
A P P L I C A T I O N S O P P A R A L L E L P R O C E S S I N G 

TO A S T R O D Y N A M I C S 

S. COFFEY, L. HEALY AND H. NEAL1 

Naval Research Laboratory 
Washington DC, USA 

A b s t r a c t . Parallel processing is being used to improve the catalog of earth orbi­
ting satellites and for problems associated with the catalog. Initial efforts centered 
around using SIMD parallel processors to perform debris conjunction analysis and 
satellite dynamics studies. More recently, the availability of cheap supercompu-
ting processors and parallel processing software such as PVM have enabled the 
reutilization of existing astrodynamics software in distributed parallel processing 
environments. Computations once taking many days with traditional mainframes 
are now being performed in only a few hours. Efforts underway for the US Naval 
Space Command include conjunction prediction, uncorrelated target processing 
and a new space object catalog based on orbit determination and prediction with 
special perturbations methods. 

1 . Background 

A decade ago parallel processing became available commercially from com­
panies like Thinking Machines, MASPAR, INTEL, IBM and others. Since 
then many hardware and software environments have been available. In this 
paper we present an overview of problems to which we have applied paral­
lel processing. The applications include the critical inclination problem in 
celestial mechanics and operational problems encountered by the US Naval 
Space Command (NSC), one of the primary US tracking organizations. The 
techniques we employed have varied: we have used SIMD (Single Instruc­
tion Multiple Data) massively parallel computers, and distributed parallel 
systems built on the PVM (Parallel Virtual Machine) environment. 

XGRC International, Colorado Springs, currently located at Naval Research Laboratory 

Celestial Mechanics and Dynamical Astronomy 66: 61-70,1997. 
©1997 Kluwer Academic Publishers. Printed in the Netherlands. 

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376


62 S. COFFEY ET AL. 

There are several ways tha t parallel processing can benefit the user: 

— improve turnaround time, 
— more efficient utilization of hardware, 
— reuse of existing software in a new computing environment. 

In the applications we have built, many of these benefits have been realized. 

2. T h e Critical Incl inat ion P r o b l e m 

The Naval Research Laboratory (NRL) obtained a parallel processing com­
puter, the Connection Machine 2 (CM-2) in 1987. Our first effort with this 
computer was to s tudy the critical inclination problem for the theory of an 
artificial satellite. After averaging, the phase space for this problem is a 2 
dimensional sphere which can be visualized graphically. We set out to deve­
lop a method for using the new parallel processor in our investigations. We 
started with a serial program called CCCP (Creative Color Contour Pro­
gram) developed at NIST by Jonathan Aronson working in collaboration 
with Dr. Andre Deprit. This program, written for a LISP Machine, allowed 
one to display contours of a Hamiltonian by assigning colors to the Hamil-
tonian values. This eliminated the need for tedious numerical integrations, 
and produced a more complete picture than previously possible. 

The Hamiltonian for the artificial satellite problem was constructed by 
averaging the short period terms when the perturbations were restricted to 
the zonal harmonics. We give here the Hamiltonian through J 4 , 

w = (f)a(f)v(f»a-i) 

+ 7 ? 4 ( _ i s 4 + i s 2 _ i ) _ 7 ? 3 ( i i s 4 _ | l s 2 + ii)) 

+ | (^2 ( f * 2 -1) + f(f)4(^(^2 - f|) 

The variables in the Hamiltonian are given by 

& = t]escosg, f2 = Vising, & = rj2 - - ( 1 + H2/L2). 

In these coordinates, 

si+e2+e3 = \(i-H2/L2)\ a ) 

The remainder of the variables are e, the eccentricity, H the angular momen­
tum, L the conjugate to the mean anomaly, r\ — y/l - e2, and s = sin(7). 
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The Hamiltonian has one degree of freedom after averaging, with two in­
tegrals, H and L. Thus, interesting information was to be had by studying 
the evolution of the phase space under the control of the integrals. 

