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Asymptotic behaviour of large-scale solutions of
Hitchin’s equations in higher rank

Takuro Mochizuki® and Szilard Szabd

ABSTRACT

Let X be a compact Riemann surface. Let (£, 0) be a stable Higgs bundle of degree
0 on X. Let hqey(p)y denote a flat metric of the determinant bundle det(E). For any
t >0, there exists a unique harmonic metric hy of (E,tf) such that det(h;) = hgey(E)-
We prove that if the Higgs bundle is induced by a line bundle on the normalization
of the spectral curve, then the sequence h; is convergent to the naturally defined
decoupled harmonic metric at the speed of the exponential order. We also obtain a
uniform convergence for such a family of Higgs bundles.
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1. Introduction

1.1 Background
Let X be a Riemann surface. Let (F,dg,f) be a Higgs bundle of rank r on X. Let h be a
Hermitian metric of E. We obtain the Chern connection V of (E, dg, h) and the adjoint 9;2 of

¢ with respect to h. Let R(h) denote the curvature of Vj,. The metric h is called a harmonic
metric of (F,dg, 0) if

R(h) +16,6]]=0.
The metric h is called a decoupled harmonic metric of (E, dg, 0) if
R(h)=[0,0}] =0.

Suppose that X is compact and that (FE,dg,0) is stable of degree 0. Let Yge denote
the spectral curve of (E,#). We assume that (E,dg, ) is generically regular semisimple, i.e.
D(E,0)={Pec X ||Tp X NXEg| <r} is a finite subset of X.

Let hget(z) be a flat metric of det(£). According to Hitchin [Hit87] and Simpson [Sim88],
(E,dg,0) has a unique harmonic metric h such that det(h) = hqey(p). Because (E, g, t0) is
stable of degree 0 for any t >0, there exists a unique harmonic metric h; of (E,Jg,tf) for
any t >0 such that det(h) = hger(py. We are interested in the behaviour of h; as t — oo. See
[GMN10], [KNP15] and [MSW16] for the motivation for this study. It is related to the geometric
P=W conjecture [Sza2l, Sza22]. See also helpful survey papers [Lil9, Swo21].

For any simply connected relatively compact open subset K of X \ D(FE, ), there exists a
decomposition of the Higgs bundle

r
(B, 05,9)x =P (Ex.i, b, ., 0 .) (1)
i=1
such that rank Ex ; = 1. According to [Mocl6], there exist C(K) >0, ¢(K) > 0 such that
|7 (u, v)| < C(K) exp(—e(K)t)|uln, [v]n,

for any local sections u and v of Fk; and Eg ; (i# j) in the decomposition (1). This implies
that there exist C'(K) >0 and ¢ (K) > 0 such that
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[R(h) iy, = 110,6], 11, < C'(K) exp(—€' (K)t).

As a result, for any sequence t(i) — oo, there exist a subsequence ¢'(j) — oo and gauge transfor-
mations g, ;) such that the sequence gy, (j)ht/(j) is convergent to a decoupled harmonic metric of
(E,0p,0)x\p(k,0) in the C®-sense locally on X \ D(E, 6).

We may ask the following questions under appropriate assumptions.

Q1 Is there a sequence of gauge transformations g; such that gjh; is convergent as t —
oo locally on X \ D(E, ). In other words, is the limit independent of the choice of a
subsequence?

Q2 Let K C X \ D(FE,0) be any relatively compact open subset. Then, is the order of the
convergence on K dominated by e 95 for some & (K)>07

In the rank two case, under the assumption that ¥y is smooth, Mazzeo et al. [MSW16]
solved the both questions completely. In [Moc16], the question Q1 was solved without assuming
the smoothness of the spectral curve. In the higher rank case, Collier and Li [CL17] solved both
questions for cyclic Higgs bundles. Fredrickson [Fred] studied both questions when the spectral
curve is smooth, under a mild assumption on the ramification of the spectral curve over X (see
Remark 1.2 and [Fred, Proposition 2.2, (2.9)]).

Remark 1.1. Chronologically, the study [Moc16] was inspired by the previous research in [CL17],
[KNP15] and [MSW16].

Remark 1.2. Let Q € ¥ be a critical point of 7: ¥y — X. Put P=n(Q). Let (Xp, z) be
a coordinate neighbourhood around P. By using the holomorphic 1-form dz, we obtain the
trivialization T Xp ~C x Xp. Let Yy denote the connected component of T*XpNXgy
which contains Q. We may assume that X g g o NTHXp = {Q} and that Xg g ¢ is holomorphically
isomorphic to a disc. Let r(Q) denote the degree of Ygggo— Xp. There exist holomorphic
functions a; (=0,...,7(Q) — 1) on Xp such that

r(Q)—1
Ypoo=14 (y,2)eCx Xp y' (@ 4 Z a;(2)y’ =0
j=0
Because T*XpNYXgg o ={Q}, there exists a € C such that
r(Q)-1 ‘
QO+ " a0y =(y— )9 (2)
§=0

The smoothness of X5 ¢ ¢ is equivalent to the condition that ag(z) — (—a)"(@ has a simple 0
at z=0. To study the local property of ¥g g ¢ around ) and 6 around P, we may assume that
a =0 by considering 0|x, — adz -idg . Moreover, we may assume that a,(g)_1 is constantly 0
by considering 6| x, — r(Q)*lar(Q)_l dz -idg,,, . By changing the coordinate z to w(z) satisfying
w(0) =0 and w(d,w)" @) =—ag(z), we may assume that ag(z) =—2z. In general, a; (1<j<
r(Q) — 2) are not constantly 0.

1.2 Main results

1.2.1 The symmetric case As a first main result, let us mention that if (E, 0, §) has a non-
degenerate symmetric pairing C, then both questions Q1 and Q2 are extremely easy to answer.
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As explained in [LM10b], there exists a unique decoupled harmonic metric h¢ of (E, )| x\D(E,9)
which is compatible with C'. By using a variant of Simpson’s main estimate and an elementary
linear algebraic argument in §3.1, we can answer both questions Q1 and Q2, and the limit is
hC in this case. The following theorem is a special case of Corollary 3.5.

THEOREM 1.3. Let K be any relatively compact open subset of X\ D(E,#). Let s(h®, hy)
denote the automorphism of Ex\pg,s determined by ht:hc~s(hc,ht). For any (€ Zxy,
there exist positive constants C(¢, K) and e(¢, K) such that the L?-norm of s(h®, h;) —id on
K is dominated by C(¢, K) exp(—e(¢, K)t) as t — 0.

For example, we may apply this theorem to a Higgs bundle contained in the Hitchin section
because it has a canonical non-degenerate symmetric pairing.

Indeed, in Theorem 1.3, we do not need to assume that X is compact. See Theorem 3.4 and
Corollary 3.5 for the precise statements. These results are also technically useful, which will be
applied to the third main result (see §1.2.3 and 1.2.4).

1.2.2 The irreducible case The second main result in this paper is an affirmative answer to
question Q1 in the case that the spectral curve is locally and globally irreducible.

We obtain the ideal sheaf Z(X g p) C Op-x of ¥gg. We say that ¥ g is locally irreducible
if the stalks Z(Xgg)p (P €Xpgyg) are prime ideals. It is equivalent to the condition that for
any P € Xp g the germ of X g at P cannot be expressed as the union of two distinct germs of
non-empty complex analytic subsets. (See [GR84, §4.1].) We say that X g is globally irreducible
if it cannot be expressed as the union of two distinct closed analytic non-empty subsets. The
two conditions are independent, in general. Under the assumption that (£, 6) is stable, ¥ g is
locally irreducible if and only if it is globally irreducible.

THEOREM 1.4 (Corollary 7.7). Suppose that g g is locally irreducible. Then, the sequence hy
is convergent to a decoupled harmonic metric ho, in the C*-sense locally on X \ D(E, 0).

See Theorem 7.5 for the more general statement.

More precisely, we canonically construct a filtered bundle P} (V) over V= E(xD(E,)) in an
algebraic way from (F, 0) such that (i) (P5(V), ) is a decomposable filtered Higgs bundle in the
sense of Definition 5.10, (ii) (P} (V), ) is stable of degree 0 and (iii) det(P}V) equals the filtered
bundle naturally induced by det(E). There exists a unique decoupled harmonic metric ho, of
(E,0)x\p(E,0) adapted to P;(V) such that det(he) = hger(r)- We shall prove that the sequence
h is convergent to hoo as t — oo on X \ D(E, 0).

An outline of the proof is as follows. Let P € D(FE, ). Let Xp be a small neighbourhood of
P in X. By a theorem of Donaldson [Don92], there exists a harmonic metric hp; of (E, 9, t0)x,
such that hpyox, = hoojox,- According to Proposition 6.6, the sequence hp; is convergent to
hoo|xp\{pP} in the C*-sense locally on Xp \ {P} as t — co. As in [MSW16], by patching hp; and

hoo, We construct a family of Hermitian metrics hy (¢t >0) of E such that (i) det(hy) = het(E) s
(i) limy o0 by = hoo on X \ D(E, 0) and (iii) [|R(h) + [t6, (¢6)] ]| = 0. Let s(hs, hy) denote the

automorphism of E determined by h; = he - s(ﬁt, ht). Then, we shall prove that sup X(s(ﬁt, he) —
idg) — 0 by essentially the same argument as that in [Moc16].

Because of the assumption of the local irreducibility of ¥ g g, it is easy to find the candidate
of ‘the limiting configuration’ hs. In the rank two case, the Higgs bundle (F, 9)| X, is easy to
understand. There is a homogeneous wild harmonic bundle (E/, 8%, hs) on (P!, 00) such that
the restriction of (E, ) to a neighbourhood of 0 is isomorphic to (E, 0)|x,., where we consider
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an S'-action on P! induced by (a, 2) — a™z for some m € Z~g. (See [Moc21, §8] for homogeneity
of harmonic bundles with respect to an S'-action.) The special case is a fiducial solution in
[MSW16]. In [Moc16], the restriction of h’, was useful in the construction of approximate solu-
tions 7Lt. In the higher rank case, the Higgs bundle (£, #),x,, is more complicated even under the
assumption of local irreducibility. It does not seem that the approximation by a homogeneous
wild harmonic bundle can work well. Therefore, we develop a way to use the solutions of the
boundary-value problem in the construction of approximate solutions.

Remark 1.5. Because we also study the question Q1 for wild harmonic bundles under a similar
assumption on the spectral curve, we also study the Dirichlet problem for wild harmonic bundles
(Theorem 2.8).

1.2.3 The order of convergence in the smooth case We study question Q2 under the
following additional condition.

CONDITION 1.6. Let p:§E79—>EE79 be the normalization. There exists a holomorphic line
bundle L with an isomorphism E ~ (7o p).L such that 6 is induced by the Op-x-action on
pxL.

For example, this condition is satisfied if ¥ ¢ is smooth according to [BNR89, Hit87]. We
shall prove the following theorem.

THEOREM 1.7 (Theorem 7.14). Suppose that Condition 1.6 is satisfied. Let s(hoo, ht) be the
automorphism of (E,8),x\p(g,s) determined by h;=hs - 8(heo, ht). Let K C X \ D(E,0) be
any relatively compact open subset. For any (€ Zx, there exist C(¢,K) >0 and €(¢, K) >0
such that the following holds as t — oo:

1(8(hoo, ht) = 1d) x|l 2 < C(4; K) exp(—e(f, K)t).

To prove Theorem 1.7, we refine the construction of ﬁt in §1.2.2. For each P € D(E,0),
there exists a non-degenerate symmetric pairing Cp of (E,53,9)| xp such that Cpx,\(p} is
compatible with ho|x,.\p}- It is easy to see that the harmonic metric hp; of (E, 0),x, satisfying
hpyox, = holox, is compatible with Cp. Let s(hoo, hp) be the automorphism of Ejx,.\(p}
determined by hp = hoo|x,\(P} - S(hoo, hpy). By the result in the symmetric case mentioned in
§1.2.1, on any relatively compact open subset K of Xp \ {P}, s(hoo, hpy) — id converges to 0 at
a speed of the order of e ®¥)t, Then, the following stronger condition is satisfied:

[ 1RG0 + 0. 00)] 7, <0
X he e

Then, we can obtain the estimate of sup |s(7z/t, h) —id| on any relatively compact open subset
in X \ D(E, 0). By a general argument in §4.2, we can obtain the desired estimate of the norms
of s(h¢, hy) —1id and its higher derivatives on X even around D(E,6).

1.2.4 A family case The result and the method in §1.2.3 can be generalized to the following
family case. Let p; : X — S be a smooth proper morphism of complex manifolds such that each
fiber is connected and 1-dimensional. We also assume that S is connected. Let m: S X T X —
Sx X and p2:Sx X =& denote the projections. Let ®¢: X —S x T*X be a morphism of
complex manifolds such that psomo ®g=p;. Weset ®1:=m1m0Py: X - S x X. We assume the
following.
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— & is proper and finite.

— There exists a closed complex analytic hypersurface D C S x X such that (i) D is finite
over S, (i) the induced map X \ ®;1(D) — (S x X)\ D is a covering map, and (iii) ®g
induces an injection X \ ®71(D) — S x T*X.

We set r:=|®7!(P)| for any P€ (S x X)\D. Let g(X) and § denote the genus of X and
prH(x) (z€S), respectively. We set X, ={z} x X and D, =D N X,. There exists a natural
isomorphism X, ~ X. We note that D — S is not assumed to be a covering map, and hence |D,|
is not necessarily constant on S. _

Let £ be a holomorphic line bundle on X such that deg(L,-1(,)) =g —rg(X)+r—1. We
obtain a locally free Ogyx-module & =®1,(L). It is equipped with the morphism 6:& — & ®
Q}SX){/S induced by the Ogxr+x-action on ®g.L. For each x €S, we obtain the Higgs bundle
(Ez,02) = (€,0)x,, which is stable of degree 0.

There exists a Hermitian metric hget ¢ of det(€) such that hye g x, are flat for any # € S. There
exist harmonic metrics hy, of (£,10;) (v €S) such that det(hy ) = hget £)x, - There also exist
decoupled harmonic metrics hoo sz (7 € S) of (&, 02)x,\p, such that det(heoz) = Pdet(e)x,\D, -

THEOREM 1.8 (Theorem 7.22). Let xg € S. Let K be a relatively compact open subset of X, \
D.,. Let Sy be a neighbourhood of x( in S such that Sy x K is relatively compact in (S x X) \ D.
For any { € Zx, there exist C({), €(¢) > 0 such that the L2-norm of $(hooz, htz) —id (z € Sp, t >
1) on K are dominated by C(f) exp(—e(f)t).

