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Abstract
This is an introduction to Bayesian inference with a focus on hierarchical models and hyper-parameters. We write primarily for an audi-
ence of Bayesian novices, but we hope to provide useful insights for seasoned veterans as well. Examples are drawn from gravitational-wave
astronomy, though we endeavour for the presentation to be understandable to a broader audience. We begin with a review of the funda-
mentals: likelihoods, priors, and posteriors. Next, we discuss Bayesian evidence, Bayes factors, odds ratios, and model selection. From there,
we describe how posteriors are estimated using samplers such as Markov Chain Monte Carlo algorithms and nested sampling. Finally, we
generalise the formalism to discuss hyper-parameters and hierarchical models. We include extensive appendices discussing the creation of
credible intervals, Gaussian noise, explicit marginalisation, posterior predictive distributions, and selection effects.
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1. Preface: why study Bayesian inference?

Bayesian inference is an essential part of modern astronomy. It
finds particularly elegant application in the field of gravitational-
wave astronomy thanks to the clear predictions of general relativ-
ity and the extraordinary simplicity with which compact binary
systems are described. An astrophysical black hole is completely
characterised by just its mass and its dimensionless spin vector.
The gravitational waveform from a black hole binary is typically
characterised by just 15 parameters. Since sources of gravita-
tional waves are so simple, and since we have a complete theory
describing how they emit gravitational waves, there is a direct link
between data andmodel. The significant interest in Bayesian infer-
ence within the gravitational-wave community reflects the great
possibilities of this area of research.

Bayesian inference and parameter estimation are the tools that
allow us to make statements about the Universe based on data.
In gravitational-wave astronomy, Bayesian inference is the tool
that allows us to reconstruct sky maps of where a binary neutron
star merged (Abbott et al. 2017c), to determine that GW170104
merged 880+450

−390 Mpc away from Earth (Abbott et al. 2017b), and
that the black holes in GW150914 had masses of 35+5

−3 M� and
33+3

−4 M� (Abbott et al. 2016b). We use it to determine the Hubble
constant (Abbott et al. 2017d), to study the formation mechanism
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of black hole binaries (Vitale et al. 2017; Stevenson, Berry, &
Mandel 2017; Talbot & Thrane 2017; Gerosa & Berti 2017; Farr
et al. 2017; Wysocki, Lange, & O’Shaughnessy 2018; Lower et al.
2018), and to probe how stars die (Fishbach & Holz 2017; Talbot
& Thrane 2018; Abbott et al. 2018a). Increasingly, Bayesian infer-
ence and parameter estimation are the language of gravitational-
wave astronomy. In this note, we endeavour to provide a primer
on Bayesian inference with examples from gravitational-wave
astronomy.a

Before beginning, we highlight additional resources, useful for
researchers interested in Bayesian inference in gravitational-wave
astronomy. Sivia & Skilling (2006) and Gregory (2005) are useful
references that are accessible to physicists and astronomers (see
also the Springer Series in Astrostatistics; Manuel et al. 2012; Hilbe
2013; Chattopadhyay & Chattopadhyay 2014; Andreon &Weaver
2015). The chapter in Hilbe (2013) by Loredo discusses hierarchi-
calmodels, but refers to them as ‘multilevel’ models (Loredo 2012).
Seasoned veterans may find Gelman et al. (2013) to be a thorough
reference.

aThis review focuses on Bayesian inference applied to audio-band gravitational waves
from compact binary coalescence, the only source of gravitational waves yet detected. We
note in passing that Bayesian inference has been applied to study gravitational waves from
rotating neutron stars (Umstätter et al. 2004; Dupuis & Woan 2005; Abbott et al. 2017e),
bursting sources (Cornish & Littenberg 2015; Logue et al. 2012; Jade Powell et al. 2016),
and stochastic backgrounds (Mandic et al. 2012; Callister et al. 2017; Abbott et al. 2018b).
Bayesian inference methods have also been developed for space-based observatories
observing at millihertz frequencies (Babak et al. 2008, 2010) and for pulsar timing arrays
operating at nanohertz frequencies (Lentati et al. 2014; Vigeland & Vallisneri 2014).
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2. Fundamentals: likelihoods, priors, and posteriors

A primary aim of modern Bayesian inference is to construct a
posterior distribution

p(θ |d), (1)

where θ is the set of model parameters and d is the data associated
with ameasurement.b For illustrative purposes, let us say that θ are
the 15 parameters describing a binary black hole coalescence and
d is the strain data from a network of gravitational-wave detec-
tors. The posterior distribution p(θ |d) is the probability density
function for the continuous variable θ given the data d. The prob-
ability that the true value of θ is between (θ ′, θ ′ + dθ) is given by
p(θ ′|d)dθ ′. It is normalised so that∫

dθ p(θ |d)= 1. (2)

The posterior distribution is what we use to construct credible
intervals that tell us, for example, the component masses of a
binary black hole event like GW150914. For details about the
construction of credible intervals, see Appendix A.

According to Bayes theorem, the posterior distribution is
given by

p(θ |d)= L(d|θ) π(θ)
Z , (3)

where L(d|θ) is the likelihood function of the data given the
parameters θ , π(θ) is the prior distribution for θ , and Z is a
normalisation factorc,d called the ‘evidence’

Z ≡
∫

dθL(d|θ) π(θ). (4)

The likelihood function is something that we choose. It is a
description of the measurement. By writing down a likelihood, we
implicitly introduce a noise model. For gravitational-wave astron-
omy, we typically assume a Gaussian-noise likelihood function
that looks something like this

L(d|θ)= 1√
2πσ 2

exp
(

−1
2
(d −μ(θ))2

σ 2

)
, (5)

where μ(θ) is a template for the gravitational strain waveform
given θ and σ is the detector noise. Note that π with no paren-
theses and no subscript is the mathematical constant, not a prior
distribution. This likelihood function reflects our assumption
that the noise in gravitational-wave detectors is Gaussian.e Note

bBy referring to ‘model parameters’, we are implicitly acknowledging that we begin with
some model. Some authors make this explicit by writing the posterior as p(θ |d,M), where
M is the model. (Other authors sometimes use I to denote the model.) We find this nota-
tion clunky and unnecessary since it goes without saying that one must always assume
some model. If/when we consider two distinct models, we add an additional variable to
denote the model.

c In this document, we use different symbols for different distributions: p for posteriors,
L for likelihoods, and π for priors. We advocate this notation, since it highlights what is
what and makes formulas easy to read. However, it is by no means standard, and some
authors will use p for any and all probability distributions.

dFor now, we treat the evidence as ‘just’ a normalisation factor, though, below we see
that it plays an important role in model selection, and that it can be understood as a
marginalised likelihood.

eThe Gaussian noise assumption is a good starting point for describing the strain noise
in gravitational-wave detectors. The combined effect of many random noise processes
tends to produce nearly Gaussian strain noise. Of course, the noise description can be
generalised to include non-Gaussian glitches, drift over time, and instrumental lines all of
which can be described by noise parameters (see e.g. Littenberg & Cornish 2015; Röver,
Meyer, & Christensen 2011).

that the likelihood function is not normalised with respect to θ
and sof ∫

dθ L(d|θ) �= 1. (6)

For a more detailed discussion of the Gaussian noise likelihood in
the context of gravitational-wave astronomy, see Appendix B.