Using CCCP as a guide, we wrote a new program for the CM-2, alt­
hough with new algorithms to enhance the details of the phase space. Con­
ceptually, the idea is to assign different processors, from a pool of 64K 
processors, to the coordinates of a grid placed on the projection of the 
phase space onto a plane, Figure 1. The parallel processor then computes 
simultaneously the Hamiltonian for all points in the grid. The Hamiltonian 
values are sorted and assigned colors which are used to paint the phase 
space. The initial idea was to construct a rectangular grid on the projec­
tion of the phase space. Thus, we first select an orientation then apply the 
coloring algorithms to paint the resulting projection. The full details behind 
this technique are provided in Healy and Deprit (1991). This technique pro­
vided a lot of information quickly tha t allowed us to gain an appreciation 
of the changing phase space. From these observations we drew conclusions 
that helped direct subsequent analytic investigations. The results of the 
research can be found in Coffey et al. (1994). 

Phase Space Projection Range of H Colors Colored Phase Space 

Figure 1. Coloring a Phase Space. 

Since the phase space is a sphere, it is important to see the image from 
different orientations. However, the CM-2 is not a good graphics engine. 
Using an icosahedral (nearly uniform) grid for the sphere (Baumgardner 
and Frederickson, 1985) we can compute the Hamiltonian on the sphere 
rather than on the projection of the sphere. This enables us to bring back 
the true 3 dimensional phase space for display on our Silicon Graphics 
workstations. This provides better visualization of the three dimensional 
images. We frequently use 40962 vertices for the true 3-D images. 

A SIMD computer, like the CM-2, was a good choice for this problem. 
Here we were building a new computer program and were free to select the 
hardware best suited to the problem. For many subsequent problems we did 
not have this luxury in tha t we often have to reuse existing software, which 
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carries with it the need to conform to certain hardware. SIMD stands for 
Single Instruction Multiple Data , which means tha t a t each execution cycle 
every processor executes the same instruction. For the phase space problem 
we needed, at each grid point, to evaluate the Hamiltonian. The algebra 
is the same regardless of the coordinate. Only the coordinates which are 
the da ta are different. This program could therefore be written with huge 
internal arrays to hold the Hamiltonian values. Each array element would be 
automatically mapped to a processor by the Connection Machine system. 
This computer system provides special hardware for efficiently broadcasting 
instructions to the processors and returning values to the control processor 
which is the front end computer. 

3. Satel l i te Coll is ion Pred ic t ion 

Another problem tha t we applied our CM-2 computer to was COMBO, 
the Calculation of Miss Distance Between Objects in space. We wanted to 
determine when objects in space come close to each other. The Air Force 
and Naval Space Commands have had for a number of years, programs 
for computing the distances between a single object and the set of known 
objects in the space object catalog. We call this the one-to-all collision 
problem. We wanted to generalize this to determine when any two objects 
come close together, an all-to-all comparison of positions. This is useful for 
determining the probability of collisions in space which might lead to chain 
reactions of fragmentations of space objects. 

Although we had access to the Naval Space Command's (NSC) COMBO 
software, we elected to build from scratch, a program we call CM-COMBO. 
The hardware of choice was again the Connection Machine. At first we 
used the CM-2, but, later we converted to the Connection Machine 5E 
(CM-5). This computer runs similar to the CM-2, but is quite different in 
hardware. Its processors are 64 bit versions of the Vector Sparc Chip. There 
are fewer of them, 256 processors in our computer, with 16K possible. The 
technique on this computer is to allow each processor to act like a large set 
of virtual processors. Tha t is, each processor cycles through arrays much 
like a serial computer does with a do-loop. This is transparent to the user, 
the programming being almost identical to that on the CM-2. 