Remark 1.9. Note that for another Hermitian metric Ay ¢ of det(&) such that b/, g|x, are flat

for any z € S, we obtain an Rsg-valued C'*°-function S on S determined by h‘iict(f,') = Bhget(e)

and SY "ht ., (respectively By "heo,z) are harmonic metrics (respectively decoupled harmonic
metrics) of (&, t0;) (respectively (£, 0:) x,\p,) such that det(8Y"hyz) = héietﬂXw (respectively

det(8Y " hoo z) = héet(é‘)\ XJ\DT). Hence, the claim of Theorem 1.8 is independent of the choice
of hdet £. /

Remark 1.10. We may apply Theorem 1.8 to obtain a locally uniform estimate for large-scale
solutions of the Hitchin equation for a family of stable Higgs bundles of degree 0 whose spectral
curves are smooth.

2. Preliminaries

2.1 Some definitions

2.1.1 Decoupled harmonic bundles LetY be a Riemann surface. Let (V, §) be a Higgs bundle
onY.

DEFINITION 2.1. A Hermitian metric i of V is called a decoupled harmonic metric of (V, ) if
the following conditions are satisfied.

(A1) h is a harmonic metric of the Higgs bundle (V, dy, ).
(A2) h is flat, i.e. the Chern connection Vj, of (V, v, h) is flat.

Such a (V, 6, h) is called a decoupled harmonic bundle.
Note that the conditions (A1) and (A2) imply that 6 and 9}; are commuting.
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2.1.2 Symmetric Higgs bundles Let C' be a non-degenerate symmetric product of V. It is
called a non-degenerate symmetric product of the Higgs bundle (V,0) if € is self-adjoint with
respect to C. Such a tuple (V, 6, C) is called a symmetric Higgs bundle. Let V'V denote the dual
bundle of V. Let U :V — V'V be the isomorphism induced by C. Let 6V be the induced Higgs
field of VV. The condition is equivalent to ¥ inducing an isomorphism of the Higgs bundles
(V,0)=(VV, oV).

A Hermitian metric h of V is said to be compatible with C if ¥ is isometric with respect
to h and its dual Hermitian metric A" of VV.

2.1.3 Generically regular semisimple Higgs bundles Let Yy CT*Y denote the spectral
curve of (V,0). We say that (V,0) is regular semisimple if the projection ¥y 9 —Y is a covering
map. We say that (V, 0) is generically regular semisimple if there exists a discrete subset D CY
such that (V, 0)y\p is regular semisimple.

Let m: Xy — Y denote the projection. If (V, ) is regular semisimple, there exists a line
bundle Ly on Yy with an isomorphism 7,Ly ~V such that 6 is induced by Orp-y-action
on Lv.

2.2 Regular semisimple case

2.2.1 Decoupled harmonic metrics Suppose that (V,#) is regular semisimple. We consider
the following condition for a Hermitian metric h of V.

(A3) For any P €Y, the eigen decomposition of 6 at P is orthogonal with respect to h.

Note that (A3) holds if and only if § and 9}: are commuting. The following lemma is easy to
see.

LEMMA 2.2. If two of the conditions (A1), (A2), and (A3) are satisfied for a Hermitian metric
h of V, then h is a decoupled harmonic metric of (V,0).

A flat metric hr, of Ly induces a Hermitian metric m.(hr, ) of V. It is easy to check that
m«(hr, ) is a decoupled harmonic metric of (V, 6).

ProprosITION 2.3. This procedure induces an equivalence between flat metrics of Ly and
decoupled harmonic metrics of (V,6).

Remark 2.4. Let (V, 0, h) be a decoupled harmonic bundle. Let Xy,9 = [[;c5 Xv,9,; be the decom-
position into connected components. There exists the corresponding decomposition of the Higgs
bundle (V,0) = @, (Vi, 0;) such that Xy, g, = Xy,;. Because h is a decoupled harmonic metric,
the decomposition is orthogonal with respect to h. Hence, we obtain the decomposition of a
decoupled harmonic bundle (V, 6, h) = P(V;, 0;, hi).

2.2.2 Symmetric products The multiplication of Oy, , induces a multiplication
W*Ozvﬂ () W*OEV,Q — W*OEV‘Q-

Any local section f of m,Oy, , induces an endomorphism Fy of the locally free Oy-module
7Oy, ,. We obtain the local section tr(f) := tr(Fy) of Oy.

Let C1,, be a non-degenerate symmetric pairing of Ly,. We obtain the non-degenerate pairing
Cof V=m,Ly:

«C
Voo, V= 1,05, — Oy. (3)
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ProrosiTiON 2.5. This procedure induces an equivalence between non-degenerate symmetric
pairings of Ly and non-degenerate symmetric pairings of (V,0).

We recall the following proposition.

ProposITION 2.6 [LM10b, Proposition 2.30]. For any non-degenerate symmetric pairing C
of (V,0), there exists a unique decoupled harmonic metric h® of (V,0) which is compatible
with C.

Indeed, let C,,, be the non-degenerate symmetric pairing of Ly corresponding to C. Let hr,, be

the unique Hermitian metric of Ly satisfying hr, (s, s) =|CL, (s, s)|. We obtain the Hermitian

metric h¢ corresponding to h L, - Then, h¢ is the decoupled harmonic metric compatible with C.
As for the converse, the following holds.

LEMMA 2.7. Let h be a decoupled harmonic metric of (V,0). There exists a non-degenerate
symmetric pairing of (V,0) compatible with h if and only if the following condition is satisfied.

— Let hy, be the corresponding Hermitian metric of Ly, whose Chern connection is flat.
Let Xy,; be any connected component of Xyg. Let p; : m(Xv,,) — S1 be the homomor-
phism obtained as the monodromy of (Ly, hr, )s,, .- Then, the image of p; is contained
in {£1}.

Proof. There exists a non-degenerate symmetric pairing of (V, ) compatible with A if and only
if there exists a non-degenerate symmetric pairing Cr,,, of Ly compatible with hr, . If such a
Cr, exists, then each p; comes from an R-representation. (See [LM10b, §2].) Hence, the image
is contained in {£1}. Conversely, if the image of each p; is contained in {£1}, then it is easy to
construct such a pairing Cr,,, . O

2.3 Dirichlet problem for wild harmonic bundles on curves

Let Y be a Riemann surface equipped with a K&ahler metric gy. Let X CY be a connected
relatively compact connected open subset whose boundary 90X is smooth and non-empty. Let
D C X be a finite subset.

Let (P.V,0) be a good filtered Higgs bundle on (Y, D) of rank r. (See [Moc21, §2.4] for the
notion of good filtered Higgs bundles.) We obtain (det(P.V), tr(0)). We set (V. 0) = (V,0)y\p-
Let hogx be a Hermitian metric of V.

THEOREM 2.8. There exists a unique harmonic metric h of (V,dy, 0)x\p such that (i) hjgx =
hox and (ii) PP(V)=P.V. (See [Moc21, §2.5] for the filtered sheaf P!(V).)

Proof. Let us study the case r=1. There exists a Hermitian metric hg of V' such that (i)
hojax = hox, (ii) ho is flat around any point of D, and (iii) Pho(V)=P,V. There exists a C>°-
function v : X — R such that ajgx =0 and that 9o = R(hg). Then, h = e~ *hy is a flat metric of
V satisfying the desired conditions. Let A’ be another flat metric satisfying the same condition.
We obtain the C*°-function s on X determined by h' = e®h. Because A4, s =0 and sjpx =0, we
obtain that s =0 on X, and hence h/ = h.

Let us study the case r > 2. At each point P € D, let (Xp, zp) be a holomorphic coordinate
neighbourhood around P such that (i) Xp is relatively compact in X \ (D \ {P}), (ii) XpN
X pr =0 for any P, P’ € D, and (iii) the coordinate zp induces (Xp, P) ~ ({|z| <1},0). Let hgeq(v)
be a flat metric of det(V') adapted to det(P«V) such that hgey(vyjox =det(hox). Let ho be a
Hermitian metric of V' such that (i) hoax = hox, (ii) det(ho) = haee(vy, (iii) Pho(V)=P,V, and
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(iv) around P € D, we have |R(ho) + [0, h()”hgy O(|zp|~2%€) for some € > 0. (For example,
see [Moc21] for the construction.) We set F'(hg) = R(ho) + [0, 020]. There exists p > 1 such that
F(hg) is L? on X. There exists an Li-function a on X such that (i) Ag, (@) =[F(ho)|x|ho,gv
and (i) ajgx = 0. There exists Cp > 0 such that |af <Cp on X.

For 0 <d <1, we set Xp(0)={|zp|<d} and Z(J):=X \Upecp Xp(d). We have 0Z(4) =
0X UUpep 0Xp(6). By the Dirichlet problem for harmonic metrics [Don92, LM10a], there
exists a harmonic metric hy5) of (V, v, 0)z(s5) such that (i) det(hzs)) = haet(v)|z(s) and (ii)
hZ(6)|6Z(6) :h0|8Z(5)' Let 57(5) be the automorphism of ‘/|Z(5) determined by hZ(é) :h0|Z(6) .
s7(5)- According to [Sim88, Lemma 3.1}, the following holds on Z(9):

Ay, log Tr(sz(5)) < |F(h0)2(5) lhosgy -
Because Ay, (log Tr(sz(5)) — @) <0, we obtain
log Tr(sz(s)) < 2Cp + log 1.
Because det(s Z(g)) =1, there exists C1 > 0, which depends only on Cy and r, such that

|52(5) ho + 1575 lne < C1.

Then, there exists a sequence §(i) =0 (i=1,2,...) such that the following hold (see [LM10a,
Proposition 2.6]).

— The sequence hys(;y) is convergent in the C°-sense on any relatively compact open
subset of X \ D. Let ho, denote the limit, which is a harmonic metric.

—  heo is mutually bounded with hg. As a result, Pl (V) = PV x-
— det(hoo) = hget(v)-

Let Z := Z(1/2). There exists a harmonic metric hy z of (V, dv, )z such that (i) det(h1,z) =
hdet(V)|Z> (11) hl,Z|8Xp(1/2) = h’oo|8Xp(1/2) for any Pe D, and (111) h17z‘3X hO|8X Let ZO such that
d(i0) <1/2. Let sy 54 be the automorphism of V|; determined by hzsgiy)z = b1,z - 51,54)- We
obtain Ay, log Tr(sy 5;)) <0 on Z. Hence, we obtain

log (T < log (T
o (Tr(s150)/r) S max | {log(Tx(s1s(0/0) /7))

Because log Tr(sy 5(;)/7) =0 on Upep 0Xp(1/2), we obtain that s 5;) —idy on Z. Hence, we
obtain h 7z = h1 z, which implies that he satisfies the condition ho5x = hojox-

Let h’' be another harmonic metric satisfying the conditions (i) and (ii). Note that det(h’ )
haet(vy- Let s be the automorphism of V' determined by h'=h-s. By [Sim88, Lemma 3.1], w
have the following equality on X \ D:

Dgy Tr(s) =~y (s) - s~ /2 [y 4, — 116, s]s7V/[;

This implies that Tr(s) is subharmonic on X \ D. Because Tr(s) is bounded, we obtain that
Tr(s) is a subharmonic function on X (see [Sim90, Lemma 2.2]). We obtain maxx Tr(s) <
maxgyx Tr(s) =r. Because det(s) =1, we have Tr(s) > r. Hence, we obtain Tr(s) =r on X, which
implies s =idy . O

|th |h gy’

COROLLARY 2.9. Suppose that (P.V, 0) is equipped with a perfect symmetric pairing C. If hyx
is compatible with C|gx, then h is also compatible with C'.

Proof. Let hjy be the Hermitian metric of V|\8/X induced by hyx. Let hY be the Hermitian metric
of V'V induced by h. Then, h" is the unique harmonic metric of (V, V) satisfying h|V8X =hyy.
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Let W (V,0)~(VV,0Y) denote the isomorphism induced by C. Because hgx is compat-
ible with C, hgx =V hjy holds on 0X. By the uniqueness, we obtain h =W} (hY), i.e. h is
compatible with C. O

3. Large-scale solutions in the symmetric case

3.1 Preliminary from linear algebra

3.1.1 Hermitian metrics compatible with a non-degenerate symmetric pairing Let V be an
r-dimensional C-vector space. The dual space is denoted by VV. An R-structure of V is an r-
dimensional R-subspace Vg such that the natural morphism C ®g Vg — V' is an isomorphism.
A positive definite symmetric bilinear form Cg of Vg induces a Hermitian metric A and a non-
degenerate symmetric bilinear form C of V by h(a®u, 8 ®v) = aBCr(u,v) and C(a®@u, B ®
v) = afCr(u, v) for any a, f € C and u, v € Vg. An orthogonal decomposition Vg =P Vg ; with
respect to Cg induces a decomposition V =) Vg ; ® C which is clearly orthogonal with respect
to both A and C.

Let C be a non-degenerate symmetric pairing of V. It induces a C-linear morphism V¢ : V —
VV. A Hermitian metric h of V is called compatible with C'if ¥« is isometry between (V, h) and
(VV,hY), where h¥ denotes the Hermitian metric of V'V induced by h. If h is compatible with
C, there uniquely exists an R-structure Vg of V equipped with a positive definite symmetric
bilinear form Cg such that (i) Vg ® C=V and (ii) h and C are induced by Cg.

3.1.2 An estimate Let C be a non-degenerate symmetric form of V. Let V =@;_, Vi be
an orthogonal decomposition with respect to C' such that dim V; =1. The following lemma is
obvious.

LEMMA 3.1. There exists a unique Hermitian metric hg of V such that (i) hg is compatible
with C' and (ii) the decomposition V =@ V; is orthogonal with respect to hy.

For any Hermitian metric h of V' compatible with C, let s(hg, h) be the automorphism of V'
determined by the condition h(u, v) = ho(s(ho, h)u,v) for any u, v € V. Note that det(s(hg, h)) =
1. Let H(C; €) be the set of Hermitian metrics h of V' compatible with C such that the following
holds for any w e V;, veVj (i # j):

|h(u, v)| <efuln - [v]h. (4)
LEMMA 3.2. There exists C' >0, depending only on r, such that the following holds for any
0<e<(2r)~! and any h € H(C;e):
|s(ho, h) —idy|,, + |s(ho, h) " —idy|, < Ce.
Proof. Let e; be a base of V; such that C(e;, e;) =1. Note that the tuple (ej,...,e,) is an
orthonormal base with respect to hg. Let H be the matrix determined by H; ; = h(e;, €;). Then,

the linear map s(ho, h) is represented by the matrix ‘H with respect to the base (e, ..., e;).
Because h is compatible with C, ‘H - H is the identity matrix. We obtain
HY,—1=— Y H;Hj; (5)
1gisr
J#i
10
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By condition (4), we have |H; ;| < eHiz/zH%? for i # j. We obtain

H;—1<e >  H;;Hj;
1<jsr
J#i
We set A=3""_, Hj ;. We obtain
H};—1—€eH;;A<0. (6)
LeEMMA 3.3. The following holds: H;; <€A+ 1.

