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A SPECIALISED NET OF QUADRICS HAVING SELF-
POLAR POLYHEDRA, WITH DETAILS OF THE FIVE-

DIMENSIONAL EXAMPLE 

W. L. EDGE 

1. If 
•^Oj *^lj • • • j XJI a r e homogeneous coordinates in [n], projective 

space of n dimensions, the prime (to use the standard name for a hyper-
plane) 

xo + xtf + . . . + xn6
n = 0 

osculates, as 6 varies, the rational normal curve C whose parametric form 
is [2, p. 347] 

Xr=(-iy(^)en-\ 

Take a set of n + 2 points on C for which 6 = Vf where f is any 
complex number and 

y] = exp [2iri/(n + 2)] 

so that the rf, for 0 g j < n + 2, are the (n + 2)th roots of unity. The 
n + 2 primes osculating C at these points bound an (n + 2)-hedron H 
which varies with f, and H is polar for all the quadrics 

n+l 

(1.1) 5>,P/ = £ a,(*0 + Wf + W V + . . . + *»W)2 = 0 

in the sense that the polar of any vertex, common to n of its n + 2 
bounding primes, contains the opposite [n — 2] common to the residual 
pair. Call this vertex and opposite [n — 2] conjugate with respect to the 
quadric. 

If the ctj can be chosen so that (1.1) does not depend on f the various H 
will all be polar for the same quadric. In attempting to achieve this it 
is natural, since y^-in vmi is zero save when m is zero or a multiple of 
n + 2, to take c^ = 7/*; with & some positive integer. But then, the 
power of f appearing in any term in the expanded form of (1.1) being 
less by k than the power of t\\ if f is to be cancellable the 2n + 1 con­
secutive integers 

*, jfe + 1, . . . , * + 2w 
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must not involve two multiples (zero included) of n + 2. Hence k is 1, 
2 or 3. Then 

YsrfPj2 = (n + 2)£n+1(xixn + x2xn-i + . . .) 
n 

= (n + 2)fw+1Z) XfXn+i-r, 

J2y2jPj2 = (n + 2)Çn(x0xn + x&n-i + . . .) 
n 

= (« + 2 ) f ^ A _ n 

YsV^Pj2 = (n + 2)Çn~1(x0xn-i + Xixw_2 + . . .) 
n-1 

= {ft + 2)rlY< XrXn-l-r-
r=0 

So one obtains a net JV of quadrics 

(1.2) XQo + MOI + *(?2 = 0 

all of which have all oo * ff as polars: it is based on the quadratic forms 
n n n—1 

V;0 — / J Xr%n+l—ri \£l — / J XrXn—r, \/2 = / , XrXn—\—T. 
r=l r = 0 r = 0 

Note that any xr
2 occurring in a sum only appears once, while any 

product appears twice. It is sometimes convenient to speak of the 
quadric Qt = 0 merely as Qf. Q0 is a cone with vertex X0t Q2 a cone with 
vertex Xn\ here, as is customary, Xr denotes the vertex of the simplex 
of reference opposite to xr = 0. X0 and Xn are not only vertices of 
cones: they are on the octavic (n — 3)-fold B, the base locus of N, and 
so may be expected to be singular points of the Jacobian curve f of TV. 

2. If rf and r)q are not equal 

(2.1) rfri'Qo ~ (VP + ^)f<2i + f2<22 

lacks the terms in Pv
2 and PQ

2 so that the quadric is a cone; its vertex, 
common to all Pj = 0 save for j = p, q is a vertex of H; all vertices of 
all H are on f . Each edge of an H, common to n — 1 of its n + 2 
bounding primes, is a trisecant of </ because it contains three vertices 
of H. Likewise a bounding plane, common to n — 2 bounding primes, is 
met by the other four in the sides of a quadrilateral and meets <f at the 
six vertices of this; a bounding solid meets <f at the ten vertices of a 
pentahedron; and so on. 

