
A P P L I C A T I O N S O P P A R A L L E L P R O C E S S I N G

TO A S T R O D Y N A M I C S

S. COFFEY, L. HEALY AND H. NEAL1

Naval Research Laboratory
Washington DC, USA

A b s t r a c t . Parallel processing is being used to improve the catalog of earth orbi­
ting satellites and for problems associated with the catalog. Initial efforts centered
around using SIMD parallel processors to perform debris conjunction analysis and
satellite dynamics studies. More recently, the availability of cheap supercompu-
ting processors and parallel processing software such as PVM have enabled the
reutilization of existing astrodynamics software in distributed parallel processing
environments. Computations once taking many days with traditional mainframes
are now being performed in only a few hours. Efforts underway for the US Naval
Space Command include conjunction prediction, uncorrelated target processing
and a new space object catalog based on orbit determination and prediction with
special perturbations methods.

1 . Background

A decade ago parallel processing became available commercially from com­
panies like Thinking Machines, MASPAR, INTEL, IBM and others. Since
then many hardware and software environments have been available. In this
paper we present an overview of problems to which we have applied paral­
lel processing. The applications include the critical inclination problem in
celestial mechanics and operational problems encountered by the US Naval
Space Command (NSC), one of the primary US tracking organizations. The
techniques we employed have varied: we have used SIMD (Single Instruc­
tion Multiple Data) massively parallel computers, and distributed parallel
systems built on the PVM (Parallel Virtual Machine) environment.

XGRC International, Colorado Springs, currently located at Naval Research Laboratory

Celestial Mechanics and Dynamical Astronomy 66: 61-70,1997.
©1997 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

62 S. COFFEY ET AL.

There are several ways tha t parallel processing can benefit the user:

— improve turnaround time,
— more efficient utilization of hardware,
— reuse of existing software in a new computing environment.

In the applications we have built, many of these benefits have been realized.

2. T h e Critical Incl inat ion P r o b l e m

The Naval Research Laboratory (NRL) obtained a parallel processing com­
puter, the Connection Machine 2 (CM-2) in 1987. Our first effort with this
computer was to s tudy the critical inclination problem for the theory of an
artificial satellite. After averaging, the phase space for this problem is a 2
dimensional sphere which can be visualized graphically. We set out to deve­
lop a method for using the new parallel processor in our investigations. We
started with a serial program called CCCP (Creative Color Contour Pro­
gram) developed at NIST by Jonathan Aronson working in collaboration
with Dr. Andre Deprit. This program, written for a LISP Machine, allowed
one to display contours of a Hamiltonian by assigning colors to the Hamil-
tonian values. This eliminated the need for tedious numerical integrations,
and produced a more complete picture than previously possible.

The Hamiltonian for the artificial satellite problem was constructed by
averaging the short period terms when the perturbations were restricted to
the zonal harmonics. We give here the Hamiltonian through J 4 ,

w = (f)a(f)v(f»a-i)

+ 7 ? 4 (_ i s 4 + i s 2 _ i) _ 7 ? 3 (i i s 4 _ | l s 2 + ii))

+ | (^2 (f * 2 -1) + f(f)4(^(^2 - f|)

The variables in the Hamiltonian are given by

& = t]escosg, f2 = Vising, & = rj2 - - (1 + H2/L2).

In these coordinates,

si+e2+e3 = \(i-H2/L2)\ a)

The remainder of the variables are e, the eccentricity, H the angular momen­
tum, L the conjugate to the mean anomaly, r\ — y/l - e2, and s = sin(7).

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

APPLICATIONS OF PARALLEL PROCESSING 63

The Hamiltonian has one degree of freedom after averaging, with two in­
tegrals, H and L. Thus, interesting information was to be had by studying
the evolution of the phase space under the control of the integrals.

