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The Rank of Jacobian Varieties over the
Maximal Abelian Extensions of Number
Fields: Towards the Frey–Jarden Conjecture

Fumio Sairaiji and Takuya Yamauchi

Abstract. Frey and Jarden asked if any abelian variety over a number field K has the infinite Mordell–

Weil rank over the maximal abelian extension Kab. In this paper, we give an affirmative answer to their

conjecture for the Jacobian variety of any smooth projective curve C over K such that ♯C(Kab) = ∞

and for any abelian variety of GL2-type with trivial character.

1 Introduction

Let A be an abelian variety over a number field K and let L be a finite extension of K.

Then it is interesting to study the difference between the Mordell–Weil rank of A(K)

and that of A(L). This prompts the following conjecture which was proposed by Frey

and Jarden.

Conjecture 1.1 (Frey–Jarden Conjecture [4]) For any abelian variety A over a num-

ber field K, the module Q ⊗Z A(Kab) has infinite rank.

We briefly introduce a history of Conjecture 1.1. The first attempt was made by

Billing in 1938 [2]. He proved that for the elliptic curve E defined by y2
= x3 − x and

for any m in N, there exist squarefree integers d1, . . . , dm such that

rankQ Q ⊗Z E(Q(
√

d1, . . . ,
√

dm)) ≥ m.

Fourteen years later, Néron proved Conjecture 1.1 for the Jacobian variety of any

hyperelliptic curve over a number field K with a K-rational point P by using the

specialization argument [13, Corollaire, p. 157].

On the other hand, Imai [5], Top [23], and Murabayashi [11] gave a simple proof

for Néron’s theorem. Murabayashi’s result included the case of superelliptic curves

defined by y p
= f (x) with (p, deg f (x)) = 1 for any prime p, but where the sequence

of extension fields over which the Mordell–Weil rank increase is no longer abelian if

p ≥ 3. Rosen and Wong [20] proved Conjecture 1.1 for the Jacobian variety of any

covering of P1 that factors through some cyclic cover of P1, but their method is not

constructive and rather complicated.
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As noted above, many people have attacked Conjecture 1.1. However, they have

not mentioned any evidence for Conjecture 1.1. The purpose of this paper is to

find what relates to Conjecture 1.1 for the case of Jacobian varieties. We further give

a different approach to proving the Frey–Jarden conjecture for abelian varieties of

GL2-type with trivial character.

Let C be a smooth projective curve over a number field K and let J be Jacobian

variety of C . Then we prove the following theorem.

Theorem 1.2 If C has infinitely many Kab-rational points, Conjecture 1.1 is true for J.

If C is hyperelliptic, then Theorem 1.2 is included in the result by Néron which we

mentioned above.

Recently, Petersen treated the more general setting [15]. His results also help us to

make the relation between abelian points on a curve C and Jac(C) clear. As a result,

Theorem 1.2 is a special case of [15, Theorem 1.1], but our method is completely

different and elementary. Furthermore, our results include a new case for which

Conjecture 1.1 holds.

Next, we give another approach to our problem, applying the modularity prob-

lem of abelian varieties and a non-vanishing result of the L-functions of automorphic

forms. Let A be an abelian variety over Q of GL2-type (see [18] for the definition of

GL2-type). Then for any prime l, we have the two-dimensional Galois representation

ρl attached to A such that det ρl = εχl, where ε is a finite character that is indepen-

dent of l and χl is the l-adic cyclotomic character (see [18, Lemma 3.1]). We say that

A is an abelian variety of GL2-type with trivial character if the character ε is trivial.

For such a class of abelian varieties, we prove the following.

Theorem 1.3 Conjecture 1.1 is true for any abelian variety over Q of GL2-type with

trivial character.

Remark 1.4 Let f be a newform in S2(Γ0(M)) for some level M. Then Shimura’s

abelian variety A f attached to f is of GL2-type with trivial character (see [22]).

E. Kobayashi considered when Kab could be KQab in Conjecture 1.1 for any ellip-

tic curve over an odd dimensional abelian extension K of Q . In fact, she proved that

under some (unsolved) conjectures [9]. The idea is similar to that in Section 3, but

we use the non-vanishing theorem by Murty–Murty [12] and our proof is uncondi-

tional.

The proof of [4, Theorem 2.2] actually proves Conjecture 1.1 for elliptic curves

over Q . This fact is also mentioned in the formulation of the conjecture [4, p. 127].

Theorem 1.2 gives a relation between abelian points on a curve and those on its

Jacobian variety. It is also interesting to consider the case of an algebraic curve having

only finitely many abelian points and how to construct infinitely many abelian points

on its Jacobian varieties. This is also related to the largeness of Qab in the sense of

Pop [16].