If rf + rjQ = 0 the cones (2.1) are just the pencil in N spanned by 
<2o and Q2. This cannot happen unless n is even, requiring as it does the 
presence of —1 among the (n + 2)th roots of unity; but in this event 
(2.1) is 

n 

(2.2) ^2 (£2Xr-lXn-r ~ V2PXrXn+l-r) (ft even). 
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The sum of the pair of suffixes in every product here is odd, so that one 
suffix of every pair is odd and the other even and (2.2) is 

nil 

s=l 

a quadratic form not in n + 1 but in only n variables. It represents a 
cone whose vertex 

(1,0, u,0,u2, . . . , 0, un/2) 

is the common zero of these n variables; here u = l2/y\2v. As the cone 
varies in the pencil its vertex traces a rational normal curve of order \n 
in the \\n\ XoX2 . . . Xn. This curve, when n is even, is part of </. 

When (2.1) is divided by ^p+q) l2 it becomes 

v^"Qo - 2f cos (P -J]1" Q1 + frT™'* Qù 

the cones are just those quadrics (1.2) for which 

4 = 4 c o s 2 ^ = ^ . 
v\ n + 2 

They belong to different families according to the value of this squared 
cosine. Since p, q are unequal integers among 0, 1, 2, . . . , n + 1 

0 < \p - q\ ^ n + 1. 

But two values of \p — q\ whose sum is n + 2 yield the same squared 
cosine, so that none higher than the integral part of \(n + 2) need be 
used. And since p — q = \n + 1 has, when n is even, been disposed of, 
the number of different families here is the integral part of \{n + 1). 
Each provides, with f varying, a singly-infinite family of cones whose 
vertices trace a component of <f . And every family includes both Ço 
and Q2. 

For the lower values of n the circumstances are easy to describe. 
If n = 3, jtx2/(4^X) is either cos27r/5 or cos227r/5. The geometry of this 

figure was described in [4, pp. 471-480]. 
If n = 4, /x2/(4A) is either COS2TT/6 = 3/4 or COS2TT/3 = 1/4. The 

The Jacobian curve has, n being even, an additional third component, 
here a conic in the plane X^X^X^. The geometry of this figure has only 
been described very recently [5]. 

If n — 5, M2/(4^X) is one of 

COS2TT/7, COS22TT/7, COS23TT/7 

and f is tripartite. The following paragraphs are concerned with the 
geometry of this figure in [5]. 
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4>3 

The ten vertices of the pentahedron conjugate to <j>0. 

3. The geometry in [5]. In [5] the primes 

(3.1) xo + xid + x26
2 + xze

3 + x40
4 + xbd° = 0 

osculate, when 6 varies, a rational normal quintic C; the vertices Xo, X5 

of the simplex of reference are on C with respective parameters oc , 0. If 
(3.1) is looked upon as a restriction on 6 when the xt have been assigned 
it shows that the point common to five osculating primes of C is 

(3 .2) ( — 05, 04, - ^ 3 , <?2, - 0 1 , 1) 

where ex is the elementary symmetric function of degree i in the para­
meters of the five contacts. 

Take t = exp (2iri/7) and H to be bounded by those seven primes 
(3.1) for which 6 = e ; | (0 ^ j ^ 6). The different values of f afford an 
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infinity of H\ each H has 21 vertices whose locus, as f varies, i s ^ . The 
identity 

(i - e)(0
7 - n - (e - r)(* - ef){(i - e)^ + (i - e2)n 

+ (1 - e3)03f2 + (1 - e4)02f3 + (1 - e 5 ) ^ 4 + (1 - *8)f5} 

shows, with (3.2), that when f = 0 the vertex of H opposite to the solid 
common to the osculating primes of C at 0 = <£, e<j> is 

(3.3) [(1 - 66)05, (1 - e5)04, (1 - e4)4>3, (1 - e3)02, (1 - e2)0, 1 - e]. 