Like the likelihood function, the prior is something we get to
choose. The prior incorporates our belief about θ before we carry
out a measurement. In some cases, there is an obvious choice of
prior. For example, if we are considering the sky location of a
binary black hole merger, it is reasonable to choose an isotropic
prior that weights each patch of sky as equally probable. In other
situations, the choice of prior is not obvious. For example, before
the first detection of gravitational waves, what would have been
a suitable choice for the prior on the primaryg black hole mass
π(m1)? When we are ignorant about θ , we often express our
ignorance by choosing a distribution that is either uniform or
log-uniform.h

While θ may consist of a large number of parameters, we usu-
ally want to look at just one or two at a time. For example, the
posterior distribution for a binary black hole merger is a fifteen-
dimensionali function that includes information about black hole
masses, sky location, spins, etc. What if we want to look at the
posterior distribution for just the primary mass? To answer this
question we marginalise (integrate) over the parameters that we
are not interested in (called ‘nuisance parameters’) so as to obtain
a marginalised posterior

p(θi|d)=
∫ ⎛
⎝∏

k�=i

dθk

⎞
⎠ p(θ |d) (7)

= L(d|θi) π(θi)
Z . (8)

The quantity L(d|θi) is called the ‘marginalised likelihood’. It can
be expressed as follows:

L(d|θi)=
∫ ⎛
⎝∏

k�=i

dθk

⎞
⎠ π(θk)L(d|θ). (9)

When we marginalise over one variable θa in order to obtain
a posterior on θb, we are calculating our best guess for θb given
uncertainty in θa. Speaking somewhat colloquially, if θa and θb
are covariant, then marginalising over θa ‘injects’ uncertainty into
the posterior for θb. When this happens, the marginalised poste-
rior p(θb|d) is broader than the conditional posterior p(θb|d, θa).

fGiven that the likelihood is not normalised with respect to θ , one might ask in what
way it is normalised. The answer is that the likelihood is normalised with respect to the
data d. Before we collect any data, the likelihood describes the chance of getting data d. It
is a probability density function with units of inverse data. The integral over all possible d
is unity. Once we obtain actual data, d is, of course, fixed.

gThe ‘primary’ black hole is the heavier of two black holes in a binary, which is
contrasted with the lighter ‘secondary’ black hole.

hA log uniform distribution is used when we do not know the order of magnitude of
some quantity, for example, the energy density of primordial gravitational waves.

iThere are eight ‘intrinsic’ parameters, which are fundamental properties of the binary:
primary mass m1, secondary mass m2, primary dimensionless spin vector �s1, and sec-
ondary dimensionless spin vector �s2. The other seven parameters are ‘extrinsic’, relating to
how we view the binary. The extrinsic parameters are as follows: inclination angle ι, polar-
isation angle ψ , phase at coalescence φc , right ascension RA, declination DEC, luminosity
distance DL , and time of coalescence t.
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Figure 1: The joint posterior for luminosity distance and inclination
angle for GW170817 from Abbott et al. (2017a). The blue con-
tours show the credible region obtained using gravitational-wave
data alone. The purple contours show the smaller credible region
obtained by employing a relatively narrow prior on distance
obtained with electromagnetic measurements. Publicly available
posterior samples for this plot are available here: LIGO/Virgo
(LIGO/Virgo).

The conditional posterior p(θb|d, θa) represents a slice through the
p(θb|d) posterior at a fixed value of θa.

This is nicely illustrated with an example. There is a well-
known covariance between the luminosity distance of a merging
compact binary from Earth DL and the inclination angle θJN .
For the binary neutron star coalescence GW170817, we are able
to constrain the inclination angle much better when we use the
known distance and sky location of the host galaxy compared to
the constraint obtained using the gravitational-wavemeasurement
alone.j Results from (Abbott et al. 2017a) are shown in Figure 1.

3. Models, evidence and odds

In Eq. (4), reproduced here, we defined the Bayesian evidence:

Z ≡
∫

dθL(d|θ) π(θ).
In practical terms, the evidence is a single number. It usually does
not mean anything by itself, but becomes useful when we compare
one evidence with another evidence. Formally, the evidence is a
likelihood function. Specifically, it is the completely marginalised
likelihood function. It is therefore sometimes denoted L(d) with
no θ dependence. However, we prefer to use Z to denote the fully
marginalised likelihood function.

Above, we described how the evidence serves as a normali-
sation constant for the posterior p(θ |d). However, the evidence
is also used to do model selection. Model selection answers the
question: Which model is statistically preferred by the data and by
how much? There are different ways to think about models. Let us

jThe viewing angle = �=min (θJN , 180◦ − θJN is constrained to be < 28◦ with the
electromagnetic counterpart, and< 55◦ without it (Abbott et al. 2017c).

return to the case of binary black holes. We may compare a ‘signal
model’ in which we suppose that there is a binary black hole sig-
nal present in the data with a prior π(θ) to the ‘noise model’, in
which we suppose that there is no binary black hole signal present.
While the signal model is described by the fifteen binary param-
eters θ , the noise model is described by no parameters. Thus, we
can define a signal evidence ZS and a noise evidence ZN

ZS ≡
∫

dθL(d|θ) π(θ), (10)

ZN ≡L(d|0), (11)
where

L(d|0)≡ 1√
2πσ 2

exp
(

−1
2
h2

σ 2

)
. (12)

The noise evidence ZN is sometimes referred to as the ‘null
likelihood’.

The ratio of the evidence for two different models is called the
Bayes factor. In this example, the signal/noise Bayes factor is

BFSN ≡ ZS

ZN
. (13)

It is often convenient to work with the log of the Bayes factor:k

log BFSN ≡ log (ZS)− log (ZN). (14)
When the absolute value of log BF is large, we say that onemodel is
preferred over the other. The sign of log BF tells us which model is
preferred. A threshold of | log BF| = 8 is often used as the level of
‘strong evidence’ in favour of one hypothesis over another (Jeffreys
1961).

The signal/noise Bayes factor is just one example of a Bayes
factor comparing two models. We can calculate a Bayes fac-
tor comparing identical models but with different priors. For
example, we can calculate the evidence for a binary black hole
with a uniform prior on dimensionless spin and compare that to
the evidence obtained using a zero-spin prior. The Bayes factor
comparing these models would tell us if the data prefer spin:

Zspin =
∫

dθL(d|θ) π(θ), (15)

Zno spin =
∫

dθL(d|θ) πno spin(θ), (16)

where πno spin(θ) is a prior with zero spins. The spin/no spin Bayes
factor is

BFspinno spin = Zspin

Zno spin
. (17)

We may also compare two disparate signal models. For exam-
ple, we can compare the evidence for a binary black hole waveform
predicted by general relativity (modelMA with parameters θ) with
a binary black hole waveform predicted by some other theory
(modelMB with parameters ν):

ZA =
∫

dθL(d|θ ,MA) π(θ), (18)

ZB =
∫

dνL(d|ν,MB) π(ν). (19)

The A/B Bayes factor is

BFAB = ZA

ZB
. (20)

kA typical log evidence might be −5000, which evaluates to zero when exponentiated
on a computer. Functions such as logsumexp can be useful for combining evidence.
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Note that the number of parameters in ν can be different from the
number of parameters in θ .