In Section 2, we study abelian points on any abelian variety and give a proof of

Theorem 1.2. Then we see that sufficiently many abelian points yield points that are

independent of each other. The case of an abelian variety of GL2-type is treated in

Section 3.
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2 The Case of Jacobian Varieties

2.1 Abelian Points on A

Let A be an abelian variety over a number field K. We fix an algebraic closure K of

K. Let GK be the absolute Galois group of K and let Kab be the maximal abelian

extension of K in K. We call a point P on A(Kab) an abelian point on A.

Definition 2.1 Let M be a finite extension of K contained in Kab and let us take P

in A(Kab). Then we define the minimal field of definition of the class P + Ator(Kab)

in A(Kab)/Ator(Kab) to be equal to M if the following condition is satisfied: σP +

Ator(Kab) = P + Ator(Kab) if and only if σ ∈ GM . We remark that the minimal field

of definition of a class P + Ator(Kab) is unique.

Lemma 2.2 Assume that the minimal field of definition of the class P + Ator(Kab) in

A(Kab)/Ator(Kab) is equal to K(P). Then for an arbitrary proper subfield K ′ of K(P)

containing K, we have na /∈ A(K ′), (∀n ≥ 1).

Proof Suppose that there exists a natural number n such that na is in A(K ′). Then

for a given σ in GK ′ , we have

P − σP ∈ A[n] ∩ A(K(P)) ⊂ Ator(Kab).

By the assumption of the field of definition of the class P + Ator(Kab), we have σ ∈
GK(P). Thus, we have K ′

= K(P). This leads to a contradiction.

Theorem 2.3 If there exist infinitely many Kab-rational points P j ( j ≥ 1) on A satis-

fying the following two conditions, then rankQ Q ⊗Z A(Kab) = ∞.

(i) K(Pi) = K(P j) if and only if i = j.

(ii) The minimal field of definition of P j + Ator(Kab) is K(P j) for each j.

Proof We write K j := K(P j) for simplicity. Since the number of subfields of K j over

K is finite, we may assume by taking subsequence of {K j} and by renumbering, that

(2.1) K1 · · ·K j−1 ∩ K j 6= K j (∀ j ≥ 2).

It is enough to show P1, . . . , Pn are independent.

Suppose that c1P1 + · · ·+ cnPn = 0. Since c1P1 + · · ·+ cn−1Pn−1 = −cnPn, we have

(2.2) cnPn ∈ A(K1 · · ·Kn−1 ∩ Kn).

By Lemma 2.2, it follows from (2.1) and (2.2) that cn = 0. Repeating, we obtain

cn−1 = cn−2 = · · · = c1 = 0.

Lemma 2.4 ([23, Lemma 1]) Let A be an abelian variety over a number field M and

let v be a prime of M such that

(i) ev < p − 1, where ev is the ramification index of M/Q at v and p is a rational

prime under v.
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(ii) A has good reduction at v.

Then the reduction modulo v defines an injection Ator(M) → Av(Fv), where Av is the

reduction of A modulo v and Fv is the residue field.

Lemma 2.5 If the minimal field of definition of P + Ator(Kab) is a proper subfield K ′

of K(P) containing K, then each ramified prime v of K(P) over K ′ satisfies one of the

following two conditions.

(i) v is a bad prime of A.

(ii) p − 1 ≤ [K(P) : Q].

Proof Suppose that v is a good prime of A and p − 1 > [K(P) : Q]. Since ev ≤
[K(P) : Q], by using Lemma 2.4 we see that Ator(K(P)) → Av(Fv) is injective.

Let Iv be the inertia group for v of GK . By the assumption, there exists a nontrivial

element σ in Iv ∩ (GK ′ \GK(P)). Since σ is in Iv, by the above reduction, the mapping

P − σP is specialized to zero in Av(Fv). Thus, we have P − σP = 0.

Then we obtain σ in GK(P), which implies a contradiction to the choice of σ. Thus

the assertion follows.

Theorem 2.6 Let p be a prime integer. Then there exist only finitely many cyclic

extensions M of K of degree p satisfying the following condition:

• M is equal to K(P) for some point P in A(Kab) such that the minimal field of defini-

tion of P + Ator(Kab) is not equal to K(P).

Proof Since [M :K] is prime, we see that the minimal field of definition of P +

Ator(Kab) is equal to K. Each ramified prime v of M over K, lying above a prime

number q, either A has bad reduction at v or q ≤ [M : Q] + 1 = p[K : Q] + 1 from

Lemma 2.5. Hence the number of the ramified primes of any such abelian extension

M over K of degree p is bounded uniformly [14].