So this vertex traces, as <t> varies, a rational normal quintic r0. 
Now only 7 of the 21 vertices of H are here accounted for. Just as a 

cyclic group of order 7 has three pairs of inverse operations, so the 
bounding primes of H can succeed each other in three different cycles: 
e and e6 correspond to one cycle traversed in opposite senses, e2 and e5 to 
a second, e4 and e3 to a third. The phenomenon is mirrored in the Eucli­
dean plane by the linking with a regular convex heptagon of two stellated 
heptagons, all three heptagons sharing the same vertices. So the vertices 
of H trace three rational normal quintics: 

( To : *«_, = (1 - e')*'-1 

(3.4) I \ : xe-j = (1 - e2 ')*'"1 J = 6, 5, 4, 3, 2, 1 
( T2 : xe-j = (1 - ^Ox ' - 1 

each I \ in the cycle ( r 0 r i r 2 ) being changed into its successor by the 
operation a, of period 3, that replaces e by e2. All three I \ contain X0 

and X5 and share the same osculating spaces there; together they con­
s t i tu te^ / , the (now tripartite) Jacobian curve. 

4. In [5] N is based on 

Ço = 2(xix5 + x2x4) + x3
2, Qi = 2(x0x5 + X1X4 + x2x3), 

Ç2 = 2 ( x 0 x 4 + X1X3) + x 2
2 . 

The outcome of substituting the parametric form for T0 in Q0 is 

2[(1 - 65)04(1 - 6) + (1 - 64)03(1 - 62)0] + (1 - € »)V 
= 04[4 + 4e6 + 1 + e6 - 2(e5 + e + e4 + e2 + e3)] 
= 7(1 + e6)04 = 7e3(e4 + e3)04. 

Such procedures show the results of the nine substitutions to be as 
follows: 

Go 

Q* 

To Ti r2 
7<=3(e4 + e3)<*>4 

14<*>5 

7e 4 (e 3 + e4)4>6 

7e«(e + e 6 ) ^ 4 

7«(«6 + e)</<6 

7es(«2 + 65)x4 

14X
5 

7«2(e5 + €2)X6 
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So the ten intersections of (1.2) with any I\ lie four at XQ (parameter co), 
four at X*> (parameter 0) and two elsewhere, these latter being in general 
distinct from X0, Xb and from each other. The parameters of the latter 
pair on, say, r 0 are zeros of the quadratic 

Ae3(e4 + e3) + 2JU0 + veA(e* + e4)</>2 

and coincide when 

M2 = A ( e 4 + e3)2 = 4IACOS2(TT/7). 

This agrees with (1.2) then being a cone whose vertex is on IV Similarly 
(1.2) is a cone whose vertex is on Ti when 

M2 = 4ACOS 2 (2TT/7) 

and a cone whose vertex is on T2 when 

M2 = 4*>Xcos2(47r/7). 

5. The polar primes of (3.3) with respect to Q0, Qi, Qi are found to be 

L = M, L = eM, L = €2M 

where 

5 5 

All three contain the solid L = M = 0 which is therefore the space 
conjugate to (3.3) in the sense of Section 1. This space, as remarked in 
Section 2, meets ^ in the ten vertices of a pentahedron. How are these 
ten points distributed among the I\? 

Take the point with parameter 6 on IV The conjugate solid is 
L = M = 0 with <t> therein replaced by 6. Substitution from the first 
member of (3.4) shows that it meets T0 in any points satisfying both the 
conditions (summations running from j = 1 to j = 6) 

X>6"''(1 - e ' ) ^ - 1 = 0 = £ ( € 0 ) 6 - ' ( l - e ')*'-1 

2>'(1 - e'W = 0 = 2>*)-'(l - e'W 
Z(*0-w = Z(^-^);' = E(«-1^-1*)i. 

These conditions hold, with each sum — 1 , when 

(5.1) <t> = e20, e30, e40, e50 

and the solid conjugate to a point of r 0 is quadrisecant to IV 
In order to find where this same solid meets Ti one has to substitute 

not from the first but from the second member of (3.4). 
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The resulting conditions are 

All four sums here are — 1 when 

(5.2) t = e20, e30, e40. 

The same solid is found, similarly, to meet T2 where 

(5 .3) x = e26, e50, e60, 

and all its ten intersections with ^ are accounted for. 