Our presentation of model selection so far has been a bit fast
and loose. Formally, the correct metric to compare two models is
not the Bayes factor, but rather the odds ratio

OA
B ≡ ZA

ZB

πA

πB
. (21)

The odds ratio is the product of the Bayes factor with the prior
odds πA/πB, which describes our prior belief about the relative
likelihood of hypotheses A and B. In many practical applications,
we set the prior odds ratio to unity, and so the odds ratio is
the Bayes factor. This practice is sensible in many applications
where our intuition tells us: until we do this measurement both
hypotheses are equally likely.l

Bayesian evidence encodes two pieces of information. First, the
likelihood tells us how well our model fits the data. Second, the act
of marginalisation tell us about the size of the volume of parameter
space we used to carry out a fit. This creates a sort of tension. We
want to get the best fit possible (high likelihood) but with a min-
imum prior volume. A model with a decent fit and a small prior
volume often yields a greater evidence than a model with an excel-
lent fit and a huge prior volume. In these cases, the Bayes factor
penalises the more complicated model for being too complicated.

This penalty is called an Occam factor. It is a mathematical for-
mulation of the statement that all else equal, a simple explanation
is more likely than a complicated one. If we compare two models
where one model is a superset of the other—for example, we might
compare general relativity and general relativity with non-tensor
modes—and if the data are better explained by the simpler model,
the log Bayes factor is typically modest, log BF≈ (− 2,−1). Thus,
it is difficult to completely rule out extensions to existing theories.
We just obtain ever tighter constraints on the extended parameter
space.

4. Samplers

Thanks to the creation of phenomenological gravitational wave-
forms (called ‘approximants’), it is now computationally straight-
forward to make a prediction about what the data d should
look like given some parameters θ . That is a forward prob-
lem. Calculating the posterior, the probability of parameters θ
given the data as in Eq. (3), reproduced here, is a classic inverse
problem:m

p(θ |d)= L(d|θ) π(θ)
Z .

In general, inverse problems are computationally challenging
compared to forward problems. To illustrate why let us imag-
ine that we wish to calculate the posterior probability for the 15

lThere are some (fairly uncommon) examples where we might choose a different prior
odds ratio. For example, we may construct a model in which general relativity (GR) is
wrong. We may further suppose that there are multiple different ways in which it could
be wrong, each corresponding to a different GR-is-wrong sub-hypothesis. If we calculated
the odds ratio comparing one of these GR-is-wrong sub-hypotheses to the GR-is-right
hypothesis, we would not assign equal prior odds to both hypotheses. Rather, we would
assign at most 50% probability to the entire GR-is-wrong hypothesis, which would then
have to be split among the various sub-hypotheses.

mWe note here a few early papers important in the development of Bayesian inference
tools for gravitational-wave astronomy. Initial implementation of MCMC methods for
spinning binaries was carried out in van der Sluys et al. (2008a). The first demonstration of
Bayesian parameter estimation for spinning binaries was performed in van der Sluys et al.
(2008b). Veitch & Vecchio (2008) demonstrated Bayesian model selection for compact
binaries.

parameters describing a binary black hole merger. If we do this
naively, wemight create a grid with 10 bins in every dimension and
evaluate the likelihood at each grid point. Even with this coarse
resolution, our calculation suffers from ‘the curse of dimensional-
ity’. It is computationally prohibitive to carry out 1015 likelihood
evaluations. The problem becomes worse as we add dimensions.
As a rule of thumb, brute-force bin approaches become painful
once one exceeds three dimensions.

The solution is to use a stochastic sampler (although recent
work has shown progress carrying out these calculations using the
alternative technique of iterative fitting; Pankow et al. 2015; Lange,
O’Shaughnessy, & Rizzo 2018). Commonly used sampling algo-
rithms can be split into two broad categories of method: Markov
chain Monte Carlo (MCMC) (Metropolis et al. 1953; Hastings
1970) and nested sampling (Skilling 2004). These algorithms gen-
erate a list of posterior samples {θ} drawn from the posterior
distribution such that the number of samples on the interval
(θ , θ +
θ)∝ p(θ) (Veitch et al. 2015). Some samplers also pro-
duce an estimate of the evidence. We can visualise the posterior
samples as a spreadsheet. Each column is a different parameter, for
example, primary black hole mass, secondary black hole mass, etc.
For binary black hole mergers, there are typically fifteen columns.
Each row represents a different posterior sample.

Posterior samples have two useful properties. First, they can
be used to compute expectation values of quantities of interest
since (Hogg & Foreman-Mackey 2018)

〈f (x)〉p(x) =
∫

dx p(x) f (x)≈ 1
ns

ns∑
k

f (xk), (22)

where p(x) is the posterior distribution that we are sampling, f (x)
is some function we want to find the expectation value of, and the
sum over k runs over ns posterior samples. Eq. (22) will prove
useful simplifying our calculation of the likelihood of data given
hyper-parameters.

The second useful property of posterior samples is that, once
we have samples from an N-dimensional space, we can generate
the marginalised probability for any subset of the parameters by
simply selecting the corresponding columns in our spreadsheet.
This property is used to help visualise the output of these samplers
by constructing ‘corner plots’, which show the marginalised one-
and two-dimensional posterior probability distributions for each
of the parameters. For an example of a corner plot, see Figure 1. A
handy python package exists for making corner plots (Foreman-
Mackey 2016).

4.1. MCMC

MCMC sampling was first introduced in Metropolis et al. (1953)
and extended in Hastings (1970). For a recent overview of MCMC
methods in astronomy, see Sharma (2017). In MCMC methods,
particles undergo a random walk through the posterior distri-
bution where the probability of moving to any given point is
determined by the transition probability of the Markov chain.
By noting the position of the particles—or ‘walkers’ as they are
sometimes called—at each iteration, we generate draws from the
posterior probability distribution.

There are some subtleties that must be considered when
using MCMC samplers. First, the early-time behaviour of MCMC
walkers is strongly dependent on the initial conditions. It is
therefore necessary to include a ‘burn-in’ phase to ensure that
the walker has settled into a steady state before beginning to
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accumulate samples from the posterior distribution. Once the
walker has reached a steady state, the algorithm can continue
indefinitely and so it is necessary for the user to define a termina-
tion condition. This is typically chosen to be when enough samples
have been acquired for the user to believe an accurate representa-
tion of the posterior has been obtained. Thus, MCMC requires a
degree of artistry, developed from experience.

Additionally, the positions of a walker in a chain are often
autocorrelated. Because of this correlation, the positions of the
walkers do not represent a faithful sampling from the posterior
distribution. If no remedy is applied, the width of the posterior dis-
tribution is underestimated. It is thus necessary to ‘thin’ the chain
by selecting samples separated by the autocorrelation length of the
chain.