Proof. Let a > 0. Let us consider the R-valued function f(s) =s?>—as—1 (s €R). We set s+ =
27 (a £ Va?+4), and then we have f(s+) =0 and s_ < s;. We obtain f(s) >0 for any s> s.
Hence, if f(s) <0, we obtain

s<sp <2 YNa+a+2)=a+1. (7)
By setting a = €A, we obtain the claim of the lemma from (6) and (7). O
We obtain A <erA+ 7, and hence A < (1 —er)~!r < 2r. By (4) and (5), we obtain
|HY =1 < > [Higl-[Hjgl<e > Hi,;-Hjj <eA’ <dr’e.

1<<r 1<G<r
J#i
Because H;; are positive numbers, we obtain |H,-7Z-—1|<4r26. We also obtain
|H; ;| < e(1+4r%). O

3.2 Harmonic metrics compatible with a non-degenerate symmetric pairing

Let Y be any Riemann surface. Let (V, dv, 6) be a Higgs bundle on Y of rank r, which is regular
semisimple. Let C' be a non-degenerate symmetric pairing of (V, 0).

For any t >0, let Harm(V, dv, tf, C) denote the set of harmonic metrics of (V, dy, tf) com-
patible with C. Let gy be a Kéahler metric of Y. For any non-negative integer ¢ and p > 1, and
for any relatively compact open subset K of Y, we define the L}-norm || f|| 2 i of a section f of
End(V) on K by using gy, h¢ and the Chern connection of h®. (See Proposition 2.6 for h®.)

THEOREM 3.4. Let K be any relatively compact open subset of Y. There exists t(K) > 0 such
that:

— for any ({,p) € Z~o X R>1, there exist A({,p, K)>0 and €(¢,p, K) >0 such that, for any
h € Harm(V, 0y, t0, C) (t > t(K)),

15, h) —idgllp g+ Is(hC B —idp ]y g < Al p, K) exp(—e(t,p, K)t).  (8)

Proof. To simplify the description, we set s(h):=s(h®, h) in this proof. By [Mocl6, Corollary
2.6] and Lemma 3.2, there exist A(K) >0, e(K) >0, and ¢(K) > 0 such that the following holds
for any h € Harm(V, 0y, t0, C) (t > t(K)):

sup|s(h) —idy|,c +sup|s(h) ™ —idy|,c < A(K) exp(—e(K)t). (9)
K K

Let R(h) denote the curvature of the Chern connection of (V,dy,h). By [Mocl6,
Theorem 2.9], there exist AM(K)>0 and ¢V(K) >0 such that the following holds for any

11
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h € Harm(V, 9y, t6, C) (t > t(K)):
sup| R(h) e 5, < AV (K) exp(—eD (K)t). (10)
K 9y
Note that R(h) =y (s(h) 10xcs(h)).
Because s(h) is self-adjoint with respect to hC and satisfies dets(h)=1, we have

Tr(s(h) —id) > 0, and Tr(s(h) —idy) =0 holds if and only if s(h) =idy. The following holds on
Y (see [Sim88, Lemma 3.1]):

Agy Tr(s(h) — idv) = Ay, (Tr(s(h)) = ) = =[s(h) ™2 dhe s(h)[g, e — 110, s(W)]s(h)T2[3, e

Let K; be a relatively compact open neighbourhood of K in Y. Let x:Y — R be a function
such that =1 on K and x =0 on Y \ K;. We obtain the following:

/ 5(0) " 20pes()2, e < / Te(s(h) — idp) - [ Agy xl.

There exist constants A®)(K)>0 and ¢ (K) >0 such that the following holds for any h €
Harm(V, Oy, t0, C) (t > t(K)):

/ |5(h) " e s(h)[ e < AP(K) exp(—e® (K)t). (11)
By (10) and (11), there exist A®)(p, K) >0 and ¢ (p, K) > 0 such that the following holds for
any h € Harm(V, 0y, t6,C) (t > t(K)):

s(h) = O s(h)| 1y, s < AP (K) exp(—¢®) (p, K)1). (12)

By (9) and (12), there exist AW (p, K)>0 and €¥(p, K) >0 such that the following holds for
any h € Harm(V, 0y, t0,C) (t > t(K)):

Iis(h) = idll g g < AW (K) exp(—e (p, K1), (13)
By (12) and (13), there exist A®)(p, K) >0 and ¢® (p, K) > 0 such that the following holds for
any h € Harm(V, 0y, t6,C) (t > t(K)):

ls(h) —idl| g 5 < AP (K) exp(—e® (p, K)1). (14)

Then, by using a standard bootstrapping argument, we obtain the claim of the theorem. O

COROLLARY 3.5. Let t(i) > 0 be any sequence such that lim; ., t(i) = oo. For each (i), we take
any hy;y € Harm(V, Oy, t(i)0, C). Then, the sequence hy ;) is convergent to hC in the C*-sense
on any relatively compact open subsets of Y. The order of the convergence is estimated as

in (8).

4. Some estimates for harmonic bundles on a disc

This section is a preliminary for Theorem 7.17.

4.1 Universal boundedness of higher derivatives of Higgs fields

For any R >0, we set B(R) ={z € C||z| < R}. Let Ry >0. Let (E, dg,0) be a Higgs bundle on
B(Ry) of rank r. Let f be the endomorphism of E determined by § = f dz. Let Cj be a constant
such that

ltr(f)|<Co (j=1,...,7).

12
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Let h be a harmonic metric of (E, dg, #). Let V;, denote the Chern connection of h. Let R(h)
denote the curvature of V. We obtain the endomorphism R determined by R(h) =R dz dz. Let
f;: denote the adjoint of f with respect to h. Because R(h) + [0, 9;2] =0, we have R + [f, f;:] =0.

Let go =dz dz denote the standard Euclidean metric. We consider the L?-norm of sections
of End(FE) with respect to go and h, and the derivatives with respect to V.

PROPOSITION 4.1. Let 0 < Ry < Ry. For any ¢ € Z>( and p > 1, there exist C (¢, p), depending
only on r, Ry, R1 and Cy, such that

1firollze + 158 5 ern Iz + 1980 |2 < C(£ p).

Proof. Let Ry = (Rp+ R1)/2. By Simpson’s main estimate [Sim90, Sim92|, there exists Ci,
depending only on r, Ry, R; and Cy, such that |f|, = |f,]:|;Z < C7 on B(Rz). We also obtain
|R(R)|p.g, = |R|n <2CF on B(Ry).

We recall a result due to Uhlenbeck.

THEOREM 4.2 [Uhl82, Theorem 1.3]. Let V be a vector bundle on B(1) equipped with a
Hermitian metric hy and a unitary connection Vy. Let R(Vy) denote the curvature of Vy .
For p>1, let ||R(Vv)||zr,h, denote the LP-norm with respect to gy and hy. Then, there exist
positive constants ¢ and k depending only on r and p such that the following holds.

— If |R(Vv)||lLr,hy <K, then there exists an orthonormal frame v of V such that the
connection form A of Vy with respect to v satisfies (i) d*A=0 and (ii) ||Al|zr <
c|[R(Vv)| -

We choose T' > 0 such that 1007~1C? < k and T(Ry — Ra) > 100. Let o7 : C,, — C, be defined
by pr(w)=T""'z. We consider (E,dz, 0, h) = ¢5(E,dg,0,h) on B(TRy). Let wg € B(TRy —1).
Let p > 2. Let v(*0) be an orthonormal frame of E‘ D(wo,1) s in Theorem 4.2 for the metric i and

the connection V7. Let Ao) and R(wo) denote the connection form and the curvature form of
V5. with respect to v(®0) . We have

AW =0, dAW) 4 Awo) A g(wo) — Rlwo) (15)

A L2 (D, 1)) < IR Lo (D)) (16)
Let ©(0) denote the matrix-valued (1,0)-form determined by (o) = p(wo)@(wa)  We have

the decomposition A®0) = Aq(uwo) dw + A%w o) dw. We have Az(vw(’) = —54%” o) Because 00 = 0, the
following holds:

8@@(“&)) + [A%UO)’ @(’LUQ)] =0. (17)
We also have
R(wo) + [@(wt))’ t(m] =0. (18)

Then, by a standard bootstrapping argument, we can prove that for any ¢ there exists Ca(¢),
depending only on ¢ and r such that

10| o D172 + A 12 (Dot /27y < Ca(b)-

241
We obtain a desired estimate for || fip(g,)llzr, which implies a desired estimate for || f;i| B( Rl)H e

Because R + [f, f;l] =0, we also obtain a desired estimate for ||9Rp(r,)||Lz-

13
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4.2 Difference of two families of large-scale solutions on a disc

Let Ry >0. Let (E,0g,0) be a Higgs bundle on B(Rp) of rank r. Let f be the endomorphism
of E determined by 8 = f dz. Let Cy be a constant such that

ltr(f)| < Co (j=1,...,rank(E)).

Let hgey(r) be a flat metric of det(E). Let hoy (¢ > 0) be harmonic metrics of (E, O, t6) such
that det(hoy) = haet()- Let V%! denote the Chern connection of (E, 0, ho ). For any section u
of End(E) and for any element & = (k1, Ko, . . ., k¢) € {z, Z}¢, we set

Volu=V2rloVhlio. . o Vo (u).
THEOREM 4.3. Let 0 < Ry < Ry. Let C1, €1 > 0. For any { € Z>¢, there exist positive constants
C(0),e(f) >0, depending only on r, Cy, C1, €1 and ¢ such that the following holds.

— Let t(i) > 0 be an increasing sequence such that t(i) — oo as i — co. We also assume that
t(1)(Ro — R1) > 100. Let hy(;y be harmonic metrics of (E, Og, t(i)0) such that det(hy;)) =
het(p)- Assume the following on B(Rp) \ B(R1):

|(ho,t(s)s heiy) —idlp, ,, < Crexp(—eit(i)). (19)
Then, the following holds on B(R;) for any k € {z,Z}":
V' (s(ho iy, hugiy) —1d)| < C(0) exp(—e(O)t(0)).

ho, e (o)

4.2.1 The case =0 To simplify the notation we set s; = s(hq (i), hy(i))- By (19), there exist
C’(0), €(0) > 0, depending only on r, Cy and €7, such that the following holds on B(Ry) \ B(R1):

Tr(s; —idg) < C'(0) exp(—€'(0)t(7)). (20)
By [Sim88, Lemma 3.1], we have
~0.0:Tr(s; — idp) = —[3(s0)s; I, ., — K@), si)s, I, - (21)

In particular, Tr(s; —idg) is a subharmonic function on B(Ry). By the maximum principle of
subharmonic functions, (20) holds on B(Ryp). Because det(s;) =1, we obtain the claim in the
case £ =0.

4.2.2 Estimates for L>-norms We set Ry = (Rg + R1)/2 and R3 = (Ro + R2)/2. Let x: C —
R>¢ be a C*-function such that x(z) =1 (|z| < Rz) and x(z) =0 (|z| > R3). Let g, =dz dz be
the standard Euclidean metric. By using [Sim88, Lemma 3.1], we obtain

) —-1/2 . _1/2
~/B(R2) (‘a(sz)% : |Zo,t(¢),gz + |[t(l)¢9, Si]si / ’Zo,t(i)vgz) dVO]gz <

/ 10020 - (Tx(s; — idg)) dvol,, - (22)
B(R3)\B(R2)
Hence, there exist C5 > 0, €5 > 0 such that
/B . (8557 2, g+ 157 100,81, ) dvoly, < Crexp(—est().  (23)
14
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4.2.3 Rescaling To study the derivatives, for any ¢ > (1), we define the map p; : C,, — C, by
pi(w) =t~ w. We have p; '(B(R)) = B(tR). We use the standard Euclidean metric g, = dw dw
on C,. B

We set Ey = pf(E) on B(tRp). It is equipped with the Higgs field 0, = p; £ (t0). We have 0, =

pi(f) dw. We have the harmonic metrics hOt = ¢; (hoy) of the Higgs bundles (Ey, 05 (9,5) Let
VOt denote the Chern connection of (Et, 8 ho7t)

By Simpson’s main estimate, there ex1sts C’m > 0, depending only on r and Cp, such that the
following holds on B(tRy — 1):

wt‘zo,ugw

< Cqp. (24)

Let R(?L(M) denote the curvature of the Chern connection of (Et,égt,ﬁo,t). We have the
following equality:

R(ho.) +[0r, (B)] ]=0. (25)
By (24) and (25), we have the following on B(tRy — 1):
R(hoo)ly, . <2C% (26)

We also have the universal estimates for higher derivatives of 0 and R(Tzo,t) as in
Proposition 4.1.

4.2.4 FEstimates for higher derivatives We also have the harmonic metrics ﬁt(i) = goj(i)(ht(i))
of (Et(i)755t(i)’ (fgvt(z)) Let g@ = @:(Z)(Sz) We have fﬁt(z) hO (i )SZ By (23) we have

— ~1tA ~ 112 .
/( o) (\8(31) 5 1’h0 o +13; 1[915(1:)7 Si”%m,gw) dvoly, < C5exp(—est(i)). (27)
This implies
~—1 ~ g o .
/B(t(i)R2)|Si %O,t(i)(82)|h0,t(i),gw dvoly, < Csexp(—est(i)). (28)
Let R(%t(i)) denote the curvature of the Chern connection of (Et(i),gﬁtm,ﬁt(i)). We have

R(hy(i)) + [y, (Bni))t  1=0.

O
Note that
0., )& 3
(9::(@)),;“) (1)(9t())hof(> (i)
We obtain
~1 ey ~ ~ TNt
G0y, 5) = Blhu) = Blho ) == [ 57 Ou)l, 5= Gl |
S CUER O REE | (29)

Hence, there exist Cj; >0 and €17 > 0 such that the following holds on B(¢(i)Ry — 1):
‘8( Z_laﬁo t(4) >‘E0,t(i)7gw < Cll eXp(_ellt(Z)) (30)

15
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For any wg € Cy,, we set D(wg, T) = {|Jw —wo| < T}. By (26), (28) and (30), for any p > 2, there
exist Cia(p) > 0, €12(p) > 0 such that the following holds for any wg € B(t(i)Ry — 1):

37 O s Si L (D 2/39) o9 S Cr2(P) exP(=€12(p)E(0)). (31)

By (31) and the estimate in the case £ =0, for any p > 1, there exist C13(p) > 0, €13(p) > 0 such
that the following holds for any wo € B(t(i)Ra — 1):

|si — id|L§(D(wo,2/3))J~m,t<i),gw < Ci3(p) exp(—e13(p)t(i)). (32)

By a standard bootstrapping argument, for any p>1 and ¢ € Zs9, there exist Ci4(¢, p) >
0, €14(¢, p) > 0 such that the following holds for any wo € B(t(i)Ra — 1):

|§z - id’L?(D(wo,l/Q)),?Lo,t(i),gw < C114(6’ p) eXp(_€14(£a p)t(z)) (33)

Then, we obtain the claim of Theorem 4.3.