Using CCCP as a guide, we wrote a new program for the CM-2, alt­
hough with new algorithms to enhance the details of the phase space. Con­
ceptually, the idea is to assign different processors, from a pool of 64K
processors, to the coordinates of a grid placed on the projection of the
phase space onto a plane, Figure 1. The parallel processor then computes
simultaneously the Hamiltonian for all points in the grid. The Hamiltonian
values are sorted and assigned colors which are used to paint the phase
space. The initial idea was to construct a rectangular grid on the projec­
tion of the phase space. Thus, we first select an orientation then apply the
coloring algorithms to paint the resulting projection. The full details behind
this technique are provided in Healy and Deprit (1991). This technique pro­
vided a lot of information quickly tha t allowed us to gain an appreciation
of the changing phase space. From these observations we drew conclusions
that helped direct subsequent analytic investigations. The results of the
research can be found in Coffey et al. (1994).

Phase Space Projection Range of H Colors Colored Phase Space

Figure 1. Coloring a Phase Space.

Since the phase space is a sphere, it is important to see the image from
different orientations. However, the CM-2 is not a good graphics engine.
Using an icosahedral (nearly uniform) grid for the sphere (Baumgardner
and Frederickson, 1985) we can compute the Hamiltonian on the sphere
rather than on the projection of the sphere. This enables us to bring back
the true 3 dimensional phase space for display on our Silicon Graphics
workstations. This provides better visualization of the three dimensional
images. We frequently use 40962 vertices for the true 3-D images.

A SIMD computer, like the CM-2, was a good choice for this problem.
Here we were building a new computer program and were free to select the
hardware best suited to the problem. For many subsequent problems we did
not have this luxury in tha t we often have to reuse existing software, which

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

64 S. COFFEY ET AL.

carries with it the need to conform to certain hardware. SIMD stands for
Single Instruction Multiple Data , which means tha t a t each execution cycle
every processor executes the same instruction. For the phase space problem
we needed, at each grid point, to evaluate the Hamiltonian. The algebra
is the same regardless of the coordinate. Only the coordinates which are
the da ta are different. This program could therefore be written with huge
internal arrays to hold the Hamiltonian values. Each array element would be
automatically mapped to a processor by the Connection Machine system.
This computer system provides special hardware for efficiently broadcasting
instructions to the processors and returning values to the control processor
which is the front end computer.

3. Satel l i te Coll is ion Pred ic t ion

Another problem tha t we applied our CM-2 computer to was COMBO,
the Calculation of Miss Distance Between Objects in space. We wanted to
determine when objects in space come close to each other. The Air Force
and Naval Space Commands have had for a number of years, programs
for computing the distances between a single object and the set of known
objects in the space object catalog. We call this the one-to-all collision
problem. We wanted to generalize this to determine when any two objects
come close together, an all-to-all comparison of positions. This is useful for
determining the probability of collisions in space which might lead to chain
reactions of fragmentations of space objects.

Although we had access to the Naval Space Command's (NSC) COMBO
software, we elected to build from scratch, a program we call CM-COMBO.
The hardware of choice was again the Connection Machine. At first we
used the CM-2, but, later we converted to the Connection Machine 5E
(CM-5). This computer runs similar to the CM-2, but is quite different in
hardware. Its processors are 64 bit versions of the Vector Sparc Chip. There
are fewer of them, 256 processors in our computer, with 16K possible. The
technique on this computer is to allow each processor to act like a large set
of virtual processors. Tha t is, each processor cycles through arrays much
like a serial computer does with a do-loop. This is transparent to the user,
the programming being almost identical to that on the CM-2.

The concept behind CM-COMBO was to assign individual processors
to the objects in space. Each processor s tar ts with the initial conditions,
an element set, for its object. It applies a propagator to the elements to
compute the position for all objects, at the next time step. We generally use
the propagator P P T 2 , which is what NSC uses to construct the elements
for the Navy's catalog. P P T 2 is based on the analytic theory of Brouwer
(1959). Since the propagator is analytic the same instruction set is used to

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

APPLICATIONS OF PARALLEL PROCESSING 65

Figure 2. Conjunctions of Debris for catalog of 3 June, 1996. Catalog size of 8919
objects. Conjunction distance of 5 km.

compute the position of every object. Thus, again we see the benefit of the
SIMD computer. A fairly complex method for determining close approaches
was developed, the details are available in (Healy, 1995). Although COMBO
prints a report on the conjunctions, the most flashy output is a picture like
that in Figure 2. This particular figure shows the instantaneous locations
of the objects in the catalog for December, 1995. The + marks indicate two
or more objects less than 5 km apart .