MCMC walkers can also fail to find multiple modes of a pos-
terior distribution if there are regions of low posterior probability
between the modes. However, this can be mitigated by running
many walkers which begin exploring the space at different points.
This also demonstrates a simple way to parallelise MCMC com-
putations to quickly generate many samples. Many variants of
MCMC sampling have been proposed in order to improve the per-
formance of MCMC algorithms with respect to these and other
issues. For a more in-depth discussion of MCMC methods, see
e.g. chapter 11 of Gelman et al. (2013), or Hogg & Foreman-
Mackey (2018). The most widely used MCMC code in astronomy
is EMCEE (Foreman-Mackey et al. 2013).n

4.2. Nested sampling

The first widely used alternative to MCMC was introduced
by Skilling (2004). While MCMC methods are designed to
draw samples from the posterior distribution, nested sampling is
designed to calculate the evidence. Generating samples from the
posterior distribution is a by-product of the nested sampling evi-
dence calculation algorithm. By weighting each of the samples
used to calculate the evidence by the posterior probability of the
sample, nested samples are converted into posterior samples.

Nested sampling works by populating the parameter space with
a set of ‘live points’ drawn from the prior distribution. At each
iteration, the lowest likelihood point is removed from the set of
live points and new samples are drawn from the prior distribu-
tion until a point with higher likelihood than the removed point is
found. The evidence is evaluated by assigning each removed point
a prior volume and then computing the sum of the likelihood
multiplied by the prior volume for each sample.

Since the nested sampling algorithm continually moves to
higher likelihood regions, it is possible to estimate an upper limit
on the evidence at each iteration. This is done by imagining that
the entire remaining prior volume has a likelihood equal to that
of the highest likelihood live point. This is used to inform the
termination condition for the nested sampling algorithm. The
algorithm stops when the current estimate of the evidence is
above a certain fraction of the estimated upper limit.o Unlike
MCMC algorithms nested sampling is not straightforwardly par-
allelisable, and posterior samples do not accumulate linearly with
run time.

nhttp://dfm.io/emcee/.
oIn practice, this is expressed as the difference between the calculated log evidence and

the upper limit of the log evidence.

5. Hyper-parameters and hierarchical models

As more and more gravitational-wave events are detected, it is
increasingly interesting to study the population properties of binary
black holes and binary neutron stars. These are the properties
common to all of the events in some set. Examples include the
neutron star equation of state and the distribution of black hole
masses. Hierarchical Bayesian inference is a formalism, which
allows us to go beyond individual events in order to study pop-
ulation properties.p

The population properties of some set of events is described
by the shape of the prior. For example, two population synthesis
models might yield two different predictions for the prior distri-
bution of the primary black hole mass π(m1). In order to probe
the population properties of an ensemble of events, we make the
prior for θ conditional on a set of ‘hyper-parameters’�:

π(θ |�). (23)

The hyper-parameters parameterise the shape of the prior dis-
tribution for the parameters θ . An example of a (parameter,
hyper-parameter) relationship is (θ = primary black hole massm1,
� = the spectral index of the primary mass spectrum α). In this
example

π(m1|α)∝mα
1 . (24)

A key goal of population inference is to estimate the posterior
distribution for the hyper-parameters �. In order to do this, we
marginalise over the entire parameter space θ in order to obtain a
marginalised likelihood:

L(d|�)=
∫

dθ L(d|θ) π(θ |�). (25)

Normally, we would call this completely marginalised likelihood
an evidence, but because it still depends on �, we call it the
likelihood for the data d given the hyper-parameters �. The
hyper-posterior is given simply by

p(�|d)= L(d|�) π(�)∫
d�L(d|�) π(�) . (26)

Note that we have introduced a hyper-prior π(�), which describes
our prior belief about the hyper-parameters �. The term in the
denominator

Z� ≡
∫

d�L(d|�) π(�) (27)

is the ‘hyper-evidence’, which we denote Z� in order to dis-
tinguish it from the regular evidence Zθ . In Appendix D we
discuss posterior predictive distributions (PPD), which represent
the updated prior on θ in light of the data d and given some
hyper-parameterisation.

We now generalise the discussion of hyper-parameters in order
to handle the case of N independent events. In this case, the
total likelihood for all N events Ltot is simply the product of each
individual likelihood

Ltot( �d|�θ)=
N∏
i

L(di|θi). (28)

pPossibly the earliest papers proposing to measure distributions of gravitational-wave
parameters are Mandel & O’Shaughnessy (2010) and Mandel (2010), while hierarchi-
cal Bayesian inference was introduced to study the population properties of sources of
gravitational waves in Adams, Cornish, & Littenberg (2012).
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Here, we use vector notation so that �d is the set of measurements
of N events, each of which has its own parameters, which make
up the vector �θ . Since we suppose that every event is drawn from
the same population prior distribution—hyper-parameterised by
�—the total marginalised likelihood is

Ltot( �d|�)=
N∏
i

∫
dθi L(di|θi) π(θi|�). (29)

The associated (hyper-) posterior is

ptot(�| �d)= Ltot( �d|�) π(�)∫
d�Ltot( �d|�) π(�) . (30)

The denominator, of course, is the total hyper-evidence:

Z tot
� =

∫
d�Ltot( �d|�) π(�). (31)

We may calculate the Bayes factor comparing different hyper-
models in the same way that we calculate the Bayes factor for
different models.

Examining Eq. (31), we see that the total hyper-evidence
involves a large number of integrals. For the case of binary black
hole mergers, every event has 15 parameters, and so the dimen-
sion of the integral is 15N +M taking where M is the number
of hyper-parameters in �. As N gets large, it becomes difficult to
sample such a large prior volume all at once. Fortunately, it is pos-
sible to break the integral into individual integrals for each event,
which are then combined through a process sometimes referred to
as ‘recycling’.

Thus, the total marginalised likelihood in Eq. (29) can be
written as follows:

Ltot( �d|�)=
N∏
i

Zø(di)
ni

ni∑
k

π(θ ki |�)
π(θ ki |ø)

. (32)

Here, the sum over k is a sum over the ni posterior samples
associated with event i. The posterior samples for each event are
generated with some default prior π(θk|ø). The default prior is
ultimately canceled from the final answer, so it not so important
what we choose for the default prior so long as it is sufficiently
uninformative. Using the ø prior, we obtain an evidenceZø. In this
way, we are able to analyse each event individually before recycling
the posterior samples to obtain a likelihood of the data given�.

To see where this formula comes from, we note that

p(θi|di, ø)= L(di|θi) π(θi|ø)
Zø(di)

. (33)

Rearranging terms,

L(di|θi)=Zø(di)
p(θi|di, ø)
π(θi|ø) . (34)

Plugging this into Eq. (29), we obtainq

Ltot( �d|�)=
N∏
i

∫
dθi p(θi|di, ø)Zø(di)

π(θi|�)
π(θi|ø) . (35)

Finally, we use Eq. (22) to convert the integral over θi to a sum over
posterior samples, thereby arriving at Eq. (32).