The concept behind CM-COMBO was to assign individual processors 
to the objects in space. Each processor s tar ts with the initial conditions, 
an element set, for its object. It applies a propagator to the elements to 
compute the position for all objects, at the next time step. We generally use 
the propagator P P T 2 , which is what NSC uses to construct the elements 
for the Navy's catalog. P P T 2 is based on the analytic theory of Brouwer 
(1959). Since the propagator is analytic the same instruction set is used to 
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Figure 2. Conjunctions of Debris for catalog of 3 June, 1996. Catalog size of 8919 
objects. Conjunction distance of 5 km. 

compute the position of every object. Thus, again we see the benefit of the 
SIMD computer. A fairly complex method for determining close approaches 
was developed, the details are available in (Healy, 1995). Although COMBO 
prints a report on the conjunctions, the most flashy output is a picture like 
that in Figure 2. This particular figure shows the instantaneous locations 
of the objects in the catalog for December, 1995. The + marks indicate two 
or more objects less than 5 km apart . 

NSC runs COMBO remotely from an account on the CM-5. The ele­
ment sets are automatically deposited in the account. NSC has used the 
program to confirm conjunctions with the shuttle which they obtain with 
their own software. They also run the program to obtain reports of coming 
conjunctions that might be photographed by ground based telescopes. One 
such event of TIROS 10 and NOAA 10 was photographed on May 21, 1993. 
COMBO computed a miss distance of 2.1 km. This is the first significant 
use of external computing resources for operations at NSC. 

A SIMD computer is a natural choice for this problem because of the use 
of an analytic propagator. However, if for increased accuracy, a numerical 
integrator were substituted then the efficiency of the SIMD computer would 
suffer because the huge variation in the orbits represented in the catalog 
would require substantially different step sizes for the integrations. Thus 
the computer would run at the speed of the slowest integration. 

SIMD computers are dropping in popularity and likely will be less of a 
factor for parallel processing in the future. As a result Dr. Healy recently 
ported most of COMBO to the PVM (Geist et al., 1994) environment. PVM 
allows a group of heterogeneous computers to operate as a parallel compu­
ter. Unlike the SIMD method of broadcasting instructions, information in 
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a PVM environment is passed by a message passing system. PVM proved 
an adequate system for this version of COMBO. 

4. Uncorre la ted Target Process ing 

US Space Command, in tracking space objects, frequently obtains obser­
vations tha t cannot readily be correlated to a known object. Often the 
observations come from an unknown object or from an object previously 
cataloged but later lost. Most often these observations come from fragments 
produced by explosions of rocket bodies and satellites. These observations, 
called uncorrelated targets (UCTs), present a serious problem for US Space 
Command. The Naval Space Command radar fence that stretches across the 
southwest United States is the largest single detector of UCTs. The fence 
receives radar returns for almost any object above 30 degrees of inclination. 

NSC developed a program called SAD (Search and Determine) to corre­
late UCTs which are kept for 60 days. The essence of the algorithm, when 
it is used for UCT processing, is to form every possible pair of observati­
ons from the UCT file and then determine what orbits could contain these 
two observations. For UCT processing the observation set is usually made 
up of earth-centered X-Y-Z observations. These observations are created 
by triangulating direction cosines from the NSC fence to create one X-Y-Z 
observation per orbital pass. 

SAD is also used for processing fragmentation events. Here, the blast 
point of the fragmentation is used as the first observation in every pair. 
In this case the number of pairs processed decreases dramatically with a 
corresponding decrease in computer time. 

NSC has never been able, with their 1970-vintage Cyber computers, to 
process more than 5 days of observations, mainly because the computer time 
would take several days. Moreover, recent events at NSC eliminated any 
possibility of running the program. We undertook to rewrite this program 
for parallel processing (Coffey et al., 1996) with three objectives: 

- reestablish the use of the SAD for UCTs, 
- provide rapid turnaround performance, 
- enable the processing of the full 60 day sets of observations. 