NSC runs COMBO remotely from an account on the CM-5. The ele­
ment sets are automatically deposited in the account. NSC has used the
program to confirm conjunctions with the shuttle which they obtain with
their own software. They also run the program to obtain reports of coming
conjunctions that might be photographed by ground based telescopes. One
such event of TIROS 10 and NOAA 10 was photographed on May 21, 1993.
COMBO computed a miss distance of 2.1 km. This is the first significant
use of external computing resources for operations at NSC.

A SIMD computer is a natural choice for this problem because of the use
of an analytic propagator. However, if for increased accuracy, a numerical
integrator were substituted then the efficiency of the SIMD computer would
suffer because the huge variation in the orbits represented in the catalog
would require substantially different step sizes for the integrations. Thus
the computer would run at the speed of the slowest integration.

SIMD computers are dropping in popularity and likely will be less of a
factor for parallel processing in the future. As a result Dr. Healy recently
ported most of COMBO to the PVM (Geist et al., 1994) environment. PVM
allows a group of heterogeneous computers to operate as a parallel compu­
ter. Unlike the SIMD method of broadcasting instructions, information in

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

66 S. COFFEY ET AL.

a PVM environment is passed by a message passing system. PVM proved
an adequate system for this version of COMBO.

4. Uncorre la ted Target Process ing

US Space Command, in tracking space objects, frequently obtains obser­
vations tha t cannot readily be correlated to a known object. Often the
observations come from an unknown object or from an object previously
cataloged but later lost. Most often these observations come from fragments
produced by explosions of rocket bodies and satellites. These observations,
called uncorrelated targets (UCTs), present a serious problem for US Space
Command. The Naval Space Command radar fence that stretches across the
southwest United States is the largest single detector of UCTs. The fence
receives radar returns for almost any object above 30 degrees of inclination.

NSC developed a program called SAD (Search and Determine) to corre­
late UCTs which are kept for 60 days. The essence of the algorithm, when
it is used for UCT processing, is to form every possible pair of observati­
ons from the UCT file and then determine what orbits could contain these
two observations. For UCT processing the observation set is usually made
up of earth-centered X-Y-Z observations. These observations are created
by triangulating direction cosines from the NSC fence to create one X-Y-Z
observation per orbital pass.

SAD is also used for processing fragmentation events. Here, the blast
point of the fragmentation is used as the first observation in every pair.
In this case the number of pairs processed decreases dramatically with a
corresponding decrease in computer time.

NSC has never been able, with their 1970-vintage Cyber computers, to
process more than 5 days of observations, mainly because the computer time
would take several days. Moreover, recent events at NSC eliminated any
possibility of running the program. We undertook to rewrite this program
for parallel processing (Coffey et al., 1996) with three objectives:

- reestablish the use of the SAD for UCTs,
- provide rapid turnaround performance,
- enable the processing of the full 60 day sets of observations.

This is an instance where we reused most of the existing program. We
rewrote the program to run on top of PVM. PVM links distributed proces­
sors together in a parallel processing environment. Each processor receives
data , completes an assigned task and returns results to one or more com­
puters. There are a number of nested loops in the original SAD program,
start ing with a loop through the pairs of objects called starter pairs, a
loop over the direction of the orbits constructed and a loop on the possi­
ble solutions to Lambert 's problem. Inside the starter pair loop there is a

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

APPLICATIONS OF PARALLEL PROCESSING 67

refinement step to include associated observations. We parallelized on the
outermost s tarter pair loop. A master/slave design was implemented. The
master program loops over all possible choices for the first object in the
starter pair. This object is called a starter point. Each starter point is sent
to one of the slave processors along with the complete observation set. The
slave combines the starter point with all choices for the second object in
the starter pair and begins forming orbits. This code was unchanged from
the serial program. The master s tar ts up the slave programs, one for each
node in our "virtual machine." The virtual machine is the collection of
processors on which the program executes. The master can auto-detect the
number of nodes available eliminating the need to specify how many nodes
to use. Because the master program does so little work, a slave program is
also initiated on the same computer.