5. Decomposable filtered extensions

5.1 Meromorphic extensions and filtered extensions

5.1.1 Vector bundles Let U C C be a simply connected open neighbourhood of 0. We set
U*=U\{0}. Let ¢: U* — U denote the inclusion. Let V' be a locally free Oy--module of rank r.
We obtain a locally free ¢,Op+-module ¢, (V). A meromorphic (respectively smooth) extension of
V is defined to be a locally free Oy (x0)-submodule (respectively Op-submodule) V C ¢.(V') such
that V. =V. A filtered extension of V' is defined to be a meromorphic extension V equipped
with a filtered bundle P,(V) over V.

Ezample 5.1. The Oy (x0)-submodule Oy (x0) exp(z~!) C 14(Opy-) is a meromorphic extension of
Oy+, which is different from Oy (x0) C 1. (Op-).

For a positive integer £, let ¢, : C — C be defined by ¢(¢) = ¢¢. We set U®) = gozl(U) and
U@ =y®\ {0}. The induced morphisms U®) — U and U®* — U* are also denoted by ¢y.
Let Gal(¢) denote the Galois group of the ramified covering y. Namely, we put Gal(¢) = {a €
C*|a* =1}, and we consider the action of Gal(¢) on U®) by the multiplication on the coor-
dinate ¢. Let o9 : U®* 5 U® denote the inclusion. We set V) := ©;(V'), which is naturally
Gal(¢)-equivariant. The (:(9),Opw.-module (:9),(V®)) is also Gal(¢)-equivariant. A Gal(¢)-
equivariant meromorphic extension of V() is defined to be a locally free Oy (¥0)-submodule
v ¢ Lff)(V(Z)) which is preserved by the Gal(¢)-action. A Gal(¢)-equivariant filtered exten-
sion of V) is defined to be a filtered bundle P, (V) over a Gal(f)-equivariant meromorphic
extension V) of V) such that each P,V is preserved by the Gal(f)-action.

A meromorphic extension V of V induces a Gal(f)-equivariant meromorphic extension
@, (V) of V(©. Conversely, for any Gal(f)-equivariant meromorphic extension V& of V) we
obtain the O (¥0)-module @z, (V) equipped with the Gal(f)-action. The Gal(¢)-invariant part
0o (V)G i called the descent of V(®) which is a meromorphic extension of V.

LEMMA 5.2. For a meromorphic extension V of V, the descent of ¢j(V) equals V. For a
Gal(¢)-equivariant meromorphic extension V) of V| ¥ (4, (V)60 equals V). These
procedures induce an equivalence between meromorphic extensions of V' and Gal({)-equivariant
meromorphic extensions of V.
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For a filtered extension P,V of V', we obtain a Gal(¢)-equivariant filtered extension Py (¢} (V))
over V) as follows:

Pa(@iV)= > (TP (PYV) Coi(V).
bER,LEZ
lb+k<a
The filtered bundle P, (p;(V)) is denoted by ¢} (P.V).

For a Gal({)-equivariant filtered extension P,(V®)) of V) we obtain a filtered extension
Pu(pr (V)G as follows:

Pa((;oﬁ* (V(Z))Gal(ﬂ)) = ops (PZQV(E))Gal(Z).
It is called the descent of P,(V®).

LEMMA 5.3. These procedures induce an equivalence between filtered extensions of V and
Gal(¢)-equivariant filtered extensions of V(©),

5.1.2 Non-degenerate symmetric pairing For any b € R, let Pib)(OU(*O)) denote the filtered
bundle over O (x0) defined by

POy (x0) = 2~y

Here, we set [c] :=max{n €Z|n < c} for any c€R.
Let C:V®V — Op+ be a holomorphic non-degenerate symmetric pairing. We say that a
meromorphic extension V is compatible with C' if C' extends to a pairing V ® V — Oy (x0). We

say that a filtered extension P,V is compatible with C' if C' induces P,V ® P,V — PEO)(OU(*O)).
We say that C' is perfect with respect to P,V if C' induces an isomorphism P, (V) ~ P, (V).

We have the induced symmetric pairing det(C) of det(V). If V (respectively P.V) is
compatible with C, then det(V) (respectively det(P.V)) is compatible with det(C).

LEMMA 5.4 [LM10b]. Suppose that P,V is compatible with C. Then, C' is perfect with respect
to P«(V) if and only if det(C') is perfect with respect to det(Pi)V).

LEMMA 5.5. There exists a unique meromorphic extension £ of det(V') which is compatible
with det(C). There exists a unique filtered bundle PS¢ L over L such that det(C) is perfect with
respect to PEL.

Proof. We may assume that U is a disc. Let vg be a frame of det(V) on U*. We obtain a
holomorphic function (det C')(vo, vo) on U*. There exist an integer k and a holomorphic function
g1 such that (det C)(vo,v0) = 2~ * exp(g1). We obtain a frame v; = exp(—g1/2)vo of det(V) on
U*. We set L =0y (x0)v; C tx(det V). Then, L is compatible with det(C).

We have det(C)(vy,v1) = z~*. We define

PO(L) =271k 20y vy
Then, P L satisfies the desired condition. The uniqueness is clear. O
We set C(0) := ¢, C which is a non-degenerate symmetric pairing of 1408

LEMMA 5.6. V (respectively P.V) is compatible with C' if and only if ¢;(V) (respectively
¢, (P.V)) is compatible with C®. When P,V and C are compatible, C' is perfect with respect
to P,V if and only if C¥) is perfect with respect to ©; (PV).
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5.1.3 Higgs bundles Let 6 be a Higgs field of V, ie. 0:V =V ®Q}... We obtain ¢.(6):
t(V) = 1x(V) @ Qf;. A meromorphic (respectively smooth) extension of (V, 6) is defined to be a
meromorphic (respectively smooth) extension V of V such that ¢,(6)(V) C V ® ;. The induced
Higgs field of V is denoted by 6. A filtered extension of (V, ) is defined to be a filtered extension
P.(V) over a meromorphic extension V of (V, #). A filtered extension (P,V, 0) is said to be regular
(respectively good, unramifiedly good) if (P.V, 0) is a regular (respectively good, unramifiedly
good) filtered Higgs bundle. (See [Moc21, §2.4] for the notion of good filtered Higgs bundles and
unramifiedly good filtered Higgs bundles.)

LEMMA 5.7. Let f be the endomorphism of V defined by 6= fdz/z. Let aj(z) be the
holomorphic functions on U* obtained as the coefficients of the characteristic polynomial

det(tidy — f) = Z;’:O aj(z)tj.
— A meromorphic extension of (V,0) exists if and only if the Higgs bundle (V, ) is wild,
i.e. a;j(z) are meromorphic at z =0. In that case, there exists a good filtered extension.

— A regular filtered extension exists if and only if (V, 0) is tame, i.e. a;(z) are holomorphic
at z=0.

We obtain the Higgs field 8 of V(9. The following lemmas are clear.

LEMMA 5.8. The pull back and the descent induce an equivalence between meromorphic
extensions of (V,0) and Gal({)-equivariant meromorphic extensions of (V(©,9(®)).

LEMMA 5.9. The pull back and the descent induce an equivalence between regular (respectively
good) filtered extensions of (V,6) and Gal({)-equivariant regular (respectively good) filtered
meromorphic extensions of (V(©,9(1).

5.2 Decomposable filtered extensions of regular semisimple Higgs bundles

5.2.1 Decomposable filtered extensions We continue to use the notation in §5.1.1. Let (V, 6)
be a regular semisimple Higgs bundle on U*. Assume that 6 is wild. There exist £ € Z~ and the
decomposition

T

i (V,6) = EP (Vi 6,), (34)

=1

where rank V; =1, and 6; — 6; (i # j) are nowhere vanishing on U O+ Let V be a meromorphic
extension of (V, #). The decomposition (34) extends to

r

e (V,0) :@(Vu 0:), (35)

i=1
where each V; is a meromorphic extension of V.

DEFINITION 5.10. A filtered bundle P,V over V is called a decomposable filtered extension of
(V, 0) if the filtered bundle ¢;(P,V) is compatible with the decomposition (35), i.e. the following
holds for any a € R:

Pa(7V) = EP Pule}V) NV
i=1

Such a (P.V, 0) is called a decomposable filtered Higgs bundle.

The following lemma is obvious by definition.
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LEMMA 5.11. Suppose that (P.V, ) is decomposable:

— (P, 0) is a good filtered Higgs bundle;

— any decomposition (V,0)y- = (V1,01) @ (V2,02) extends to a decomposition (PiV, ) =
(PuV1, 61) @ (Pu Vs, 02) such that V. =V;.

5.2.2 Filtered line bundles and decomposable filtered Higgs bundles There exists the
decomposition

(v,0) =P, o), (36)
keS

such that Ev[k]ﬂ[k] are connected. We set rp = rank V]

tion of the Higgs bundle

. For each k, there exists the decomposi-

pr (VIE 0l = B, 61, (37)
=1
(K]

i

[]

i

where rank Vi[k] =1, and 0
ing on U)* A decomposable filtered extension P,V of (V,6) induces filtered extensions
P.(VH) of (VI 6M). Note that P,(VF) =o*P. (VM) for o € Gal(ry) such that o*6/" = o,
Conversely, a filtered extension P*V{k] of Vl[k} induces a Gal(ry)-equivariant filtered extension
Doccair U*P*Vl[k] of pr (VIF) =pr*, Vi[k], and hence a decomposable filtered extension P, V¥
of (VI¥, 91y, Thus, we obtain a decomposable filtered extension &) kes PV of (V, 8). Note that

PV is also obtained as (gork)*(P*Vl[k]) by the natural identification (wrk)*(Vl[k]) =V, The
following proposition is easy to see.

are 1-forms such that 6 —GJ[.k] (i #j) are nowhere vanish-

PropoSITION 5.12. This procedure induces an equivalence between decomposable filtered

extensions of (V,0) and a tuple of filtered extensions of Vl[k] (kes).

5.2.3 Decomposable filtered extension determined by determinant bundles Let V be a
meromorphic extension of (V,#). The decomposition (36) extends to a decomposition

V,0) =V, 6iM). (38)
kesS

The decomposition (35) extends to a decomposition

Tk

pr, (VI gl =DM o). (39)

=1

PROPOSITION 5.13. For a tuple of filtered bundles P, det(VI¥)) over det(VI*), there uniquely
exists a decomposable filtered bundle P} (V) =@.s Pr(VM) over V such that det(PrVIH) =
P, det(V¥)) for any k € S. Moreover, the following hold for any k € S:

— dim Gr?" (VIF)) <1 for any a € R;

— let dj, be a real number such that Grzljk (det(VI*)) #£ 0, so then Gr?" (VIF) #£ 0 if and only
if rga—di €7Z (1 is odd) or rra — dy € %Z \Z (ry Is even).

~- G (Vz-[k]) #0 if and only if a —dy, € Z (ry, is odd) or a —dy, € 37 (ry; is even).
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Proof. It is enough to consider the case where Xy is connected, i.e. [S|=1. We omit the
superscript [k] and the subscript k. We set (V") () = o*(V, §) and V") = ©* (V). There exists
the following decomposition of the Higgs bundle on U(")*:

r

(V. 00) = P (V). B(i) dQ).- (40)

=1

Here, ((i) are meromorphic functions on (U(),0) such that B(i) — B(j) (i#7) are nowhere
)

vanishing on U(*. The decomposition (40) extends to a decomposition on U():

T

W00 =P Vs, B(0) dC). (41)
i=1
We have 0" Vg = Vo= (g(i)) for any o € Gal(r).
Let vg(1) be a frame of Vg(1). We obtain frames v,.(g(1)) = 0*vg(1) of V,-5(1), and the tuple
VB(1), - - - » VB(r) 1S @ frame of V() We set

b:= min{c ER[vg)y A+ ANvgy € Pel(ip; det V)}
We define the filtered bundles Py (Vg;)) as follows:
Pi (V) = ¢ M0y v,@(‘)'

They are independent of the choice of vg(1). We set Pr(V(")) =@ Pr(Vs(;)), which is Gal(r)-
equivariant. As the descent, we obtain a filtered bundle P} (V) over V, which satisfies the desired
condition. The uniqueness is clear. By the construction, (P(V),#0) is clearly a good filtered
Higgs bundle.

Let 7 be a frame of Py(det V). There exist an integer m and a nowhere vanishing holomorphic
function g on U() such that

va1y A Avgey =CMg(C)er
Because a generator og of Gal(r) acts on the set {$(i)} in a cyclic way, we have o (vg(1) A
S ANVg()) = (—1)(’”_1)05(1) A -+ Avg(y. Hence, we obtain that of(¢™) = (=1)""'¢"™ and g =
g. This implies that m/r € Z if r is odd or that m/r € %Z\Z if r is even. By our choice of
b, we have b=—m +rd. It is easy to see that Gr’~ (Vs(i)) #0 if and only if ¢ —b/r € Z. For
each p € Z, we have the Gal(r)-invariant sections - a0 (CPvp)) of V() which induces a
section of Py, /T(V). Moreover, it induces a frame of Grb Jr2—p /T(V) Hence, it is easy to see

that Gr”" (V) # 0 if and only if ra — b/r € Z, and that dim Gr”” (V) < 1. Then, we obtain the last
two claims. 0

5.3 Non-degenerate pairings and decomposable filtered extensions

5.3.1 Non-degenerate symmetric pairings of regular semisimple Higgs bundles ~We continue
to use the notation in §5.2. Let C' be a non-degenerate symmetric pairing of (V). For any
zp € U*, the eigen decomposition of 6 at z is orthogonal with respect to C. The decomposition
(34) is orthogonal with respect to ¢;C.

The decomposition (36) is orthogonal with respect to C. Let C¥ denote the restriction of
C to VI¥. The decomposition (37) is orthogonal with respect to gpikC’[’“]. Let C’i[k] denote the

induced symmetric pairing of Vi[k]. We have Ci[k} :a*C:{k} for o € Gal(ry) such that a*@%k] =
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H,L[k]. Conversely, for any non-degenerate symmetric pairings Cl[k} (k€ S), we obtain a Gal(rg)-

equivariant non-degenerate symmetric pairing €9 seGal(ry) U*CYC] of gpjkV[’“]. It induces a non-
degenerate symmetric pairing C¥l of (V¥ l¥)) and a non-degenerate pairing @ C* of (V).
The following lemma is a special case of Proposition 2.5.

LEMMA 5.14. These procedures induce an equivalence between a non-degenerate symmetric
pairing C' of (V,0) and a tuple (C{k])keg of non-degenerate symmetric pairings of Vl[k].