6. These ten points (5.1, 2, 3) are collinear in threes on the edges of 
the pentahedron, trisecants of the Jacobian curve. No individual I \ , 
being a rational normal curve, can have any trisecants; but chords of 
one Yi may meet a second, and there may be transversals, trisecant to^ 
by meeting each Tt once. Both possibilities are realised. 

The trivial remark that 1 + ej' — 1 = e • ej~l leads one to write 

(1 - e^d*-1 - (1 - tj)Bj-1 = e ( l - ej){ed)j-1 

which shows that the join of \p = 6 on I \ to </> = 6 on T0 meets T0 again 
at </> = e0. Similarly the join of x = 0 on T2 to ^ = 6 on T] meets Ti 
again at ^ = e20, and the join of <£ = 6 on T0 to x = ^ on T2 meets T2 

again at x = e4#-
So six of the ten edges of the above pentahedron are recognized, 

namely those containing the triads of collinear points 

$ = f = e2d, </> = e30; t = X = e20, ^ = e40; 

0 = ^ = ^ ^ = e 4^ ; x = ^ = ^ % = e6<9; 

0 = ^ = « ^ ^ = c50. x = ^ = e 5 ^ x = e2^ t 

Since <j> = \p( = 6) is a (1, 1) correspondence, between the two quintic 
curves r 0 and Ti, with united points at X0 and Xh the chords of r 0 

which meet I \ generate a rational scroll Ro of order [1, p. 16] 5 + 5 — 2 
= 8; r 0 is a nodal curve on R0. Similarly for octavic scrolls Ri and R2 

with nodal curves I \ and T2. These scrolls contribute 24 to the total 
order [3, pp. 205, 209] 40 of the scroll of trisecants of f ; the residue, of 
order 16, is provided by the transversals whose existence is quickly 
proved. For, when e7 = 1, 

1 - e + e ( l - e2) + e 3 ( l - e4) = 0. 
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Here write ej for e and multiply by ea(i~l): 

(6.1) (1 - € V ( ' _ 1 ) + e(l - €20e(fl+1)(i-1) 

+ e3(l - e 4 ' ) ^ 3 ^ " 1 ) = 0, 

showing that the points </> = ea6, ^ = e(a+1)0, % = *(a+3)0 on T0, Tu T2 

are collinear. For a = 2, 3 one has two edges of the above pentahedron. 
Moreover there is a second relation 

1 - e + e " 2 ( l - e2) + e " 6 ( l - e4) = 0 

giving rise to 

(6 .2) (1 - ej)eaV~» + e~ 2 ( l - C2')e<«-2)U-D 

+ € " 6 ( 1 ~ e4j)e(a-V(j-V = 0 

showing that 
0 = e«0, $ = e*-*d, x = eG~60 on r0, Tlt T2 are collinear. For a = 4, 5 one 
notes the remaining two edges of the pentahedron. All three Tt are nodal 
on the scroll of transversals. For instance: through the point \j/ = ea6 on 
Ti pass two transversals, one joining it to x = ea+20 on T2 and <f> = ea~ld 
on r0 , the other joining it to x = ea-40 on T2 and <j> = ea+26 and T0. These 
facts are patent on dividing (6.1) by e ;_1 and multiplying (6.2) by 
e 2 ( ; - l ) > 

In the figure \pk means the point on i \ whose parameter is e*0, and 
similarly for T2 and r0 . 

REFERENCES 

1. H. F. Baker, Principles of geometry, Vol. VI (Cambridge, 1933). 
2. E. Bertini, Introduzione alia geometria proiettiva degli iperspazi (Messina, 1923). 
3. W. L. Edge, A special net of quadrics, Proc. Edinburgh Math. Soc. (2) 4 (1936), 

185-209. 
4. Notes on a net of quadric surfaces V: The pentahedral net, Proc. London Math. . 

Soc. (2) 47 (1942), 455-480. 
5. A special polyhedral net of quadrics, Journal London Math. Soc. (2) 22 (1980), 

46-56. 

Inveresk House, 
Musselburgh, Scotland 

https://doi.org/10.4153/CJM-1981-069-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-069-3