The code internal to the starter pair loop was formed as a standalone
program for the slave processors. The slave processors return the orbits
found, providing a distinction for orbits presenting a high confidence of
being a real object. These orbits are called superior orbits. The greatest
dilemma in designing the parallel version of SAD was how to handle supe­
rior orbits. In the serial version of SAD, the discovery of a superior orbit
affects the processing of all succeeding starter points because the observa­
tions linked to the superior orbit are removed from the observation set. In
the parallel program, several starter points are processed concurrently, so
when a superior orbit corresponding to a particular starter point is found in
one slave program some of the observations supporting tha t superior orbit
may have been already processed as starter points by other processors. In
order to mimic the serial version of SAD exactly, all starter points after the
one for which a superior orbit was found would have to be reprocessed with
the adjusted observations set. This would require greater complexity in the
code to take care of the necessary bookkeeping, and the re-processing could
severely diminish the efficiency of the parallel code, especially when a large
number of nodes are present in our virtual machine.

We have some leeway in handling superior orbits. However, we still
wish to remove the observations associated with superior orbits from the
observation set. Leaving them in can result in extra orbits in the output .
Our solution is to update the observation set on the master and all the
slaves as soon as possible after it changes. The slave program in which the
superior orbit is found returns the orbit and its associated observations
which are removed immediately from the observation set. The updated
observation set is then broadcast to all the slave nodes. The slave nodes
will not receive this set, however, until they finish processing the starter
point on which they are working. So, the change on all the slaves except
the one with the superior orbit will be effective with the next starter point

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

68 S. COFFEY ET AL.

•a §

Figure 3. Increase in the Space Object Catalog.

they process. The starter points that are being processed or have already
been processed are not re-evaluated with the updated observation set.

One implication of updating the observation set in this manner is that
if Parallel SAD is run multiple times with the same observation set, the
number of orbits and their solutions will vary from run to run. This occurs
because the starter points tha t have been processed when the observation
set is updated will be different on each run, due to differences in the opera­
ting conditions on the nodes in the virtual machine. This behavior makes it
very difficult to test and debug the software, but it is acceptable from the
analyst 's point of view: any version of the output set will meet his needs.
The program usually produces more orbits than the analyst can use. But
it generally does not miss real orbits.

Parallel SAD was installed at the Maui High Performance Computing
Center's IBM SP2 parallel computer located in Hawaii, where it became
operational in May, 1995. Since then it has been used on average every
two weeks by the operations group at NSC. Programs are submitted to
the SP2 through batch queues, the largest allowing for 128 processors. The
turnaround for a batched job can be as much as 24 hours. However, tha t is
substantially less than it would take on a single workstation. The normal
run time for 60 days of da ta is two to four hours on 128 processors. The
programming time was approximately 3 man months. This is the second
time tha t NSC has made significant use of external resources for operations.

Recently we installed the program at NSC on 14 little used workstations
from their Finance Department . The installation took a day for PVM and
Parallel SAD and 3 days to check out the program. However, interestingly,
previous to installation it took 30 days to obtain approval to install the
system. The normal execution takes about 16 hours on these computers.

On 3 June 1996 object 23106, a Pegasus rocket body launched in 1994,
exploded in space. This has resulted in 539 fragments being cataloged,

i | i | i | r
1 Jan 1 Mar 1 May
1996 1996 1996

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

APPLICATIONS OF PARALLEL PROCESSING 69

most of which will stay in orbit for hundreds of years. Parallel SAD played
a significant role in cataloging these objects. As can been seen in Figure 3
the catalog now contains over 9200 objects. We can at t r ibute significant
credit for the growth in the catalog to the use of Parallel SAD.

From our experience with Parallel SAD, we draw the following conclu­
sions about parallel processing.

- Many existing programs can be parallelized at little cost,
- Dedicated computers are not necessary for parallel processing,
- Distributed Parallel Processing is mature enough for operational use,
- Networking can provide external parallel processing resources for ope­

rational use,
- Parallel processing provides a means to run jobs tha t would be prohi­

bitively long on a single serial machine.