5.3.2 Canonical decomposable filtered extensions in the symmetric case We recall the

following [LM10b, §4.1].

PROPOSITION 5.15. For a non-degenerate symmetric pairing C of (V,0), there uniquely exists
a meromorphic extension V¢ of (V,0) compatible with C. Moreover, there uniquely exists a
filtered bundle PE (V) over V¢ satisfying the following conditions:

— O is perfect with respect to PE(VY);
~ P (VY) is a decomposable filtered extension of (V, ).

We have the non-degenerate symmetric pairing C’W (ke S) of Vl[k] corresponding to C' as in

Lemma 5.14. There exist unique filtered extensions P¢ ((Vl[k])c) of Vl[k] compatible with C’gk] as
in Lemma 5.5. The decomposable filtered extension PE(VY) of (V, ) corresponds to the tuple

PE((VW)C) (k€ S) (Proposition 5.12).

5.3.3 Comparison of two canonical extensions Let C' be a non-degenerate symmetric pairing
of (V, 0). We have the unique filtered extension PEVY of (V, ) compatible with C. We have the
decomposition

Ve, 0) = (v, o).
keS

Let det(Cl¥l) denote the induced symmetric pairings of (det(V*]),tr(¥))). Note that
det((V9)H) is a meromorphic extension of (det(VI¥]), tr(#!*])) compatible with det(CH).
We have the unique filtered extension P¢ det((VE)F]) of (det(VI¥), tr(§*)) compatible with
det(C™™). We obtain the decomposable filtered Higgs bundle (P}(V®),6) determined by the
tuple PE det((VE)¥]) as in Proposition 5.13.

PROPOSITION 5.16. The following holds: PE(VC) = Pr(VC).

Proof. The filtered Higgs bundle (P (V°),0) is decomposable. We have det(PS(VE)H]) =
PE det((VO) ) = det P ((VE)H)). Hence, we obtain PE(VC) =Pr(VC) by the uniqueness. [

COROLLARY 5.17. Let P.(VY) be a filtered extension of (V,0) satisfying the following
conditions:

— C is perfect with respect to P,(V°);
= PaVO=@pes P((V)H).

Let P;(V) be the decomposable filtered extension of (V,0) determined by the filtered bundles
det(P.((VY)M)) (k€ S). Then, PE (V) =Pr(VO).
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Proof. Tt follows from det(P,((VE)k)) =PE det((VE) ). N

Let C and C’ be non-degenerate symmetric pairings of (V, #). Let C¥l and C"l¥] (k € S) be the

induced non-degenerate symmetric pairings of (V[k}, H[k}). We have the corresponding symmetric

pairings C{k] and Ci[k] of Vl[k].

COROLLARY 5.18. Suppose that det(C*) =det(C'™) for any ke S. Then, V¢ =V holds if

and only if PEVC =PV holds. It is equivalent to the condition that there exist holomorphic

functions 'yyf] (k€ S) on U™) satisfying Ci[k] = exp('ygk])Cgk} and 3°, ¢ Ga(ry) a*ﬂk] =0.

Proof. The ‘if’ part of the claim is clear. The “only if’ part of the claim follows from
Corollary 5.17. O

5.4 Prolongation of decoupled harmonic bundles
Let (V,0) be a Higgs bundle on U*, which is regular semisimple and wild. Let h be a decoupled
harmonic metric of (V, #). We obtain the good filtered Higgs bundle (P?V, ) on (U, 0).

LEMMA 5.19. The filtered Higgs bundle (P?V, 6) is decomposable.

Proof. Because the decomposition (34) is orthogonal with respect to goé_l(h), the claim is
clear. g

Remark 5.20. If h is a decoupled harmonic metric of (V, 6), then we obtain that PLV is a filtered
bundle without assuming 6 is wild.

We have the decomposition PM(V)=@D,.q PH(V¥). We obtain the filtered extensions
det(PhVIF]) = plet(h) det(VI*) of det(VI¥]). We have the filtered bundle P*(V) over V =PV
determined by det(P"V[¥) as in Proposition 5.13.

LEMMA 5.21. We have PH(V) =Pr(V).

Proof. This follows from the uniqueness of the decomposable filtered extension Py (V) of (V,0)
satisfying the condition in Proposition 5.13. O

The decomposition (36) is orthogonal with respect to h. Let hl¥l denote the induced decoupled

harmonic metric of (V¥ 4F) (k€ S). The decomposition (37) is orthogonal with respect to

gpjk(h[k]). Let h[lk] denote the induced flat metric of Vl[k].
Let h' be another decoupled harmonic metric of (V,#). Similarly, we obtain the induced

decomposable harmonic metric /¥ of (V¥ g¥1) and the induced flat metric hll[k} of Vl[k].

COROLLARY 5.22. Suppose that det(h¥) =det(W'¥) for any ke S. Then, P"V =P"V hold
if and only if P!(V)=PN (V) holds. This is equivalent to the condition that there uniquely

exist holomorphic functions ﬂk] (k€ S) on U™ such that (i) hll[k] = exp(2Re(7£k]))h[1k} and (ii)
s K]
EaEGal(m) o= 0.

Proof. The ‘if’ part of the claim is clear. The “only if” part of the claim follows from Lemma 5.21.
The second claim is clear. O
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5.5 Decoupled harmonic metrics and symmetric products

5.5.1 Comparison of extensions Let (V,0) be a Higgs bundle on U* which is regular
semisimple and wild. Let C' be a non-degenerate symmetric pairing of (V,6). There exists a
unique decoupled harmonic metric A¢ of (V, ) compatible with C.

LEMMA 5.23. We have P' (V) =PC (V).

Proof. By the pull back via @y, it is enough to consider the case rank V =1, which is easy to
check. (|

5.5.2 Symmetric products compatible with a decoupled harmonic metric The following
lemma, is a special case of Lemma 2.7.

LEMMA 5.24. Suppose rank V =1. Let h be a flat metric of V. There exists a holomorphic non-
degenerate symmetric product C' of V' which is compatible with h if and only if the monodromy
of the Chern connection of h is 1 or —1. It is equivalent to the condition

A 1
{deR| Gt} (V)#0} C 52

If C' is another non-degenerate symmetric pairing of V which is compatible with h, there exists
a non-zero constant « such that (i) C' = aC and (ii) |a| =1.

PROPOSITION 5.25. Let h be a decoupled harmonic metric of (V,0). Suppose that there exist
non-degenerate symmetric products Cyerymy (k€ S) of det(V[k}) which are compatible with

det (R,
— There exists a non-degenerate symmetric pairing C of (V, ) such that (i) C' is compatible
with h and (ii) det(C*) = Clet(vis)-
— If C' is another non-degenerate symmetric pairing of (V,0) satisfying the above
conditions (i) and (ii), then there exist rj,-roots u, of 1 such that C'" = p, ClF].

Proof. Let h[lk] (k€ S) be the induced flat metrics of Vl[k}. By Lemma 2.7, Proposition 5.13
and Lemma 5.24, there exist non-degenerate symmetric products C’{k] of Vl[k] compatible with

h[lk} for any k € S. They induce non-degenerate symmetric products C*! of (V¥ gF). Because
det(C]) is compatible with det hl¥], there exist constants oy, such that det(C*)) = qy, - Cet(vim)

and |a;|=1. By replacing C¥ with oz,i/ "Cl¥l| we obtain the first claim. The second claim is
also clear. O

5.5.3 Existence Let V be a meromorphic extension of (V, ).

LEMMA 5.26. Let Cyeqvvy be non-degenerate symmetric pairings of det(VW) such that
det(V[k]) is compatible with Cqeq(vvy. Then, there exists a non-degenerate symmetric pairing C
of (V,0) such that (i) det(C¥) = Cyeypimy and (i) V& =V.

Proof. 1t is enough to consider the case |S|=1. We omit the superscript [k] and the sub-
script k. We use the notation in the proof of Proposition 5.13. Let Ci,/ﬂ’(l) be a non-degenerate
symmetric pairing of Vg1). We obtain a Gal(r)-invariant non-degenerate symmetric pair-
ing @UeGal(r) U*Ci’ﬁ(l) of V). It induces a non-degenerate symmetric pairing C’ of V.
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From CY sy =6 Ci, 5(1)> We obtain another non-degenerate symmetric pairing C", for which we
have det(C") = z det(C").

Let o be the holomorphic function on U* determined by det(C”) =« - Cdet(v)- By the above
consideration, we may assume that « induces a nowhere vanishing holomorphic function on U. By
choosing an rth root al/" of «, and by setting C' = o~ /"C’, we obtain a desired non-degenerate
pairing C. (]

We can prove the following lemma similarly.

LEMMA  5.27. Let hgeyywy be flat  metrics  of det(V¥) such that det(VH)=

Plac®) (det(VIF)). There exists a decoupled harmonic metric h of (V,0) such that (i)
det(hkl) = haes(viry and (i) PM(V)=V.

5.6 Global case

5.6.1 Meromorphic extensions and filtered extensions Let Y be a Riemann surface with a
discrete subset D. Let 1y\p: Y \ D —Y denote the inclusion. For a holomorphic vector bundle
V on Y \ D, a meromorphic extension of V' to (Y, D) is defined to be a locally free Oy (xD)-
submodule V of (1y\p)«V such that Vjy\p=V. A filtered extension of V' to (Y, D) is a filtered
bundle P,V over a meromorphic extension V of V. We use similar terminology for non-degenerate
symmetric parings and Higgs bundles in this situation.

5.6.2 Decomposable filtered extensions Let (V,0) be a regular semisimple Higgs bundle on
Y \ D which is wild along D. Let P,V be a filtered extension of (V,0) to (Y, D).

DEFINITION 5.28. P,V is called a decomposable filtered extension of (V, #) if the restriction to
a neighbourhood of any P € D is decomposable.

The following lemma is clear.

LEMMA 5.29. A decomposable filtered Higgs bundle (P.V,0) is a good filtered Higgs bun-
dle. Any decomposition (V,8)y\p = (V1,01) @ (Va, 62) extends to a decomposition (PiV,0) =
(P*Vl, 91) (&) (P*VQ, 92).

We have the line bundle Ly on Xy corresponding to (V, 6). Let P(T*Y) be the projective
completion of T*Y". Let Z be the closure of Zyg C T*(Y\ D) in P(T*Y). Let ivg — Z denote
the normalization. We may naturally regard Evg as a partial compactification of Evg We set
D= Evg \ Xy,9. The morphism 7: Xy 9 = Y \ D unlquely extends to a morphism 7 : (Zv,g, D) —
(Y, D). From a meromorphic extension Ly of Ly to (EV7 0, D), we obtain a meromorphic extension
7.(Ly) of (V,0) to (Y, D). From a filtered extension P.Ly of Ly to (Syg, D), we obtain a
decomposable filtered extension 7. (P«Ly) of (V,0) to (Y, D). The following proposition is a
reformulation of Proposition 5.12.

PROPOSITION 5.30. The above procedure induces an equivalence between filtered extensions
(respectively meromorphic extensions) of Ly to (X, D) and decomposable filtered extensions
(respectively meromorphic extensions) of (V,0) to (Y, D).

5.6.3 Symmetric products Let C be a non-degenerate symmetric pairing of (V,6). We
restate Proposition 5.15 in the global setting.
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PROPOSITION 5.31. For a non-degenerate symmetric pairing C of (V,0), there uniquely exists
a meromorphic extension V¢ of (V,0) to (Y, D) compatible with C. Moreover, there uniquely
exists a filtered bundle PE (V) over VC satisfying the following conditions;

— O is perfect with respect to PE(V);
PE(VY) is a decomposable filtered extension of (V,6).

The decomposable filtered extension P (VC) is described as follows. Let Cy be the non-
degenerate symmetric pairing of Ly corresponding to C. There exists the unique filtered
extension Po (Ego) of Ly to (Syg, D). Then, PE(VY) =7, (P (Eg"))

5.6.4 Decoupled harmonic bundles Let h be a decoupled harmonic metric of (V,8). We
obtain the good filtered Higgs bundle (P!V, 6) on (Y, D). We obtain the following lemma from
Lemma 5.19.

LEMMA 5.32. The filtered Higgs bundle (P?V, 6) is decomposable.
We obtain the following lemma from Lemma 5.23.

LEMMA 5.33. For a non-degenerate symmetric pairing C of (V, ), we have P (V) =PC (V).

5.7 Kobayashi—Hitchin correspondence for decoupled harmonic bundles

Let X be a compact Riemann surface. Let D C X be a finite subset. Let (V,60) be a regular
semisimple Higgs bundle on X \ D, which is wild along D. For any decoupled harmonic metric h
of (V,6) we obtain a good filtered Higgs bundle (P!V, §) on (X, D) which is polystable of degree
0. According to Lemma 5.32, it is decomposable.

Conversely, let (P.V, ) be a polystable decomposable filtered Higgs bundle of degree 0 on
(X, D) such that (V,0) = (V,0)x\p is regular semisimple. There exists a harmonic metric i of
(V,0) adapted to P,V by [BB04, Moc21, Sim90].

ProroSITION 5.34. The harmonic metric h is a decoupled harmonic metric.

Proof. It is enough to consider the case where (P,V,0) is stable. By Lemma 5.29, ¥y ¢ is con-
nected. Let P(7*X) denote the projective completion of 7*X. Let Z denote the closure of Xy
in P(T*X). Let Z~]V79 — Z denote the normalization. Let p: f]vﬁ — X denote the induced mor-
phism. We set D = p~(D). Let Ly be the line bundle on Yy corresponding to (V, 6). Because
P.V is a decomposable filtered extension of (V,6), there exists the corresponding filtered exten-
sion P.Ly of Ly on (Xyg, D). We have p,(P.L)="P,V. By Proposition 5.35 below, we have
deg(P.Ly) = deg(P.V)=0. There exists a flat metric hr, of Ly adapted to P.Ly. We obtain
a decoupled harmonic metric hy of (V,0) corresponding to hr, , which is adapted to P.V. By
the stability, there exists a positive constant h = ah;, and hence h is also a decoupled harmonic
metric. (I

5.7.1 Degree Let p: X1 — X2 be a non-constant morphism of compact Riemann surfaces.
Let Dy C X3 be a finite subset. We set D1 = p~!(D5). Let P,V be a filtered bundle on (X1, D1).
We obtain a filtered bundle p.(P.V) on (X2, D2). Let m(P) denote the ramification index of p
at Pe X;.
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ProrosITION 5.35. The following holds:
rank V

deg(ps(PV)) = deg(P.V) ~ > (m(P)-1).