This is an instance where we reused most of the existing program. We 
rewrote the program to run on top of PVM. PVM links distributed proces­
sors together in a parallel processing environment. Each processor receives 
data , completes an assigned task and returns results to one or more com­
puters. There are a number of nested loops in the original SAD program, 
start ing with a loop through the pairs of objects called starter pairs, a 
loop over the direction of the orbits constructed and a loop on the possi­
ble solutions to Lambert 's problem. Inside the starter pair loop there is a 
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refinement step to include associated observations. We parallelized on the 
outermost s tarter pair loop. A master/slave design was implemented. The 
master program loops over all possible choices for the first object in the 
starter pair. This object is called a starter point. Each starter point is sent 
to one of the slave processors along with the complete observation set. The 
slave combines the starter point with all choices for the second object in 
the starter pair and begins forming orbits. This code was unchanged from 
the serial program. The master s tar ts up the slave programs, one for each 
node in our "virtual machine." The virtual machine is the collection of 
processors on which the program executes. The master can auto-detect the 
number of nodes available eliminating the need to specify how many nodes 
to use. Because the master program does so little work, a slave program is 
also initiated on the same computer. 

The code internal to the starter pair loop was formed as a standalone 
program for the slave processors. The slave processors return the orbits 
found, providing a distinction for orbits presenting a high confidence of 
being a real object. These orbits are called superior orbits. The greatest 
dilemma in designing the parallel version of SAD was how to handle supe­
rior orbits. In the serial version of SAD, the discovery of a superior orbit 
affects the processing of all succeeding starter points because the observa­
tions linked to the superior orbit are removed from the observation set. In 
the parallel program, several starter points are processed concurrently, so 
when a superior orbit corresponding to a particular starter point is found in 
one slave program some of the observations supporting tha t superior orbit 
may have been already processed as starter points by other processors. In 
order to mimic the serial version of SAD exactly, all starter points after the 
one for which a superior orbit was found would have to be reprocessed with 
the adjusted observations set. This would require greater complexity in the 
code to take care of the necessary bookkeeping, and the re-processing could 
severely diminish the efficiency of the parallel code, especially when a large 
number of nodes are present in our virtual machine. 

We have some leeway in handling superior orbits. However, we still 
wish to remove the observations associated with superior orbits from the 
observation set. Leaving them in can result in extra orbits in the output . 
Our solution is to update the observation set on the master and all the 
slaves as soon as possible after it changes. The slave program in which the 
superior orbit is found returns the orbit and its associated observations 
which are removed immediately from the observation set. The updated 
observation set is then broadcast to all the slave nodes. The slave nodes 
will not receive this set, however, until they finish processing the starter 
point on which they are working. So, the change on all the slaves except 
the one with the superior orbit will be effective with the next starter point 
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•a § 

Figure 3. Increase in the Space Object Catalog. 

they process. The starter points that are being processed or have already 
been processed are not re-evaluated with the updated observation set. 

One implication of updating the observation set in this manner is that 
if Parallel SAD is run multiple times with the same observation set, the 
number of orbits and their solutions will vary from run to run. This occurs 
because the starter points tha t have been processed when the observation 
set is updated will be different on each run, due to differences in the opera­
ting conditions on the nodes in the virtual machine. This behavior makes it 
very difficult to test and debug the software, but it is acceptable from the 
analyst 's point of view: any version of the output set will meet his needs. 
The program usually produces more orbits than the analyst can use. But 
it generally does not miss real orbits. 

Parallel SAD was installed at the Maui High Performance Computing 
Center's IBM SP2 parallel computer located in Hawaii, where it became 
operational in May, 1995. Since then it has been used on average every 
two weeks by the operations group at NSC. Programs are submitted to 
the SP2 through batch queues, the largest allowing for 128 processors. The 
turnaround for a batched job can be as much as 24 hours. However, tha t is 
substantially less than it would take on a single workstation. The normal 
run time for 60 days of da ta is two to four hours on 128 processors. The 
programming time was approximately 3 man months. This is the second 
time tha t NSC has made significant use of external resources for operations. 