All of the results derived up until this point ignore selection
effects where an event with parameters θ1 is easier to detect than an

qOne ‘recycles’ the posterior samples generated using the π(θi|ø) prior in order to do
something new with the hyper-parameterised prior π(θi|�).

event with parameters θ2. There are cases where selection effects
are important. For example, the visible volume for binary black
hole mergers scales as approximately V ∝M2.1, which means that
higher mass mergers are relatively easier to detect than lower mass
mergers (Fishbach & Holz 2017). In Appendix E, we show how
this method is extended to accommodate selection effects.
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Appendix A. Credible intervals
It is often convenient to use the posterior to construct ‘credible intervals’,
regions of parameter space containing some fraction of posterior probabil-
ity. (Note that Bayesian inference yields credible intervals while frequentist
inference yields confidence intervals.) For example, one can plot one-, two-,
and three-sigma contours. By definition, a two-sigma credible region includes
95% of the posterior probability, but this requirement does not uniquely deter-
mine a single credible region. One well-motivated method for constructing
confidence intervals is the highest posterior density interval (HPDI) method.

We can visualise the HPDI method as follows. We draw a horizontal line
through a posterior distribution and calculate the area of above the line. If we
move the line down, the area goes up. If we place the line such that the area is
95%, then the posterior above the line is the HPDI two-sigma credible interval.
In general, the HPDI is neither symmetric nor unimodal. The advantage of
HPDI over othermethods is that it yields theminimumwidth credible interval.
This method is sometimes referred to as ‘draining the bathtub’.

Another commonly used method for calculating credible intervals is to
construct symmetric intervals. Symmetric credible intervals are constructed
using the cumulative distribution function,

P(x)=
∫ x

−∞
dx′ p(x′). (A1)

The X% credible region is the region:

1
2

(
1− X

100

)
< P(x)<

1
2

(
1+ X

100

)
. (A2)

While symmetric credible intervals are simpler to construct than HPDI, par-
ticularly from samples drawn from a distribution, they can be misleading
for multi-modal distributions and for distributions which peak near prior
boundaries.

Credible intervals are useful for testing and debugging inference projects.
Before applying an inference calculation to real data, it is useful to test it on
simulated data. The standard test (see e.g. Sidery et al. 2014) is to simulate data
d according to parameters θtrue drawn at random from the prior distribution
π(θ). Then, we analyse this data in order to obtain a posterior p(θ |d). The
true value should fall inside the 90% credible interval 90% of the time. Testing
that this is true provides a powerful validation of the inference algorithm. Note
that we do not expect the posterior to peak precisely at θtrue, just within the
one-sigma region.

Appendix B. Gaussian noise likelihood
In this appendix, we introduce additional notation that is helpful for talk-
ing about the Gaussian noise likelihood frequently used in gravitational-wave
astronomy. In the main body of the manuscript, d has been taken to represent
data. Now, we take d to represent the Fourier transform of the strain time series
d(t) measured by a gravitational-wave detector. In the language of computer
programming,

d = fft
(
d(t)

)
/fs, (B1)

where fs is the sampling frequency and fft is a Fast Fourier transform. The
noise in each frequency bin is characterised by the single-sided noise power
spectral density P(f ), which is proportional to strain squared and which has
units of Hz−1.

The likelihood for the data in a single frequency bin j given θ is

L(dj|θ)= 1√
2πPj

exp

(
−2
f

∣∣dj −μj(θ)
∣∣2

Pj

)
, (B2)

where 
f is the frequency resolution. The factor of 2
f comes about from a
factor of 1/2 in the normal distribution and a factor of 4
f needed to convert
the square of the Fourier transforms into units of one-sided power spectral
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density. The template μ(θ) is related to the metric perturbation h+,×(θ) via
antenna response factors F+,× (Anderson et al. 2001):

μ(θ)= F+(RA, DEC,ψ)h+(θ)+ F×(RA, DEC,ψ)h×(θ). (B3)

Gravitational-wave signals are typically spread over many (M) frequency
bins. Assuming the noise in each bin is independent, the combined likelihood
is a product of the likelihoods for each bin:

L(d|θ)=
M∏
j
L(dj|θ), (B4)

where d is the set of data including all frequency bins and dj represents the data
associated with frequency bin j. If we consider a measurement with multiple
detectors, the product over j frequency bins gains an additional index l for each
detector. Combining data from different detectors is like combining data from
different frequency bins.

It is frequently useful to work with the log likelihood, which allows us
to replace products with sums of logs. The log also helps dealing with small
numbers. The log likelihood is

logL(d|θ)=
M∑
j

logL(dj|θ)

= − 1
2
∑
j

log
(
2πPj

)− 2
f
∑
j

(d −μ(θ))2

P2j

= − 1
2
〈d −μ(θ), d −μ(θ)〉.

In the last line, we define the noise-weighted inner productr (Cutler & Flanagan
1994):

〈a, b〉 ≡ 4
f
∑
j

�
(
a∗
j bj
Pj

)
, (B5)

and the constant

 ≡ − 1
2
∑
j

log
(
2πPj

)
. (B6)

Since constants do not change the shape of the log likelihood, we often ‘leave
off ’ this normalising term and work with log likelihood minus  . This is per-
missible as long as we do so consistently because when we take the ratio of two
evidences—or equivalently, the difference of two log evidences—the  factor
cancels anyway. For the remainder of this appendix, we set = 0. Now that we
have introduced the inner product notation, we are going to stop bold-facing
the data d as it is implied that we are dealing with many frequency bins.

Using the inner product notation, we may expand out the log likelihood:

logL(d|θ)= − 1
2
[〈d, d〉 − 2〈d,μ(θ)〉 + 〈μ(θ),μ(θ)〉]

= − 1
2

[
−2 logZN − 2κ2(θ)+ ρ2opt(θ)

]
= logZN + κ2(θ)− 1

2
ρ2opt(θ). (B7)

We see that the log likelihood can be expressed with three terms. The first is
proportional to the log noise evidence:

− 2 logZN ≡ 〈d, d〉. (B8)

For debugging purposes, it is useful to keep in mind that if we calculate
− logZN on actual Gaussian noise (with  = 0), we expect a typical value
nearly equal to the number of frequency bins M (multiplied by the number
of detectors) since each term in the inner product contributes a value close to
unity.s We skip over the second term κ2 for a moment. The third term is the
optimal matched filter signal-to-noise ratio squared:

ρ2opt ≡ 〈μ,μ〉. (B9)

rFollowing the convention of gravitational-wave astronomy, our inner product is
real by construction. However, below it will be useful to define a complex-valued inner
product; see Eq. (C10).

sSpecifically, the distribution of an ensemble of independent − lnZN is a normal
distribution with mean M and width M1/2 where M is the number of frequency bins
(multiplied by the number of detectors). This follows from the central limit theorem.

Returning now to the second term, we express κ2 as the product of thematched
filter signal-to-noise ratio and the optimal signal-to-noise ratio:

κ2 ≡ 〈d,μ〉
= ρmf ρopt, (B10)

where

ρmf ≡ 〈d,μ〉
〈μ,μ〉1/2 . (B11)

Readers familiar with gravitational-wave astronomy are likely acquainted
with the concept of matched filtering, which is the maximum likelihood tech-
nique for gravitational-wave detection. By writing the likelihood in this way, we
highlight how parameter estimation is related to matched filtering. Rapid eval-
uation of the likelihood function in Eq. (B7) has been made possible through
reduced order methods (Smith et al. 2016; Pürrer 2014; Canizares et al. 2013).