PeXi\D;

Proof. We have Py(psV) = p«(PoV). By the Grothendieck-Riemann-Roch theorem and the
Riemann-Hurwitz formula, we have

rank V
deg(p-PoV) = deg(PyV) — = > (m(P) -1).
PeX,
By the construction of p.(P.V), we obtain
m(P)—1

deg(p«(P:V)) = deg(p«(PoV)) Z Z Z (

a€eD; —1<a<<0 j=0

:deg(POV)—ransz Sy -1n-3 3 <a (P)— 1)) dim GrP (Vp)

pPeX; PeD; —1<a<0

) dim Gr} (Vp)

_ deg(P.V) rank V

> (m(P)-1). (42)

PeXi\D;

Thus, we are done. O

Remark 5.36. If there is no ramification point in X3 \ D1, we have deg(P.V) = deg(p«P.V). We
can also prove it as follows. Let ho be a Hermitian metric of Vx,\p, such that (i) ho is flat
around any point of D; and (ii) hg is adapted to P, V. Let R(hg) be the curvature of the Chern
connection of A. Then, we have

V-1

deg(P.V) = 27 Sy

tl"R(h()).

We have the induced metric pi(ho) of p«(V)|x,\p,- It is flat around any point of Ds, and it is
adapted to p.«(PxV). Hence, we have

e

deg(p-(PV) == | .

trR(p«ho).

Then, we obtain deg(P.)V) = deg(p.P:V).

5.8 Dirichlet problem for wild decoupled harmonic bundles
Let Y, X, D and (P,V,6) be as in §2.3.

PROPOSITION 5.37. Assume that (V, 0) is regular semisimple and that P(V) is a decomposable
filtered extension. Then, the harmonic metric h in Theorem 2.8 is decoupled.

Proof. It is enough to consider the case where Xy is connected. Let ivﬂ be the partial
compactification of ¥y as in §5.6.2. Let X and D denote the inverse images of X and D,
respectively, by the natural morphism ivﬂ — Y. There exists a line bundle Ly on Xy corre-
sponding to (V, ). Let P.Ly be the filtered line bundle on (ivﬁ, D) corresponding to (P,V, 0).
There exists a Hermitian metric hg of Ly such that (i) hg is flat around any point of 5,
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(ii) ho is adapted to P.Ly and (iii) h0| s% induces hpx. Let R(ho) denote the curvature of
the Chern connection of (Ly, ho). It vanishes around D. There exists an R-valued C°°-function
a on X such that (i) 00a = R(ho)p? and (ii) @55 =0. Then, hy = e “hg is a flat metric of Ly, ¢
adapted to P, Ly such that h1|a)? = ho|a)~<' Let hy be the decoupled harmonic metric of (V, 9)|X\D

corresponding to hy. It is adapted to P,V and it satisfies hgpx =hsx. By the uniqueness in
Theorem 2.8, we have h = hs. O

6. Large-scale solutions with prescribed boundary value

6.1 Harmonic metrics of regular semisimple Higgs bundles on a punctured disc
6.1.1 General case Let U be a neighbourhood of 0 in C. Let Uy be a relatively compact open
neighbourhood of 0 in U with smooth boundary 0Uy. We set U* =U \ {0} and Uj = Uy \ {0}.
Let (P.V, 0) be a good filtered Higgs bundle of rank r on (U, 0) such that (V;0) := (V, 0)y-
is regular semisimple. Let hgy, be a Hermitian metric of Vjgy,. According to Theorem 2.8, for
any t > 0, there exists a unique harmonic metric h; of (V, t0)|UJ such that hypy, = hou, and that
Ph(V) =P.V. Note that det(hy) = det(hy) for any ¢ > 0.

PROPOSITION 6.1. Let t(i) be any sequence of positive numbers such that t(i) — co. Then, there
exists a subsequence t'(j) such that the following hold:

— t(j) = o0;

— the sequence hy ;) Is convergent to a harmonic metric on any relatively compact open
subset of Uy in the C'*°-sense.

The limit he, is a decoupled harmonic metric of (V, ) such that P"< (V) =V and that det(hs) =
det(hl).

Proof. By taking the pull back via a ramified covering map ¢y as in §5.1.1, it is enough to consider
the case where there exist meromorphic functions (1), ...,y(r) on (U, 0) and a decomposition
T
(V,0) = D Vi, 1) d2).
i=1

Let v; be a frame of V; on U such that v; is a section of PgV.
LEMMA 6.2. There exists a constant C' > 0 such that hy(v;, v;) < C for any t > 0.

Proof. 1t is enough to consider the case where (i) =0. We have 6(v;) =0. Then, we have
—82&2|vi|%t <0 on U§ (see a preliminary Weitzenbock formula in [Sim90, Proof of Lemma 4.1]).
Because v; is a section of PoV, |U¢|%Lt is bounded for each ¢. Hence, |vi\%t is subharmonic on Uy.
By the maximum principle, we obtain [vs|} < maxay, [vil7, = maxay, |vil; - O

Let VY =Homoe, (V, Oy (*0)) denote the dual of V. We have the induced filtered bundle
Pi(VY) on VY. We set (VV,0Y) = (VY,0Y)y-. The induced harmonic metric hy of (V,t0") is
adapted to P,(VY).

There exists the induced decomposition VY =@D,_; V). Let v/ denote the section of V)’
such that vy (v;) = 1. There exists m(i) € Zso such that 2™@vY is a section of P.o(VY). By
Lemma 6.2, we obtain the following lemma.
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LEMMA 6.3. There exists C > 0 such that |z|*™®DhY (vY,vY) < C for any t > 0.

177

Let s; be the automorphism of V|U0* determined by h;=h;-s;. Let K be any relatively
compact open subset of Uj. By Lemmas 6.2 and 6.3, there exist Cx 1 > 0 such that the following
holds for any ¢ > 0:

|stln, + |57 M n < Cra (43)

By a variant of Simpson’s main estimate (see [Mocl6, Proposition 2.3]), there exist
tk1,CKk2,Ck3>0 such that the following holds for any ¢ >tk ; and for any local sections
ug(;) and ug(jy of Vg and Vg on K (i #j):

\hi(upgy, ugy)| < Ck2 exp(—Cret) |ugeyln, - [use)ln, - (44)

There also exist tx 2, Ck 4, Ck,5 >0 such that the following holds on K for any ¢ >tk o (see
[Moc16, Theorem 2.9]):

|R(ho)l,. < Cra exp(—cK,g,t). (45)

By (43) and (45), it is standard to obtain the existence of a convergent subsequence Ay ;).
By (44) and (45), the limit is a decoupled harmonic metric. By Lemma 6.2, we obtain that
heo(vi, v;) < C. Hence, v; are sections of P> (V). This implies that ¥ C P"= (V). Because both
V and Ph= (V) are locally free O (x0)-modules, we obtain that V =P/ (V). O

PROPOSITION 6.4. Let ho, denote the limit of a convergent subsequence in Proposition 6.1.
Suppose the following condition holds.

— For every zy € 0Uy, the eigen decomposition of 6 at zy is orthogonal with respect to
hou, -

Then, hoo|6Uo = han.

Proof. Let U; be a relatively compact open neighbourhood of 0 in Uy with smooth boundary
OU1. Because ho, is a decoupled harmonic metric, the following condition is satisfied.

— For every z; € Uy, the eigen decomposition of 6 at z; is orthogonal with respect to heo.

We set A=Uy\U;. By Proposition 5.37, there exists a decoupled harmonic metric () of
(V,dy, 0)4 such that hI%ZJo = hgy, and h\%zjl = hoojou,- We note that h() is a harmonic met-
ric of (V,dy,t0)4 for any ¢ > 0. We also note that det(hM) = det(h1)|a because det(h(l))|aA =
det(hl)‘aA.

Let s; be determined by h; = h(Ms; on A. We have —0,07Tr(s;) <0. We have Sp(5) — id on
OUy and sy (jy =1id on 9Up. Hence, we obtain |Tr(s; ;) —id)| — 0 as #'(j) — oo. This implies the
claim of the proposition. O

6.1.2 The irreducible case Suppose that the spectral curve is irreducible, i.e. ¥y ¢ is con-
nected. We obtain the decomposable filtered bundle P}(V) determined by det(P.V) as in
Proposition 5.13, which is not necessarily equal to P, (V).

LEMMA 6.5. Let hs denote the limit of a convergent subsequence in Proposition 6.1. Then, we
have Pl (V) =Ps(V).
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Proof. We have P"<V =V. Because hs is a decoupled harmonic metric, P~<(V) is decom-
posable. Because det(ho) = det(hy), we obtain det(P!~V) = det(P,V). Then, the claim follows
from the uniqueness of P} (V). O

Let ho be any decoupled harmonic metric of (V, dv, #) such that P (V) =V and that det(hg)
is adapted to det(P.)). By the argument in the proof of Lemma 6.5, we can prove Pho(V) =
Pi(V). Let hy (t>0) be the harmonic metrics of (V, dy, tf) adapted to P,V such that hy sy, =
hojau, -

PROPOSITION 6.6. The sequence h; is convergent to hg as t — oo in the C°°-sense on any
relatively compact open subset of Uy.

Proof. Let t; be any subsequence such that t; — oo and that hy, is convergent. Let ho, denote
the limit. By Proposition 6.4, we have hoq|gu, = hojau,- We also have Pl (V) =Pr(V) =Pl(V).
Hence, we obtain ho, = hg. This implies that h; is convergent to hg as t — oo. O

6.1.3 Symmetric case We do not assume that the spectral curve is irreducible. Instead,
suppose that there exists a perfect pairing C of (P.V,#). There uniquely exists a decoupled
harmonic metric h€ of (V, 0) which is compatible with C. As in Lemma 5.23, we have P17 (V) =
PEY.

Suppose that hgy, is compatible with Cjoy,. Then, ht (t >0) are compatible with C' by
Corollary 2.9. Let s; be determined by h; = h®s;. We note that det(h;) = det(hy) = det(hc) by
the compatibility with C. The following proposition is a special case of Corollary 3.5.

PROPOSITION 6.7. If hgy, is compatible with Cjay,, the sequence hy is convergent to h¢ in the
C*-sense on any relatively compact subset K of Uj. Moreover, there exists t(K) > 0 such that
the following holds for any ¢ > 0.

— There exists C(K,¢) and e(K,{) such that the norms of s; —id (t >t(K)) and their
derivatives up to order ¢ are dominated by C(K, ) exp(—e(K,{)t).

Let us also consider the case where hgy, is not necessarily compatible with Cloys,, but
det(hgu,) is compatible with det(C) sy, Because det(h;) are compatible with det(C') on Up,
we obtain det(h) = det(h1) = det(h).

PROPOSITION 6.8. Let hy;) be a convergent subsequence, and let ho, denote the limit as in
Proposition 6.1. Then, Pl=(V) =P (V).

Proof. Let h} (t>0) be harmonic metrics of (V,tf) which are compatible with C, such
that det(h}) =det(h1). We have already proved that the sequence hj is convergent to hC.
We have det(h;)=det(h;). Let s; be the automorphism determined by h;=h}s;. Let soo
be determined by hoo = h®sso. The sequence s; is convergent to So. Because det(s;) =1,
we have det(ss)=1. Because Tr(s;) is subharmonic on Uy, we obtain that maxy, Tr(s;) =
maxgy, Tr(s;) = maxgy, Tr(s1). We obtain that Tr(ss) is bounded. Then, s, and s3! are
bounded, and we obtain P"= (V) =P (V). O

Suppose that for every zo € 9U, the eigen decomp081t10n of 0 is orthogonal with respect to
hau,. There exists a decoupled harmonic metric & of (V, 6) such that h\an hou, and Ph(V)
PLV).

COROLLARY 6.9. The sequence h; is convergent to h.
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6.2 Local symmetrizability of Higgs bundles
Let U be a simply connected open subset in C. Let D be a finite subset of U. Let (E, 0, #) be a
Higgs bundle on U such that (V,0) = (E, 0)n p is regular semisimple. Let 7:Yg ¢ — U denote

the projection. Let p: iE,g — X g9 denote the normalization of X 9. We set D= (mop)H(D).
We assume the following condition.

— There exists a line bundle L on 3. £,0 With an isomorphism (7 o p).L ~ E. Moreover, the
Higgs field 0 of E is induced by the Op-r-action on p, L.

For any P € D, let Up be a simply connected neighbourhood of P in U such that Up N D =
{P}. We set Up =Up \ {P}. There exists the decomposition

V. 0= @ (v, 65, (46)
keS(P)

such that the spectral curves of (Vj[f], 9%]) are connected. Because E ~ (7o p).L, (46) extends
to the decomposition

k] plk
(E.0)w; = D (B 05).
ieS(P)
Let h be a decoupled harmonic metric of (V, #). The decomposition (46) is orthogonal with

respect to h. Let hg’.f] denote the restriction of h to V][Dk]. We consider the following condition.

CONDITION 6.10. det(hgl;}) induces a flat metric of det(E][f]), and P"V = E(xD) holds.
We shall prove the following proposition in §6.2.2 after the preliminary in §6.2.1.

PROPOSITION 6.11. Suppose that Condition 6.10 is satisfied at each P € D. Moreover, we

assume that each connected component of ¥ g g is simply connected. Then, the following claims
hold.

— There exists a non-degenerate symmetric pairing C' of (E,0) such that Cjnp is
compatible with h.

— Let C" be a non-degenerate symmetric pairing of (V,0) which is compatible with h.
Then, C’ induces a non-degenerate symmetric pairing of E.

Remark 6.12. If ¥gp is a simply connected complex submanifold of T*U, we can apply
Proposition 6.11 to (E, ).

6.2.1 Special case Let us study the case that D = {0}, and that ¥y is connected. We
set V = E(x0). We use the notation in §5.1.1. By choosing an r-th root of (7o p)*(z) on iE’g,
we obtain a holomorphic isomorphism 1 : iEﬂ — U™ such that ¢, 0t® =mop. There exists
the decomposition (41) on U(). There exists the natural isomorphism . (L)(*0) ~Vg)- Let
Eg(1y CVg(1) denote the image of L. We have ¢ (Eg(1)) = E.

Let Cg1): Vg(1) ® Vg(1) — Oy (x0) be a non-degenerate symmetric pairing. There exists
the morphism tr: p,..Op o (x0) = Oy (*0) as in §2.2.2. We obtain the induced symmetric pairing
U (Cg1y) = tro @r(Cg1)) of V=pre(Vg(1)). There exists an integer k such that Cg(yy(Eg1) ®
E,B(l)) = OU(r) (k{O})
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LEMMA 6.13. The pairing W(Cg(y)) induces a symmetric pairing of E if and only if k<r— 1.
The induced pairing is non-degenerate if and only if k=1 — 1.