Recently we installed the program at NSC on 14 little used workstations 
from their Finance Department . The installation took a day for PVM and 
Parallel SAD and 3 days to check out the program. However, interestingly, 
previous to installation it took 30 days to obtain approval to install the 
system. The normal execution takes about 16 hours on these computers. 

On 3 June 1996 object 23106, a Pegasus rocket body launched in 1994, 
exploded in space. This has resulted in 539 fragments being cataloged, 

i | i | i | r 
1 Jan 1 Mar 1 May 
1996 1996 1996 
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most of which will stay in orbit for hundreds of years. Parallel SAD played 
a significant role in cataloging these objects. As can been seen in Figure 3 
the catalog now contains over 9200 objects. We can at t r ibute significant 
credit for the growth in the catalog to the use of Parallel SAD. 

From our experience with Parallel SAD, we draw the following conclu­
sions about parallel processing. 

- Many existing programs can be parallelized at little cost, 
- Dedicated computers are not necessary for parallel processing, 
- Distributed Parallel Processing is mature enough for operational use, 
- Networking can provide external parallel processing resources for ope­

rational use, 
- Parallel processing provides a means to run jobs tha t would be prohi­

bitively long on a single serial machine. 

5. Catalog M a i n t e n a n c e w i t h Special Per turbat ions 

Since the beginning of the Space Age, US Space Command has used ana­
lytic propagators to maintain their catalog. Recently we undertook a task 
to develop a catalog using special perturbations, tha t is, with a numerical 
integrator. The reason is tha t numerical integrators can provide more ac­
curacy through the use of better force models. Whether the radar da ta is 
sufficient to support the better accuracy needs to be determined. 

Since this will require substantial computer time, we again are using 
parallel processing. Again we seek to adapt an existing program to run on 
top of PVM. The integrator itself is a variation of a Gauss-Jackson 8th 
order integrator already in use by US Space Command. 

The concept here is fairly straight forward. The parallel system is writ­
ten as a master/slave arrangement. The master computer organizes the 
I /O, starts up the slave nodes and sends them the initial s tate vector. The 
slave then integrates, differentially corrects the orbit s tate and sends it back 
to the master for cataloging. 

This task illustrates the most primitive form of parallel processing. 
There is no communication between the slave processors, only between the 
master and the slaves, and then only for da ta transfer. The slaves are free to 
update their s tate vector in their own time. Once they complete one satel­
lite, they return their s tate vector and receive a new one. Synchronization 
is quite simple since the master controls everything. 

6. Conclus ions 

One method of parallel processing we have not found useful is what is 
referred to as control decomposition where dissimilar parts of a program 
are sent to different processors for execution. In this form of parallelization 
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great care must be exercised to maintain a high level of synchronization 
and utilization of the slave processors. We have have not found this type 
of parallelization useful for our applications. 

This should not be confused with the method used on SAD where a core 
module was extracted and duplicated for the slave computers. The slaves 
performed a large task to completion on each da t a set from the master. 

For each of our applications, the da ta for the slave nodes has an identical 
structure and the programs on the slave nodes is always the same. In our 
SIMD application the synchronization was at the instruction level with 
each processor receiving a copy of an instruction to execute on the data . 
In the PVM applications the synchronization was more coarse, being at 
the program level. Here each processor received a complete yet identical 
program to execute on da ta possessing an identical structure. Thus, there 
is a great deal of similarity in our applications whether SIMD or distributed 
parallel processing under PVM. For the PVM applications the flexibility 
of processors completing tasks at different times produces better efficiency 
for problems that cannot be precisely synchronized. 

The environment, PVM, is available for most computers. As indicated, 
we have made extensive use of it and have found it to be very robust. PVM 
has spawned a standardized language called MPI which is now available. 
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