2.2 Solvable Coverings of P1

Let K p−cyclic be the composite field of all cyclic extension of degree p over a num-

ber field K. In this subsection, we discuss a version of the Frey–Jarden conjecture

on Jacobian varieties of algebraic curves having infinitely many points defined over

K p−cyclic for some prime p.

Let C be a smooth projective curve of positive genus g over K. In this subsection,

we always assume that C has a K-rational point O.

Let J be the Jacobian variety of C which is also defined over K. We define a canon-

ical embedding Λ, which is also defined over K from C to J such that Λ(O) is the zero

of J. The morphism Λ induces the isomorphism

Pic0(C) → J :
∑

miPi 7→
∑

miΛ(Pi).

Lemma 2.7 Let Ci be a smooth projective curve over K with a K-rational point for

i = 1, 2. Let Ji be its Jacobian variety. Assume that C1 is a covering curve of C2 over K.

Then if J2 satisfies Conjecture 1.1, so does J1.
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Proof The covering C1 → C2 induces a homomorphism J1 → J2 of Abelian varieties

defined over K. This homomorphism is surjective because Ci (or rather its image in

Ji) generates Ji (over K̄). It follows that J1 is isogenous to a direct product J2 × B for

some Abelian variety B defined over K. This yields an isomorphism (up to a finite

kernel) J1(Kab) ≃ J2(Kab)×B(Kab). Hence, if the rational rank of J2(Kab) is infinite,

so is the rational rank of J1(Kab).

Theorem 2.8 If C is a solvable covering over K of P1, then Conjecture 1.1 is true for J.

Proof Since C is a solvable covering over K of P1, there exists a sequence of cyclic

coverings of prime degree over K C0 := C → C1 → · · · → Cn := P1. There exists j

such that C j ≇ P1 and C j+1
∼= P1. Thus, by Lemma 2.7, we may assume that C is a

cyclic covering of P1 of a prime degree p defined over K.

We denote the function fields of C and P1 by K(x, y) and K(x), respectively. The

Hilbert irreducibility theorem asserts that specializations (x, y) → (α, β) ∈ K × Kab

give infinitely many cyclic extensions of degree p of K. Now we can apply Theorems

2.3 and 2.6, and we have the assertion.

If C is a hyperelliptic curve over K, C is a cyclic covering over K of degree two.

Thus Theorem 2.8 contains the results of Billing, Néron, Imai, and Petersen [15,

Theorem 1.1]).

We may generalize Theorem 2.8 to the case where C is a covering over K of P1 that

factors through a solvable covering of P1. Thus Theorem 2.8 is essentially the same

as a main result of Rosen–Wong [20].

2.3 The Case of ♯C(Kab) = ∞

In this subsection, we give a proof of Theorem 1.2. We first introduce the terminology

of torsion packet according to Baker and Poonen [1].

We defined an equivalence relation on C(K) by

P ∼ Q if and only if Λ(P) − Λ(Q) ∈ Jtor(K).

We call an equivalence class under ∼ a torsion packet on C . A torsion packet is said

to be trivial if it has only one point. The Manin–Mumford Conjecture (proved by

Raynaud [17]) states that every torsion packet on C consists of a finite number of

points if g ≥ 2.

Theorem 2.9 ([1, Theorem 2]) Suppose g ≥ 2. There are infinitely many nontrivial

torsion packets on C if and only if either g = 2, or g = 3 and C is both hyperelliptic and

bielliptic. Here we say that C is bielliptic if it admits a covering map of degree two to an

elliptic curve.

Let P be an abelian point on C . If the minimal field of definition of the class Λ(P)+

Jtor(Kab) in J(Kab)/ Jtor(Kab) is not equal to K(P), then the torsion packet represented

by P is nontrivial. Indeed, there exists σ in GK \ GK(P) such that Λ(P) − σ
Λ(P) is in

Jtor(Kab), and we have P ∼ σP.
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Corollary 2.10 Assume that C is a non-hyperelliptic curve over K. Then the minimal

field of definition of the class Λ(P) + Jtor(Kab) in J(Kab)/ Jtor(Kab) is equal to K(P) for

almost all Kab-rational points P on C.

Proof The assertion follows directly from Theorem 2.9.

Now we can prove Theorem 1.2.

Proof of Theorem 1.2 We may assume that C is non-hyperelliptic. By the assump-

tion there exists a set S of infinitely many Kab-rational points on C .

It follows from Corollary 2.10 that we may assume that all points in S satisfy The-

orem 2.3(ii) by removing finite exceptional points. By the theorem of Faltings [3],

there exist only finite number of M-rational points of C for each finite extension M

of K. Thus we may inductively choose P j in S satisfying Theorem 2.3(i).

Corollary 2.11 If Qab is large, then Conjecture 1.1 is true for J.