Proof. There exists a frame v of Eg(y such that Cg(y)(v,v) = ¢k, The tuple v, (v, ..., (" v
induces a frame of E. Note that tr(¢?) =0 unless j € 7Z. It is easy to see that

t1(Cpay (¢, ¢Tv)) = tr(¢H7F) (0<d,j<r—1)

are holomorphic at 0 if and only if kK <7 — 1, and that the induced pairing is non-degenerate at
0 if and only if k=r—1. O

Let Cy g(1) be a non-degenerate symmetric pairing of Vg(1) such that C g1)(Egn) ® Eg1)) =
Oy ((r —1){0}). We set Co = ¥(Cp g(1)) which is a non-degenerate symmetric pairing of (£, 6).
Let ho be a decoupled harmonic metric of (V, ) compatible with Cy. We note that det(hg) is
compatible with det(Cp), and hence it induces a Hermitian metric of det(E).

Let hy be any decoupled harmonic metric of (V, ) such that P" (V) =V and that det(h;) =
det(hg). According to Corollary 5.22, there exists a holomorphic function v, on U such that

(i) gpﬁ(hl)wﬁ(l) = exp(QRe'yl)cpj(ho)Ww) and (ii) ZoeGal(r) o*y1 =0. We set

Chp(1) = exp(271)Co p(1)-
It is a non-degenerate symmetric pairing of Vg (1) satisfying Cy g1y (Eg1) ® Eg1y) = Oy ((r —
1){0}). We obtain a non-degenerate symmetric pairing C; = ¥(C g(1)) of (E, 0) such that Cy -
is compatible with h;.

Let h be any decoupled harmonic metric of (V,6) such that P*(V) =V and that det(h)
induces a flat metric of det(F). There exists a holomorphic function 2 on U such that
det(h) =exp(2rRe(v2)) det(hy1). Then, C =exp(2v2)Cy is compatible with h, and it induces a
non-degenerate symmetric pairing of F.

LEMMA 6.14. Let C’ be a non-degenerate symmetric pairing of (V,6) compatible with h. Then,
C’ induces a non-degenerate symmetric pairing of E.

Proof. There exist non-degenerate symmetric pairings Cg(1) and 023(1) of Vg(1) such that
¥(Cp1y) =C and \I/(Cg(l)):C', respectively. Because both Cpy(;) and Cé(l) are compati-
ble with ¢y (h)y,,,, there exists a constant a such that [a|=1 and C/B(l) = aCpg(1). Hence,
C;j(l)(EB(l)®Eﬁ(1)):OU(T'>((T—1){O})7 and hence C’ induces a non-degenerate symmetric
pairing of E. O

6.2.2 Proof of Proposition 6.11 It is enough to consider the case where Xy is connected,
which implies that D) B, is connected. Let hz denote the flat metric of L‘EV, , corresponding to
the decoupled harmonic metric h. Let P be any point of D. By Proposition 5.25, there exists
a non-degenerate symmetric pairing of V|7, which is compatible with A, . There exists a non-
degenerate symmetric pairing of L on (7o p)~1(U}) which is compatible with hy. Hence, the
monodromy of the Chern connection of hy around any point of Dis 1 or —1. Because 3. E,6 18
simply connected, Lemma 2.7 implies that there exists a non-degenerate symmetric pairing C, of
L5, , compatible with k. It induces a non-degenerate symmetric pairing C' of (V; ) compatible
with h. By Lemma 6.14, C' induces a non-degenerate symmetric pairing of E. Thus, we obtain
the first claim of Proposition 6.11. The second claim also follows from Lemma 6.14. 0
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6.3 A uniform estimate in the symmetric case

6.3.1 Setting For R >0, we set B(R)={z€C||z| < R}. Let S C C" be a connected open
subset with a base point zg. Let Z; (i=1,2) be an open subset of S x C,,. For simplicity,
we assume that Z; =8 x B(2). Let p;: Z; — S denote the projections. We set T*(Z23/S) =
S xT*B(2). Let mp : T*(22/S) — Z2 denote the projection. Let &g : Z; — T*(Z2/S) be a holo-
morphic map such that p; = ps o m9 0 &g. We set @1 := 7 0 Py : Z1 — Z5. We assume the following
conditions:

— @, is proper and finite;
— there exists a complex analytic closed hypersurface D C S x B(R1) C Z5 for some 0 <
Ry < 1 such that (i) the induced map Z; \ @ (D) — 25\ D is a covering map, (ii) o
induces an injection 2, \ ®71(D) — T*(22 \ D) and (iii) DN ({xo} x C) = {(z0,0)}.
We set 7:=|®; }(P)| for any P € Z;\ D. We also set D= o 1(D).
LEMMA 6.15. The sheaf & = ®1,(Oz,) is a locally free Oz,-module of rank r.
Proof. By a change of local holomorphic coordinate system on Zi, it is enough to consider

the case where ®3(22) is expressed as a Weierstrass polynomial. Then, it is reduced to [GR84,
Chapter 2, §4.2, Theorem]. O

Note that &= m.(P0«0Oz,) is naturally a m2.(Or-(z,/s))-module. Hence, we obtain the
relative Higgs field 6: £ - £ ® 9122 /s The following lemma is clear by the construction.

LEMMA 6.16. For any P € Zy\ D, there exist a neighbourhood U of P in Z3\D and a
decomposition

T

(,0) = EP(Eri, Op.), (47)

i=1
where rank Ep; =1, and 0p; — 0p (i # j) are nowhere vanishing.

For any z € S, we set Z; , = Z; N ({z} x C), D, =DN({z} x C) and D, =D ({z} x C). Note
that 25, = B(2) for any x € S. Let 15 : Z2, — Z» denote the inclusion. We obtain the Higgs
bundles (&, 0;) ==} (£,0) on 23, which is regular semisimple outside D,.

6.3.2 A uniform estimate in the symmetric case Let hy (r €S) be decoupled harmonic
metrics of (&, 91)‘ B(2)\p, such that they induce a C*°-metric of £ z,\p. Assume the following.
CONDITION 6.17. For each (z, P) € D, Condition 6.10 is satisfied for (&, 05, hS) at P.

Let h;; be harmonic metrics of (€x,t9$)|3(1) such that h, yop1) = hg‘aB(l). Let s+ be the
automorphism of &, g(1)\p, determined by hy = hg - 54+

PROPOSITION 6.18. Let Ry < Ry < 1. Let 8’ be a relatively compact open subset of S. Then,
there exists tg > 0 such that the following hold.

— For any { € Zxy, there exist positive constants C({) and €(¢) such that
|(s2,¢ = id) | B(R)\B(R)) |12 < C(£) exp(—€(£)t)

for any x €S’ and any t > ty. Here, we consider the L?—norms with respect to hj and
the standard Euclidean metric dzo dzs.
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Proof. For 0 < R <2, we set 21 ,(R):=®'({z} x B(R)) C Z1 ..

LEMMA 6.19. If Ry < R <2, each connected component of Z; ;(R) is diffeomorphic to a two2-
dimensional disc.

Proof. Let us consider the case Ry < R<2. We set Z;(R):=®7'(S x B(R)) C Z. The closure
Z1(R) of Z1(R) is a C*°-manifold with smooth boundary. The projection Z1(R) — S is submer-
sive and proper. Each connected component of Z; , (R) is diffeomorphic to a disc. Because S is
connected, we obtain that each connected component of Z; ,(R) is diffeomorphic to a disc. For
R; < R< 2, there exists a diffeomorphism pgr: B(R) ~ B(2) whose restriction to B(R;) is the
identity. We can construct a diffeomorphism Z; ,(R) ~ 21 ,(2) by lifting pg. 0

LEMMA 6.20. There exist holomorphic non-degenerate symmetric pairings Cy, (x € S) of (&, 0y)
such that the restrictions Cy p1)\p, are compatible with h3 and continuous with respect to z.

Proof. Let hg ,, denote the flat metric of O 2 \D, corresponding to h2, which are continuous with
respect to z. Let V{  denote the Chern connection. They are flat connections, and continuous
with respect to x.

By Proposition 6.11 and Lemma 6.19, for each z €S8, there exists a holomorphic non-
degenerate symmetric pairing C;, of (€, 0.) such that the restriction (C})pa)\p, is compatible
with hg. Let Cf, denote the holomorphic non-degenerate symmetric bilinear form of O z, \D.
corresponding to C’, which is compatible with hg -

Let z; € B(1) \ B(R;1). There exists a continuous family of non-degenerate symmetric pairings
of the vector space Oz,(z,z,) Which are compatible with (h&m) We obtain a, € C*

=az(Cf )z, - We set Co = oG . Because Cp ;. are V§ -flat, they are

C(()),(m,zl)
determined by Cf

|21 -

,((E,Zl)
continuous with respect to x. Let C, denote the non-degenerate symmetric pairing of (&, 6;)

corresponding to Cp .. (See Proposition 6.11.) Then, they satisfy the desired condition. O

Because hy z9p(1) = h;|8B(1) are compatible with Cy9p(1), we obtain that hy, are compatible
with Cy. Then, the claim of Proposition 6.18 follows from Theorem 3.4.

We also obtain the following proposition from Theorem 3.4, as in the proof of
Proposition 6.18. [l

PROPOSITION 6.21. Let Ry < Ry <2. Let 8’ be a relatively compact open subset of S. There
exists to > 0 such that the following holds.

~ Let hj; be any harmonic metrics of (g, 0,) (v € S') compatible with C7. Let s, be
determined by hiy , = hg - s, ;. Then, for any { € Zx, there exist positive constants C({)
and €(¢) such that

(8%, = 1) [B(Ro)\B(RY) | 12 < C(£) exp(—€(0)t),
for any t > ty.

6.3.3 Ezamples of non-degenerate symmetric pairings and decoupled harmonic metrics We
obtain a holomorphic function G = 8,, (®3(z2)). We have G~1(0) C D. We define the symmetric
product Cp: 0z, @ Oz, — G710z, by

Co(a®b) =G tab.

We obtain the following lemma by using Lemma 6.13.
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LEMMA 6.22. The pairing Cy induces a non-degenerate symmetric pairing Cy of &, which
induces a non-degenerate symmetric pairing of (&,0,) for any z € S.

~ defined as follows:

Let hg be the flat metric of (’)ZI\D

ho(a,b) = |G| ab.

LEMMA 6.23. The metric hg induces a flat metric hy of & z,\p. For each z €S, the induced
metric hy, of (£x,0z) z,,\p, is a decoupled harmonic metric such that det(h; ;) induces a flat
metric of det(&;) for each x € S.

Remark 6.24. We shall use hg in §7.3.

7. Large-scale solutions on compact Riemann surfaces

7.1 Convergence in the locally irreducible case

7.1.1 Statement Let X be a compact Riemann surface. Let 7 :T*X — X denote the pro-
jection. For any A C T*X, the induced map A — X is also denoted by 7. Let D C X be a finite

subset.
Let (P«V,0) be a good filtered Higgs bundle of degree 0 on (X, D). We obtain the Higgs
bundle (V; 8) = (V,0)x\p- We assume the following.

CoNDITION 7.1. The Higgs bundle (V, ) is a regular semisimple Higgs bundle on X \ D.

Remark 7.2. If (V, ) is generically regular semisimple, there exists a finite subset D' C X such
that (V’,0")x\p/ is regular semisimple and that D C D'. We set V' =V(xD’). For each P&
D'\ D, we consider the filtered bundle P,(Vp) over Vj defined by PoVp = Vp([a|P), where
[a] = max{n € Z |n < a}. For harmonic metrics of (V,t0) adapted to PV, it is enough to study
harmonic metrics of (V’,t0") adapted to P,V'.

For any P € D, there exist a neighbourhood Xp of P in X and a decomposition of the
meromorphic Higgs bundle

V,0)x, = @ (Vrs,0p;), (48)
ieS(P)

such that the spectral curves of (Vp,, 9p7i)| Xp\{p} are connected.
CONDITION 7.3. We assume the following conditions:

— the spectral curve Yy g is connected;

— for any P € D, the decomposition (48) is compatible with the filtered bundle P.(Vp)

For each P € D, we obtain the filtered bundle P;(Vp) =€D;cg(p) Pr((Vpi)p) over Vp deter-
mined by the filtered bundles det(P,Vp;) as in Proposition 5.13. By patching P}(Vp) (P € D)
with V, we obtain a decomposable filtered Higgs bundle (P} (V),0).

LEMMA 7.4. The filtered Higgs bundle (P} (V), 0) is stable of degree 0. As a result, there exists
a decoupled harmonic metric ho of (V,0) adapted to P;(V).
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Proof. Because Yy is connected, there does not exist a non-trivial Higgs subbundle of (V,0).
Hence, (P.V,0) is stable. Because det(P;V)=det(P.V), we obtain deg(P;V)=0. The second
claim follows from Proposition 5.34. O

Note that det(h) is a flat metric of det(V') adapted to det(P.V) = det(P}V). Because Xy ¢
is connected, (P.V, 0) is stable of degree 0 as in Lemma 7.4. Hence, for any ¢t > 0, there exists a
harmonic metric h; of (V, t0) which is adapted to P,V such that det(h:) = det(hoo).

THEOREM 7.5. On any relatively compact open subset K C X \ D, the sequence h; is convergent
to heo in the C*°-sense.

7.1.2 The case of locally and globally irreducible Higgs bundles We state Theorem 7.5 in
a special case for clarification (see also Remark 7.2). Let (E,0g,0) be a generically regular
semisimple Higgs bundle of degree 0 on X. Let ¥ ¢ denote the spectral curve. There exists the
finite subset D(FE, #) C X such that the following holds:

— PeD(E,0) if and only if [Tp X NXge| <.
We impose the following condition.
CONDITION 7.6.

~ The spectral curve Y g is irreducible, i.e. g g\ 7 ' (D(E, 0)) is connected.
— For any P € D(E,0), there exist a neighbourhood Xp of P in X and a decomposition
(E,0)x, = D (Epi,0p,), (49)
i€S(P)

such that the spectral curves X g, g, are irreducible.

We set D=D(E,0). Let PO ( (*D)p) be the filtered bundle over E(xD)p defined by
P (E(xD)p) = Ep(la]P), where [a]| =max{n € Z |n < a}. Because there exists the decompo-
sition

POE = @ PO(Epi(+D)p),
1€S(P)

induced by (49), we obtain the filtered bundle P;(E(xD)p) determined by det(PiO)ERi(*D) P)
as in Proposition 5.13. By patching them with (E(xD), #), we obtain a filtered bundle P}V over
V = E(xD). The filtered Higgs bundle (P} (E (D)), 6) is decomposable.

As in Lemma 7.4, there exists a decoupled harmonic metric hoo of (E, 0)x\p such that he
is adapted to P;V. For any t > 0, there exists a unique harmonic metric h; of (E, tf) such that
det(h;) = det(hs). As a special case of Theorem 7.5, we obtain the following.

COROLLARY 7.7. On any relatively compact open subset K C X \ D, the sequence h; is

convergent to heo in the C'°°-sense.