Appendix C. Explicitly marginalised likelihoods
Themost computationally expensive step in computing the likelihood for com-
pact binary coalescences is creating the waveform template (μ in Eq. (5)). This
is done in two steps. The first step is to use the intrinsic parameters to calculate
the metric perturbation. The second (much faster) step is to use the extrinsic
parameters to project the metric perturbation onto the detector response ten-
sor. In some cases, it is possible to reduce the dimensionality of the inverse
problem—thereby speeding up calculations and improving convergence—by
using a likelihood, which explicitly marginalises over extrinsic parameters.
The improvement is especially marked for comparatively weak signals, which
can be important for population studies (see e.g. Smith & Thrane 2018). In
this appendix, we show how to calculate Lmarge—a likelihood, which explic-
itly marginalise over coalescence time, phase at coalescence, and/or luminosity
distance. We continue with notation introduced in Appendix B.

C.1. Timemarginalisation

In this subsection, we follow Farr (2014) to derive a likelihood, which explicitly
marginalises over time of coalescence t. Given a waveform with a reference
coalescence time of t0, we can calculate the waveform at some new coalescence
time t by multiplying by the appropriate phasor:

μj(t)=μj(t0) exp
(

−2π ij
(t − t0)

T

)
, (C1)

where T = 1/
f is the duration of data segment and j is the index of the fre-
quency bin as in Appendix B. It is understood that μ is a function of whatever
parameters we are not explicitly marginalising over. We can therefore write κ2
(see Eq. B10) as

κ2(t)≡ 〈d,μ(t)〉

= 4
f�
M∑
j

d∗
j μj(t0)
Pj

exp
(

−2π ij
(t − t0)

T

)
.

(C2)

However, this sum is the discrete Fourier transform. By recasting this equation
in terms of the fast Fourier transform fft, it is possible to take advantage of a
highly optimised tool.

We discretise t − t0 = k
t where k takes on integer values between 0
and M = T/
t. Having made this definition, marginalising over coalescence
time becomes summing over k. The variable κ2 is a function of (discretised)
coalescence time k. We can write in terms of a fast Fourier transform:

κ2(k)= 4
f�
M∑
j

d∗
j μj(t0)
Pj

exp
(

−2π ij
k
t
M

)

= 4
f� fftk

(
d∗
j μj(t0)
Pj

)
,

(C3)

where fftk refers to the k bin of a fast Fourier transform.
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The other terms in Eq. (B7) are independent of the time at coalescence of
the template. The marginalised likelihood is therefore

logLt
marg = log

∫ t0+T

t0
dt L(θ , t)

= logZN − 1
2
ρ2opt(θ)+ log

∫ t0+T

t0
dt eκ

2(θ ,t)π(t)

= logZN − 1
2
ρ2opt(θ)+ log

M∑
k

eκ
2(θ ,k)πk,

(C4)

where πk is the prior on the discretised coalescence time.
Caution should be taken to avoid edge effects. If we employ a naive prior,

the waveform will exhibit unphysical wrap-around. Similarly, care must be
taken to ensure that the time-shifted waveform is consistent with time-domain
data conditioning (e.g. windowing). (This is usually not a problem for confi-
dent detections because the coalescence time is well-known and so the segment
edges can be avoided.) A good solution is to choose a suitable prior, which is
uniform over some values of k, but with some values set to zero in order to
prevent the signal from wrapping around the edge of the data segment. Note
that Eq. (C1) breaks down for when the detector changes significantly over T
due to the rotation of the Earth. It can also fail in the high signal-to-noise ratio
limit when the t array becomes insufficiently fine-grained.

C.2. Phase marginalisation

In this subsection, we follow Veitch & Del Pozzo (2013) (see also Veitch
et al. (2015)) to derive a likelihood, which explicitly marginalises over phase
of coalescence φc. To begin, we assume a gravitational-waveform approximant
consisting entirely of the dominant �= 2, |m| = 2 modes so thatt

μ=μ22 +μ2−2. (C6)

This is a valid assumption e.g. for the widely used waveform approximants—
e.g. TAYLORF2 (Damour, Iyer, & Sathyaprakash 2005), IMRPHENOMD (Khan
et al. 2016), and IMRPHENOMP (Hannam et al. 2014)—but not for wave-
forms that employ higher order modes (e.g. Blackman et al. 2017). Given this
approximation,u

μ(φc)= e2iφcμ(φc = 0). (C8)

The optimal signal-to-noise ratio ρopt is invariant under rotations in φc.
However, the matched filter signal-to-noise ratio is not. Thus, the phase-
marginalised likelihood is

Lφcmarg =ZN − exp
(
1
2
ρ2opt

)

+
∫ 2π

0
dφc exp

( 1
2
〈
d,μ(φc)

〉+ 1
2
〈
μ(φc), d

〉)
π(φc).

(C9)

t The variables μ22 and μ2−2 are defined as follows:

μ�m ≡ F+�
(
h�m(θ) −2Y�m(ι, φ)

)

+ F×�
(
h�m(θ) −2Y�m(ι, φ)

)
. (C5)

They depend on the metric perturbation h�m and the antenna response functions F+,× .
The variable −2Y�m(ι, φ) is a spin-weighted spherical harmonic function, evaluated the
inclination angle ι and azimuthal angle φ of the observer. Without loss of generality, we
can set φ = 0, which establishes a coordinate frame. Having defined this frame, we may
rotate the binary by the phase of coalescence φc in order to change the phase of the signal
observed at Earth.

uWe emphasise that the phase at coalescence is distinct from φ, the azimuthal angle to
the observer in the source frame, which transforms differently:

μ(φ)= e2iφμ22(φ = 0)+ e−2iφμ2−2(φ = 0). (C7)

The variable φc calibrates the time evolution of the gravitational waveform observed at
Earth, while φ describes how the waveform varies at a fixed time for observers at different
spatial locations (corresponding to different azimuthal angles).

Using Eq. (C8), we can rewrite the phase-marginalised likelihood:

Lφcmarg =
∫ 2π

0
dφc exp

( 1
2
〈
d,μ(φc = 0)

〉
C
exp (2iφc)+

1
2
〈
μ(φc = 0), d

〉
C
exp (− 2iφc)

)
π(φc)

+ · · ·
The parts that do not depend on φc are implied by the ellipsis. Here we
introduce the ‘complex inner product’ denoted with a subscript C:

〈a, b〉C ≡ 4
f
∑
j

(
a∗
j bj
Pj

)
, (C10)

which is identical to the regular inner product defined in Eq. (B5) except we do
not take the real part in order to preserve phase information that will be useful
later on. Employing a uniform prior on φc and grouping terms, the integral can
be rewritten yet again:

Lφcmarg =
∫ 2π

0

dφc
2π

exp
(
A cos (2φc)+ B sin (2φc)

)
+ · · · , (C11)

where

A≡ �〈d,μ(φc = 0)
〉
C
, (C12)

B≡ �〈d,μ(φc = 0)
〉
C
. (C13)

The integral yields modified Bessel function of the first kind:

I0
(√

A2 + B2
)

= 1
2π

∫ 2π

0
dφ eAcφ+Bsφ . (C14)

Thus, we have √
A2 + B2 =

√
�〈d,μ(0)〉2

C
+ �〈d,μ(φc = 0)

〉2
C

= ∣∣〈d,μ(φc = 0)
〉
C

∣∣
= ∣∣κ2

C

∣∣ , (C15)

where κ2
C
is calculated the same way as κ (Eq. B10), except we use a complex

inner product. The φc marginalised likelihood becomes

logLφmarg = logZN − 1
2
ρ2opt + log I0(|κ2C|). (C16)

We reiterate that this marginalised likelihood is valid only insofar as we trust
our initial assumption, that the signal is dominated by l= 2, |m| = 2 modes.