Proof By our assumption, C has at least one rational point. If Qab is large, so is

Kab. Thus C has infinitely many Kab-rational points on C . Theorem 1.2 implies the

assertion.

Remark 2.12 Moon proved that A(Kab)/Ator(Kab) is a free module when Ator(Kab)

is finite [10]. On the other hand, Zarhin [24] and Ruppert [21] showed that Ator(Kab)

is finite if and only if A has no abelian subvarieties with complex multiplication over

K. Hence, under the additional assumption that J has no abelian subvarieties with

complex multiplication over K, Theorem 1.2 also follows from Faltings’ theorem (see

[10, §2]).

3 The Case of Abelian Varieties of GL2-type

In this section, we prove the Frey–Jarden conjecture for any abelian variety of GL2-

type. This follows easily from the celebrated works of recent developments in num-

ber theory, but it is important for understanding the Frey–Jarden conjecture. We

remark that even if an algebraic curve whose Jacobian variety is of GL2-type does not

have infinitely many abelian points, its Jacobian variety does. A reason why such a

phenomenon occurs is that a general algebraic curve does not have a twist by auto-

morphisms, though any abelian variety always has the twist induced by the inversion

−1.

We refer to [22] for the theory of elliptic modular forms. We first recall the facts

needed here.

Theorem 3.1 ([6–8]) Any abelian variety A of GL2-type is modular; namely, there

exists a new form f in S2(Γ1(N)), where N is the conductor of A such that A is isogenous

to A f over Q . Here A f is Shimura’s abelian variety attached to f (see [22]).

Theorem 3.2 ([12]) Let f be a new form in S2(Γ0(N)). If the root number of f is +1,

then there exist infinitely many quadratic characters χ such that L( f ⊗χ, s) has analytic

rank one.
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Theorem 3.3 ([25]) Let r be 0 or 1. If the analytic rank of L( f , s) is r, then weak

Birch–Swinnerton–Dyer conjecture is true for A f . In this case, the analytic rank of

L(A f , s) and the Mordell–Weil rank of A f over Q are both equal to the dimension of

A f times r.

Now we prove Theorem 1.3.

Proof of Theorem 1.3 Let A be an abelian variety of GL2-type with the trivial char-

acter. By Theorem 3.1, A is modular, namely, there exists a new form f in S2(Γ0(M))

such that A is isogenous over Q to A f . We may assume that the root number of f is

+1 by the twisting of some quadratic character χ such that χ(M) = −1. By Theo-

rems 3.2 and 3.3 for r = 1, there exist infinitely many quadratic characters χ of GQ

such that rankQ Q ⊗Z Aχ(Q) = dim A, where Aχ is the quadratic twist of A by χ.

Then we get a point Pχ on A which is strictly defined over the quadratic field Kχ fixed

by the kernel of χ, since Aχ(Q) is isomorphic to the χ-subspace of A(Kχ). Then we

see that the set of all Pχ (varying χ as above) satisfies the condition in Theorem 2.3

by using Theorem 2.6 for p = 2.
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no. 3, 349–366. http://dx.doi.org/10.1007/BF01388432

[4] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic
fields. Proc. London Math. Soc. 28(1974), 112–128. http://dx.doi.org/10.1112/plms/s3-28.1.112

[5] H. Imai, On the rational points of some Jacobian varieties over large algebraic number fields. Kodai
Math. J. 3(1980), no. 1, 56–58. http://dx.doi.org/10.2996/kmj/1138036119

[6] C. Khare and J-P. Wintenberger, Serre’s modularity conjecture. I, II. Invent. Math. 178(2009), no. 3,
485–504, 505–586.

[7] M. Kisin, Moduli of finite flat group schemes and modularity. Ann. of Math. 170(2009), no. 3,
1085–1180. http://dx.doi.org/10.4007/annals.2009.170.1085

[8] , Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178(2009), no. 3,
587–634. http://dx.doi.org/10.1007/s00222-009-0207-5

[9] E. Kobayashi, A remark on the Mordell-Weil rank of elliptic curves over the maximal abelian
extension of the rational number field. Tokyo J. Math. 29(2006), no. 2, 295–300.
http://dx.doi.org/10.3836/tjm/1170348168

[10] H. Moon, On the Mordell-Weil groups of Jacobians of hyperelliptic curves over certain elementary
abelian 2-extensions. Kyungpook Math. J. 49(2009), no. 3, 419–424.

[11] N. Murabayashi, Mordell-Weil rank of the Jacobians of the curves defined by y p = f (x). Acta Arith
64(1993), no. 4, 297–302.

[12] K. Murty and R. Murty, Mean values of derivatives of modular L-series. Ann. of Math. 133(1991),
no. 3, 447–475. http://dx.doi.org/10.2307/2944316
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