5. Catalog M a i n t e n a n c e w i t h Special Per turbat ions

Since the beginning of the Space Age, US Space Command has used ana­
lytic propagators to maintain their catalog. Recently we undertook a task
to develop a catalog using special perturbations, tha t is, with a numerical
integrator. The reason is tha t numerical integrators can provide more ac­
curacy through the use of better force models. Whether the radar da ta is
sufficient to support the better accuracy needs to be determined.

Since this will require substantial computer time, we again are using
parallel processing. Again we seek to adapt an existing program to run on
top of PVM. The integrator itself is a variation of a Gauss-Jackson 8th
order integrator already in use by US Space Command.

The concept here is fairly straight forward. The parallel system is writ­
ten as a master/slave arrangement. The master computer organizes the
I /O, starts up the slave nodes and sends them the initial s tate vector. The
slave then integrates, differentially corrects the orbit s tate and sends it back
to the master for cataloging.

This task illustrates the most primitive form of parallel processing.
There is no communication between the slave processors, only between the
master and the slaves, and then only for da ta transfer. The slaves are free to
update their s tate vector in their own time. Once they complete one satel­
lite, they return their s tate vector and receive a new one. Synchronization
is quite simple since the master controls everything.

6. Conclus ions

One method of parallel processing we have not found useful is what is
referred to as control decomposition where dissimilar parts of a program
are sent to different processors for execution. In this form of parallelization

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

70 S. COFFEY ET AL.

great care must be exercised to maintain a high level of synchronization
and utilization of the slave processors. We have have not found this type
of parallelization useful for our applications.

This should not be confused with the method used on SAD where a core
module was extracted and duplicated for the slave computers. The slaves
performed a large task to completion on each da t a set from the master.

For each of our applications, the da ta for the slave nodes has an identical
structure and the programs on the slave nodes is always the same. In our
SIMD application the synchronization was at the instruction level with
each processor receiving a copy of an instruction to execute on the data .
In the PVM applications the synchronization was more coarse, being at
the program level. Here each processor received a complete yet identical
program to execute on da ta possessing an identical structure. Thus, there
is a great deal of similarity in our applications whether SIMD or distributed
parallel processing under PVM. For the PVM applications the flexibility
of processors completing tasks at different times produces better efficiency
for problems that cannot be precisely synchronized.

The environment, PVM, is available for most computers. As indicated,
we have made extensive use of it and have found it to be very robust. PVM
has spawned a standardized language called MPI which is now available.

Acknowledgements. Many of the projects reported on here were supported
by Naval Space Command under the direction of Drs. Steve Knowles and
Paul Schumacher. Thanks to all members of NRL Code 8233 for their
efforts in making these projects successful. Special thanks to Dr. Andre
Deprit who strongly urged us to use parallel processors when machines
first became available.

Authors are listed in alphabetical order.

R e f e r e n c e s

Healy, L. and Deprit, E.: 1991, "Paint by number: Uncovering phase flows of an integrable
dynamical system," Computers in Physics Sep-Oct, 491-496.

Coffey, S.L., Deprit, A., and Deprit, E.: 1994, "Frozen orbits for satellites close to an
Earth-like planet", Celest. Mech. & Dyn. Astron. 59, 37-72.

Baumgardner, J.R. and Frederickson, P.O.: 1985, "Icosahedral discretization of the two-
sphere", Siam J. of Numerical Analysis 22, 1107-1115.

Healy, L.: 1995, "Close conjunction detection on parallel computer", J. Guid. Control
Dyn. 18, 824-829.

Brouwer, D.: 1959, "Solution of the problem of artificial satellite theory without drag",
Astron. J. 64, 378-397.

Geist, A.,: 1994, PVM—Parallel Virtual Machine—A Users'Guide and Tutorial for Net­
work Parallel Computing, MIT Press, Cambridge, MA.

Coffey, S.L., Jenkins, E., Neal, H.L., and Reynolds, H.: 1996, "Parallel processing of
uncorrelated observations into satellite orbits", AAS/AIAA Astrodynamics Specialist
Conference, Austin, Paper 96-146.

https://doi.org/10.1017/S0252921100046376 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046376