C.3. Distance marginalisation

In this subsection, we follow Singer & Price (2016) (see also Singer et al. 2016)
to derive a likelihood, which explicitly marginalises over luminosity distance
DL. Given a waveform at some reference distance μ(D0), the waveform at an
arbitrary distance is obtained by multiplication of a scale factor:

μj(DL)=μj(D0)
(
D0
DL

)
. (C17)

As before, it is understood that μ is a function of whatever parameters are not
explicitly marginalising over. Unlike time and phase, distance affects ρopt in
addition to κ2 (Eq. B10),

κ2(DL)= κ2(D0)
(
D0
DL

)
,

ρ2opt(DL)= ρ2opt(D0)
(
D0
DL

)2
.

(C18)

Note that κ2 and ρopt are implicit functions of whatever parameters we are not
explicitly marginalising over.

At a fixed distance, the likelihood is

logL(DL)= logZN + κ2(DL)− 1
2
ρ2opt(DL), (C19)

and the likelihood marginalised over luminosity distance is

logLD
marg = logZN + logLD, (C20)
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where

LD(κ2, ρopt)≡
∫

dDL eκ
2(DL)− 1

2 ρ
2
opt(DL)π(DL). (C21)

This integral to calculate logLD can be evaluated numerically. This explic-
itly marginalised form is generally true for all gravitational-waves sources. Its
validity is only limited by the resolution of the numerical integral, though, cos-
mological redshifts adds additional complications, which we discuss in the next
subsection. One can construct a pre-computed lookup table logLD(ρmf, ρopt)
to facilitate fast and precise evaluation.

C.4. Distance marginalisation with cosmological effects

There is a caveat for our discussion of distance marginalisation in the previ-
ous subsection: when considering events at cosmological distances, the prior
distributions for lab-frame masses become covariant with luminosity distance
DL due to cosmological redshift. A signal emitted with source-frame mass ms
is observed with lab-frame mass given by

ml = (1+ z)ms. (C22)

In this subsection, ‘mass’ m is shorthand for an array of both primary and
secondary mass.

Now we derive an expression for LD
marg, which can be applied to cosmo-

logical distances. We start by specifying the prior on redshift and source-frame
massv:

π(z,ms)= π(z)π(ms). (C23)

Both π(z) and π(ms) can be chosen using astrophysically motivated priors
(see e.g. Talbot & Thrane 2018; Fishbach & Holz 2017; Fishbach, Holz, & Farr
2018). Whatever priors we choose for π(z) and π(ms), they imply some prior
for the lab-frame mass:

π(z,ml)= π
(
z,ml/(1+ z)

) ∣∣∣∣dms
dml

∣∣∣∣
= (1+ z)−1π

(
z,ml/(1+ z)

)
. (C24)

Now that we have converted the source-frame prior into a lab-frame
prior, we can write down the distance-marginalised (redshift-marginalised)
likelihood in terms of lab-frame quantities:

Lz
marge(κ

2, ρopt)=
∫

dzL(κ2, ρopt, z)π(z|ml), (C25)

where

L(κ2, ρopt, z)=ZN eκ
2(DL(z))− 1

2 ρ
2
opt(DL(z)). (C26)

Note that κ2 and ρopt are implicit functions of whatever parameters we are not
explicitly marginalising over.

By creating a grid of z, we can create a look-up table for L(κ2, ρopt, z),
which allows for rapid evaluation of Eq. (C25). However, this means we will
also need to create a look-up table for π(z|ml). In order to derive this look-up
table, we rewrite the joint prior on redshift and lab-framemass can be rewritten
as follows:

π(z,ml)= π(z|ml)π(ml). (C27)

The marginalised lab-mass prior is

π(ml)≡
∫

dz π(z,ml), (C28)

which can be calculated numerically. (We also need this distribution to provide
to the sampler.) Thus, the conditional prior we need for our look-up table is as
follows:

π(z|ml)= π(z,ml)/π(ml). (C29)

vMany previous analyses have assumed that this distribution is separable; however, this
marginalisation technique does not require this.

With look-up tables for L(κ2, ρopt, z) and π(z|ml), the sampler can quickly
evaluate Lz

marge by summing over the grid of z:

Lz
marg(κ

2, ρopt)=
z
∑
k

L(κ2, ρopt, zk)π(zk|ml), (C30)

where
z is the spacing of the redshift grid. This allows us to carry out explicit
distance marginalisation while taking into account cosmological redshift.

C.5. Marginalisation with multiple parameters

One must take care with the order of operations when implementing these
marginalisation schemes simultaneously. We describe how to combine the
three marginalisation techniques described above. The correct procedure is to
start with Eq. (C16) and then marginalise over distance:

logLφ,Dmarg = logZN

+ log
∫

dDLeI0(|κ
2
C
(DL)|)− 1

2 ρ
2
opt(DL)π(dDL).

(C31)

Carrying out this integral numerically, one obtains a look-up table
logLφ,Dmarge(κ2C, ρopt), which marginalises over φ and DL. Finally, we add in t
marginalisation by combining the look-up table with a fast Fourier transform:

Lφ,D,tmarg(κ
2
C
, ρopt)=

∑
k
πk Lφ,Dmarg

(
κ2
C
(k), ρopt(k)

)
. (C32)

C.6. Reconstructing the unmarginalised posterior

While explicitly marginalising over parameters improves convergence and
reduces runtime, the sampler will generate no posterior samples for the
marginalised parameters. Sometimes, we want posterior samples for these
parameters. In this subsection, we explain how it is possible to generate them
with an additional post-processing step.

