  m;|y

where o denotes the sign of v;.

Appendix C. Moment form of eigenproblem
The three terms of (3.9) can be rewritten in terms of the moments of g (3.12)
il v?
—nw.JoFo ,
2 v
52 ( ,
ol

= 20
[

Then, taking moments of (3.9) yields the following five equations:

Dg =

th
>+“) 2 al
2
Yl

|

d

— K1 — K2
K4 vy 0
- + — = Uodky)

B
-

2
YL

2
vy,

Kag

T
th

2A 0
= inw, (Gik1 — Gokz) — 1Aw, (Gsky — Gokz) — AGovy, (Ks - Ba_l (
2A , . 9
= inw, (Gaky — Giky) — 1Awg (Gaky — Gik3) — AGrvg | k5 — Ba_l <
2A , . 9
= inw, (Gaxy — Gaky) — 1Awg (Gsky — Gik3) — AGsvg, | k5 — Ba_l <

24 / Go
7[(4 = —Avlh (GO,ZKI + T&(/ll(])) .
2A " Gy, 0
7/(5 = —Avth (GO,ZKI + Ta—l(/ll(l)> .

(B7)
(CD
(C2)
(C3)

K4

)
(C4)

K4

)
(CS)

K4

3)
(Co)
(C7)
(C8)

See the next section where the integrals G, ,, etc., are defined and evaluated. Note that the

final two equations can be immediately used to eliminate «, and ks, leaving a
three equations. The second and third equations are used together to find forms

system of
for «, and

k3 in terms of k1, and these forms are substituted into the first equation to obtain the final

form, in terms of «; only, given by (3.17).

Appendix D. Bessel-type integrals
The following definitions, mostly copied from Plunk & Helander (2022), are

needed to

perform the various integrals that appear in the moment equations for our eigenproblem.
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First, we need a general form of Weber’s integral (Iyanaga & Kawada 1980)

Z,(p, a1, az) =/ exp(—pt), (ait)], (axt)t dt
0

1 —al —a; aa;
= —exp I, s (D1)
2p 4p 2p

where I, is the modified Bessel function of order n. The integrals we need to evaluate can
be conveniently found in terms of Z,,. We define

Gin(b) =2 / X7 exp(—x%)I3 (vV2bx ) dx (D2a)
0
G (b) =2 / N K12 exp(—x2)Jo(v2bx )T (v2bx ) dx, (D2b)
0
GP(b) =2 / " exp(— ) B(Vbx,) d, (D2c)
0

where m is assumed to be even. Now we note that these integrals can be evaluated in terms
of Weber’s integral

d m/2 7
GJ_m(b) =2 |:(_d_> IO(P’ V Zb, V Zb) P (D3Cl)
p 1o
d\"?/ d ]
G (b) =2 (—d—) <_ﬁ> Zo(p, A, N2b) : (D3b)
p dp=1 ,ﬁ:m
o d\"*/ d d |
GT,(b) =2 3 ~u )\ Zo(p, A1, A2) . (D30
P ! 2 dp=14=b=v2b
The above relations allow us to evaluate the functions
Gm,n(b) = Gim(b)Gllnv (D4a)
G (b) = G) ()G, (D4b)
G? (b) = GT),())G. (Do)
where
1 e ) 14+ (—1)" l+n
G”n = ﬁ/_ exp(—xﬁ)x” d)C”: Zﬁ FE < 2 ) s (DS)
and I% is the gamma function. Finally, we can evaluate the integrals G,, , and G,, ,. We
define
G, (b)) =2 / X1 exp(— xl)Jo—de, (D6)
0
U > m+1 8‘]0
G, b)) =2 exp(— xL) m de. D7)
0
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Relating x, to the proper gyrokinetic phase-space variable u, that is x, = (uB/T;)!/?,

allows the derivatives to be evaluated

A, 1 9
o V2b1, 2 In(bB),
3l Z ¥V 2L 7 In(bB)

so that we can write

G, (b) = —\/b/2 ( 1n<bB>) G (),
G|, (b) =b/2 (a% ln(bB)) G? (b).

These expressions allow us to evaluate

G,,=G\,Gjn
G = GlmG””

m,n

D.1. Explicit expressions for some Bessel integrals

The b(l)-dependent factors in (3.17) can be written as

Go = G,
G = Gy + Goos
Gy = Guo+2Gyp + Gy,
G; = 3Gy + Gop,
Gy = %G4,0 + %Gz,z + Go,
Gs = £G4,0 + Ga2 + Go,

(D8)

(DY)

(D10)

(D11)
(D12)

(D13)
(D14)
(D15)
(D16)
(D17)
(D18)

which can be evaluated using the identities of the previous section in terms of the familiar

I, (b) of gyrokinetic theory (suppressing its argument for succinctness)

Go = I,
Gy =(3—b)Ih+bI,

G, = 1 ((66> —20b + 15) Iy + 2b ((10 — 4b) I + bI)),
Gy =1 (b — (b—2)1),

Gy = 1 ((36% = 116+ 10) Iy + b (11 = 40) I + b1)) |

Gs =3 (30" — 12b+ 14) I + b (b — 4(b — 3)I7))

where we recall

I,(b) = exp(=D)L, (D).
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For completeness, we evaluate the few remaining factors that enter (3.17)

Iy
Gy, = IR (D26)
b(Iy— T,
Gy = Yoy — 1) v, (D27)
) 2ﬁ
G = L (3bIy+ Q2 —4b)I + bI) (D28)
and using (D11)
Vb (I — )
G,, = —/ In(bB) , (D29)
0,2 / ( ) zﬁ
8 2
”2 =b/2 ( ln(bB)) [3b1y + (2 —4b)I + bI3]/8. (D30)
D.2. Limitb — 0
In the limit » — 0 we obtain
Gy =1, (D31)
G, =3, (D32)
Gy =2, (D33)
Gy =1, (D34)
Gy =3, (D35)
Gs =1, (D36)
and
Goo = 1, (D37)
G =0, (D38)
GH =0 (D39)

Appendix E. Linear dispersion relation

For comparison, the following local linear dispersion relation can be solved numerically
(here, we neglect finite Larmor radius effects J, = 1 and assume zero density gradient)

2 — (3 +x7-3/2)

2 o0 o0
1+r:—/ xdx/ dx exp(—x2 — x%),
ﬁ 0 * - —00 ! |:Q —Kdl(x2+xi/2)—x||icl:| p( I L)

(EL)
where §2 = w/(w.n). The velocity integrals can be evaluated separately for the k; = 0
and w,; = 0 cases in terms of the plasma dispersion function (Kadomtsev & Pogutse 1970;
Biglari et al. 1989).
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