The parameter we are most likely to be interested in reconstructing is
the luminosity distance DL. Let us assume for the moment that this is the
only parameter over which we have explicitly marginalised. The first step to
calculate the matched filter signal-to-noise ratio ρmf and optimal signal-to-
noise ratio ρopt for each sample. For one posterior sample k, the likelihood
for distance is

Lk(d|DL)=ZN eκ
2(θk ,DL)− 1

2 ρ
2
opt(θk ,DL), (C33)

where κ2(DL) and ρopt(DL) are defined in Eq. (C18). (When comparing with
Eq. (C18), note that we have again made explicit the dependence on θk = what-
ever parameters we are not explicitly marginalising over.) Since this likelihood
is one-dimensional, it is easy to calculate the posterior for sample k using Bayes’
theorem:

pk(DL|d)= L(d|DL)π(DL)∫
dLL(d|DL)π(DL)

. (C34)

Using the posterior, one can construct a cumulative posterior distribution for
sample k:

Pk(DL|d)=
∫

dDL pk(DL|d). (C35)

The integral can be carried out numerically. The cumulative posterior dis-
tribution can be used to generate random values of DL for each posterior
sample:

DL = P−1
k (rand). (C36)

Reconstructing the likelihood or posterior when multiple parameters have
been explicitly marginalised over is more complicated. However, one may use
the following iterative algorithm:

1. For each sample θk marginalise over all originally marginalised parameters
except one (λ).

2. Draw a single λ sample from the marginalised likelihood times prior.
3. Add this λ sample to the θk and return to step 1, this time not marginalising

over λ.
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Alternatively, one can skip the step of generating new samples in distance
and calculate the likelihood of the data given DL marginalised over all other
parameters,

L(d|DL)= 1
n

n∑
k

Lk(d|DL)

= ZN
n

n∑
k

e
κ2(θk ,DL)−

1
2
ρ2opt(θk ,DL)

. (C37)

This likelihood can be used in Eq. (29) to perform population inference on the
distribution of source distances and/or redshifts.

Appendix D. Posterior predictive distributions
The PPD represents the updated prior on the parameters θ given the data d.
Recall that the hyper-posterior p(�|d) describes our post-measurement knowl-
edge of the hyper-parameters that describe the shape of the prior distribution
π(θ). The PPD answers the question: given this hyper-posterior, what does the
distribution of π(θ) look like? More precisely, it is the probability that the next
event will have true parameter values θ given what we have learned about the
population hyper-parameters�:

p�(θ |d)=
∫

d� p(�|d) π(θ |�). (D1)

The � subscript helps us distinguish the PPD from the posterior p(θ |d). The
hyper-posterior sample version is

p�(θ |d)= 1
ns

ns∑
k
π(θ |�k), (D2)

where k runs over ns hyper-posterior samples. While the PPD is the best guess
for what the distribution π(θ) looks like, it does not communicate information
about the variability possible in π(θ) given uncertainty in�. In order to convey
this information, it can be useful to overplot many realisations of π(θ |�k),
where�k is a randomly selected hyper-posterior sample. An example of a PPD
is included in Figure 2.

Appendix E. Selection Effects
In this section, we discuss how to carry out inference while taking into account
selection effects, which arise from the fact that some events are easier to detect
than others. We loosely follow the arguments from Abbott et al. (2016a); how-
ever, see also Mandel, Farr, & Gair (2018) and Fishbach et al. (2018). In Section
E.1, we discuss selection effects in the context of an individual detection. In
Section E.2, we generalise these results to populations of events.

E.1. Selection effects with a single event

Some gravitational-wave events are easier to detect than others. All else equal,
it is easier to detect binaries if they are closer, higher mass (at least, up
until the point that they start to go out of the observing band), and with
face-on/off inclination angles. More subtle selection effects arise due to black
hole spin (e.g. Ng et al. 2018). Typically, a gravitational-wave event is said
to have been detected if it is observed with a matched-filter signal-to-noise
ratio—maximised over extrinsic parameters θextrinsic—above some threshold
ρth:

ρ′
mf ≡ max

θextrinsic
(ρmf) > ρth. (E1)

Usually, ρth = 8 for a single detector or ρth = 12 for a ≥ 2 detector network.
Focusing on events with a ρmf >ρth detection forces us to modify the

likelihood function:

L(d|θ , det)=
{

1
pdet(θ)

L(d|θ) ρ′
mf(θ)≥ ρth

0 ρ′
mf(θ)<ρth

, (E2)

Figure 2: Top: an example corner plot from Talbot and Thrane
(2018) showing posteriors for hyper-parameters μpp and σpp.
These two hyper-parameters describe, respectively, the mean and
width of a peak in the primary mass spectrum due to the presence
of pulsational pair instability supernovae. Bottom: an example of
a posterior predictive distribution (PPD) for primary black hole
mass, calculated using the hyper-posterior distributions in the top
panel (adapted from Talbot and Thrane (2018)). The PPD has a
peak nearm1 = 35 because the hyper-posterior for μpp is maximal
near this value. The width of the PPD peak is consistent with the
hyper-posterior for σpp.

where

pdet(θ)≡
∫
ρ′
mf(θ)>ρth

ddL(d|θ). (E3)

(Here, we temporarily switch to data = d to avoid confusing data with the dif-
ferential d; we switch back to data = d in a moment once we are finished with
this normalisation constant.) This modification enforces the fact that we are
not looking at data with ρ′

mf <ρth. The pdet factor ensures that the likelihood
is properly normalised.

There are different ways to calculate pdet in practice. The probability den-
sity function for ρmf given θ—the distribution of ρmf arising from random
noise fluctuations—is a normal distribution with mean ρopt and unit variance:

p(ρ′
mf|θ)=

1
2π

exp
(

− 1
2

(
ρ′
mf − ρopt(θ)

)2)
, (E4)
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Figure 3: The distribution of matched filter signal-to-noise ratio
maximised over phase for the same template in many noise reali-
sations (blue). The distribution peaks at ρopt = 7.6 (dashed black).
The theoretical distribution (Eq. E4) is shown in orange.

see Figure 3. Thus, we have

pdet(θ)=
∫ ∞

ρth

dx
1√
2π

exp
(

− 1
2

(
x− ρopt(θ)

)2)
(E5)

= 1
2
erfc

(
ρth − ρopt(θ)√

2

)
. (E6)

Alternatively, if we are interested in the selection effects of intrinsic param-
eters, one may express pdet as the ratio of the ‘visible volume’ V(θ) to the total
spacetime volume Vtot:

pdet(θ)= V(θ)
Vtot

. (E7)

The visible volume is typically calculated numerically with injected signals.

E.2. Selection effects with a population of events

When considering a population of events, Eq. (E2) generalises to

L(d,N|�, det)=
{

1
pdet(�|N)L(d,N|�, R). ρmf ≥ ρth
0 ρmf <ρth

. (E8)

In analogy to Eq. (E7), the pdet normalisation factor can be calculated using
the visible volume as a function of the hyper-parameters�:

V(�)≡
∫

dθV(λ)π(θ |�). (E9)

Naively, one might expect that

pdet(�|N)=
(V(�)

Vtot

)N
, (E10)

but this expression is incorrect because it does not marginalise over the
Poisson-distributed rate, which ends up changing the answer. Marginalising
over the rate, we obtain

pdet(�|N)=
∫

dR
(V(�)

Vtot

)N
π(N|R)π(R)

=
∫

dR
(V(�)

Vtot

)N [
e−RV(�) V(�)NRN

N!
]
π(R)

=
(V(�)

Vtot

)N [∫
dR e−RV(�) V(�)NRN

N!
]
π(R). (E11)

Note that pdet depends on our prior for the rate R. If we choose a uniform-in-
log prior π(R)∝ 1/R, we obtain

pdet(�|N)∝
(V(�)

Vtot

)N
, (E12)

which reproduces the results from Abbott et al. (2018a). Note that

L(d|�, det) �=
∫

dθL(d|θ , det) π(θ |�). (E13)
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