Remark 7.8. The second condition in Condition 7.6 is satisfied if g g is locally irreducible.
7.1.3 Proof of Theorem 7.5 Let P € D. We set Xp = Xp\{P}. We set Vp; =Vp;x; and

r(P,i) =rank Vp,. Let zp be a holomorphic coordinate of Xp by which Xp ~{z€ C||z| < 2}.
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We set (heo)pyi := Roo|vy, - Let by p; be a harmonic metric of (Vp;, t0p;) such that (i) the bound-
ary value at |zp| =1 is equal to that of (heo)p; and (ii) hep, is adapted to P,Vp;. We have
det(hs,p;i) = det((hoo)p,i). We obtain the following lemma by Proposition 6.6.

LEMMA 7.9. The sequence hy p; is convergent to (hs)p; as t— oo in the C*-sense on any
relatively compact open subset of XF,.

We regard Xp as an open subset of C by the coordinate zp. Let ¢p,(p;) : C— C be defined

by @pa(pa(Cri) =Cpi . We set XEPD =il Lo (Xp) and XEET =l Lo (XG). The

induced maps X](D( )) — Xp and XI(D( AL Xp are also denoted by ¢p,.(p)-
We define a Hermitian product hg}(gi’i)) of @*P’T(P’i)(Vp7i)| X G- 8s follows. We have the
decomposition
r(Pyi)
©pr(pa) (VP 0Pi) | x e = B Ve, Bp) dp,),
p=1
where 3(p) are meromorphic functions on X](I(P’i)). Let vg(1) be a holomorphic frame of Vp; g1).
We obtain a frame v,.g1) = 0*(vg1)) of Vp; opa1)- Let x(Cpi) be an Rxo-valued function such
that (i) x(Cp,i) depends only on |Cp;| and (i) x(Cpri) =1 (|[Cpil <1/2), x(Cpi) =0 (I¢pil =2/3).
For p # q, we put
WS (W) Vsta) = X(CPa) Py (e, i) (Vs V(o))

We define hgl(gl ))(vﬂ( )> Va(p)) DY

log b5 (Va0 V() = X(CPi) 108 © o) (e, P) (V303 V5)
r(Py
+ (1= X(C(P, ) 108 @y ((hoo) 557 (W30, Va() - (50)
Then, hi I(DPZ)) is Gal(r(P,1))-invariant, and we have hglgf.’i)) :(p];%ﬂ(Pi)(ht’pﬂ') on {0 < |¢pi| <

1/4} and h, }()Izl)) SDPIT(PZ)((hOO)PJ) on {4/5 < |Cp,i|}. There exists a Hermitian metric Et,p,i of
(r(Pa)) ) x (r(Pi)x
' P

P . We obtain a Hermitian metric
9 9

h,p = @ ha,p.

i€S(P

Vp,; such that goPT(PZ»)(ht,P,z) =h

of Vix:. By patching ﬁt’p and hs, we obtain Hermitian metrics ﬁ; of V. We obtain the
C-function a; on X \ D determined by det(h}) =e™ det(hso). We set hy = e */"h}. By the
construction, the following lemma is clear.

LEMMA 7.10. There exists ty such that Et is positive definite for any t >ty. Moreover, the
following holds.

— The sequence ﬁt is convergent to hs in the C'*°-sense on any relatively compact open

subset of X \ D. The support of R(h:)+ [t0, (75«9);Z | is contained in {(%)rank(E) < zpl <
%} for P € D. In particular,
[ R+ o)l o (51)
X t 1hy,gx

as t — oo.
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Let gx be a Kéahler metric of X. Let s; denote the automorphism of V' determined by h; = Etst.
We have det(s;) = 1. According to [Sim88, Lemma 3.1], we obtain the following on X \ D:

Ay, Tr(s;) = Tr((R(Et) + [16, (w)}“])sg — D(s¢)s; Y B sl R (52)

Note that @;cg(p) ht,pi and hyjx; are mutually bounded for any P € D. Hence, Tr(s;) is
bounded. We also note the following vanishing (see Lemma [Moc21, Lemma 4.7]):

/ AxTr(sg)dvolg, =0. (53)
X

We set by =supx\ p Tr(st). Note that b, > rank(E), and by =rank(E) if and only if s, =idp.
We set uy = b; ' - s4. There exists C' > 0, which is independent of ¢ such that luely;, < C. By (51),
(52) and (53) we obtain

[ (Bl +109. ) ) o,

as t — o0.

Let #(i) >0 be a sequence such that t(i) — oo as i — co. By going to a subsequence, ;)
is weakly convergent in L? locally on X \ D. In particular, it is convergent in LY for any ¢ > 1
locally on X \ D. Let us denote the limit which satisfies Juso = [0, o] = 0.

LEMMA 7.11. We have uq # 0.

Proof. Note that supy Tr(ut(i)) =1 for any i. Let 0<e<1. Let P;€ X be points such that
Tr(uy)(P;) > €. By going to a subsequence, we may assume that the sequence is convergent to a
point P,. Let us consider the case where

P | J {lzpl <4/5} = W.
PeD
Let (Xp_, z) be a holomorphic coordinate neighbourhood around P, which does not intersect

with W. Because F(h;) =0 on Xp_, we obtain Ay Tr(uy) <0. By the mean value property of
the subharmonic functions, there exists C' > 0 such that

Ce< / Tr(uy (s )-
XPoo

Because uy(;) is convergent to ue in LP for any p>1 on Xp,, we obtain that ue # 0.
Let us consider the case where Py € {|zp| <4/5} for some Pe D. Let (Xp,zp) be a
holomorphic coordinate neighbourhood around P as above. By [Sim88, Lemma 3.1], we have

Ag, log Tr(uy;y) < ’R(ﬁt(i)) +[19, (w)%,m]

Tlt(q‘,),gx )

There exist C'°°-functions o; on Xp such that (i) Ay, o; = ’R(ﬁt(i)) + [t, (t@)% ] - , (i)
2D 1he(i),gx

Qjjax, =0 and (iii) there exists C'> 0 such that |a;| < C for any i. Because log Tr(uy;)) — o is

a subharmonic function on Xp, the maximum principle allows us to obtain

loge—C < log Tr(uyp) — i} = log Tr(uy(7)}
oge—C< max {logTr(uy) — i} = max {log Tr(uy)}

Hence, there exists a sequence Pj € 0Xp such that Tr(u.;)(FP;) > ee~¢. By going to a subse-
quence, we may assume that the sequence P! is convergent to P, € X \ W. Then, we can apply
the result in the first part of this proof. O
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Recall that us, # 0 is an endomorphism of (V #) such that Que, = [0, U] = 0. At each point
of X\ D, an eigenspace of # is also an eigenspace of us,. Because each uy(;) 1s self-adjoint
with respect to %t, Uso is self-adjoint with respect to hoo. We obtain 0 u =0. Hence, the
eigenvalues of u, are constant. Because Et(ut(i)v, v) = 0 for any local section v of V', we obtain
heo(tsov, v) = 0, which implies that the eigenvalues of us, are non-negative. We also note that
2y, is connected. Hence, u is a positive constant multiplication. This implies that the sequence
by is bounded, and that the subsequence s;(;) is convergent to a positive constant multiplication.
Because det(s;) =1, the limit is the identity. Because this is independent of the choice of a
subsequence, we obtain the desired convergence. O

7.2 Order of convergence in a smooth case

7.2.1 Rough statement Let us study the order of the convergence in the situation of §7.1.2
assuming the following stronger condition.

CONDITION 7.12. Let p:flE,9—>EE79 be the normalization. There exists a line bundle L on
Y g e with an isomorphism (7 o p).L ~ E such that 6 is induced by the Op-x-action on p,L.

Let g(iEvg) and g(X) denote the genus of iEﬁ and X, respectively. Then, we have deg(L) =
9(Xge) —rg(X)+r—1.

Remark 7.13. If Condition 7.12 is satisfied, Condition 7.6 is also satisfied. Condition 7.12 is
satisfied if X g ¢ is smooth and connected.

We set (V,0) = (E,0)x\p- Let s(hoo, ht) be the automorphism of V' determined by h; =
hoo * $(hoo, ht). Let gx be a Kahler metric of X.

THEOREM 7.14. For any relatively compact open subset K of X \ D and a non-negative integer

¢, there exist positive constants C(K, ¢) and e(K, ¢) such that the L?-norms of s(hso, hi) —idp

on K with respect to heo, gx and the Chern connection of hs, are dominated by C(K, E)e_e(K’Z)t.

7.2.2 Refined statement We shall prove a refined statement. For that purpose, we refine the
construction of h; in the proof of Theorem 7.5. Let P € D and i € S(P).

LEMMA 7.15. The metric det((hoo)p;) induces a flat metric of det(Ep;).

Proof. The lemma follows from the condition that det((hoo)p;) is adapted to
det P*(Ep;(+D)p) = det P (Ep,(+D)p). O

According to Proposition 6.11, there exists a non-degenerate symmetric pairing Cp; of
(Ep,i,0p;i) such that Cp; X3 is compatible with (hoo)pi. For t>0, there exists a harmonic
metric hy p; of (Ep;, 0p,;) which is compatible with Cp; such that its boundary value at 0Xp is
equal to that of h g, ,. We construct the metric lNLt by using h; p; as in the proof of Theorem 7.5
(see §7.1.3). By Proposition 6.7, the following holds.

LEMMA 7.16. Let s(heo, ﬁt) be the automorphism of E|x\p determined by ﬁt =heo - s(hoo,ﬁt).
For any relatively compact open subset K of X} and for any (€ Zxq, there exist constants

C(K,0),e(K,0),t(K) >0 such that the L?-norms of $(hoo, ht) —id on K with respect to he
and gx are dominated by C(K,{)exp(—e(K,{)t) for any t > t(K).
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By Lemma 7.16, we obtain
|R(hy) + [t6, (te);””ﬁhgx <Ce™ . (54)
for some €, C' > 0. Moreover, by the construction, the support of (54) is contained in

U {9 < Jzp| < 4/5).
pPeD

Let s; be the automorphism of F determined by h; :ﬁt - 8¢. We obtain Theorem 7.14 from
Lemma 7.16 and the following theorem.

THEOREM 7.17. For any ¢ >0, there exist C({), €(¢) >0 such that the L?-norms of s; —id on
X with respect to hy, gx and the Chern connection of h; are dominated by C(¢) exp(—e(¢)t).

Proof. By [Sim88, Lemma 3.1] and (54), there exist C1, e; > 0 such that
~1/2 ~1/2
/X (157 20,5, (502, + 118, silsy /2. ) < 1 exp(—ext).

By Corollary 7.7, [s¢[; and |s;° 1|}~Lt are uniformly bounded. There exist Cs, €2 > 0 such that

/ (1957, (02, +116. 5]12.) < O exp(—eat) (55)
X

Let K be a relatively compact open subset of X \ D. By the variant of Simpson’s main
estimate ([Moc16, Theorem 2.9]) and Lemma 7.16, there exist C5(K), e3(K) > 0 such that the
following holds on K:

05 (s; 05, (501, < Ca(K) exp(—ea(K)t).

Together with (55), we obtain that there exist Cy(K), e4(K) >0 such that the following holds
on K:

05, (st)]7;, < Ca(K) exp(—es(K)t). (56)
Because s; is self-adjoint with respect to 7Lt, we obtain the following on K:
[A(s0)ly, < Ca(K) exp(—ea (K1), (57)
LEMMA 7.18. There exist C(K), e(K) >0 such that the following holds on K:
|s¢ —id]; < C(K) exp(—e(K)t).

Proof. Let P be any point of X \ D. Let Xp be a simply connected neighbourhood of P in
X \ D. There exists a decomposition into Higgs bundles of rank 1:

rank(F)
(B, 0)x,= P (Epi,0p;).

i=1
We obtain the decomposition s;=73 (s¢);i, where (s¢);;:FEp; — Epj. By [Mocl6,
Proposition 2.3], there exist C5(P), e5(P) > 0 such that the following for i # j on Xp:

|(st)jiily, < Cs(P) exp(—es(P)t). (58)
By (56) and (57), there exist Cg(P), eg(P) > 0 such that
|d(st)ii| < C6(P) exp(—es(P)1).
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Hence, there exist C7(P), e7(P) > 0 such that the following holds for any Py, P, € Xp:
|(st)ii(P1) = (s0)ii(P2)| < C7(P) exp(—er(P)t).

Let i # j. There exists a loop 7 in X \ D such that the monodromy of ¥ ¢ along v exchanges
E; and E;. By taking a finite covering of v by relatively compact open subsets and by applying
the above consideration, we obtain that there exist Cg(P), es(P) >0 such that the following
holds for any P; € Xp:

|(st)ii(P1) = (s1),5(P1)| < Cs(P) exp(—es(P)t). (59)
By (58), there exist Cy(P), eg(P) > 0 such that the following holds on Xp:
rank(E)
[T (s0)ii — 1| < Co(P) exp(—eo(P)2). (60)
i=1

By (59) and (60), there exist Cio(P), €10(P) > 0 such that
’(St)i,i - 1‘ g Clo(P) eXp(—Elo(P)t).
Then, we obtain the claim of Lemma 7.18. O

We obtain the estimate of |s; — id|;“ around D by using Theorem 4.3. We can also obtain
the estimate for the higher derivatives by using Theorem 4.3. O

7.3 A family case
7.3.1 Setting Let S be a connected complex manifold. Let ) be a complex manifold with a
proper smooth morphism p;: Y —S. Let poa: S x X — & and m2: S X T* X — S x X denote the
projections. Let ®3:)Y — S x T*X be a holomorphic map such that p; =ps om0 ®g. We set
®; =m0 &y. We assume the following conditions:
— each fiber of p; is connected and onel-dimensional;
— &, is proper and finite;

— there exists a closed complex analytic hypersurface D C S x X such that (i) D is finite
over S, (ii) the induced map Y\ ®71(D) = (S x X)\ D is a covering map and (iii) ®g
induces an injection Y\ ®71(D) — S x T*X.

We set r:= |® 1 (P)]| for any P € (S x X)\ D. We set D:= ®,1(D). For any = € S, we set YV, :=
py (), D, : =Y, ND and D, :=p, '(z) ND. Let g(X) denote the genus of X. Let § denote the
genus of ), which is independent of x € S.

Let £ be a line bundle on Y such that

deg(ﬁ‘yw) =g—rg(X)+r—1.
We obtain the locally free Ogy« x-module £ = &1, L. It is equipped with the relative Higgs field
9:5—>5®Q}SX){/5,

induced by the Ogy - x-action on @y, L. For any = € S, let (€, 0,.) be the induced Higgs bundle
on X ~ {z} x X. We obtain the following lemma by the construction.

LEMMA 7.19. Each (&, 0,) is stable of degree 0.

40

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press


https://doi.org/10.1112/mod.2024.9

ASYMPTOTIC BEHAVIOUR OF LARGE-SCALE SOLUTIONS

7.3.2 Statement We obtain the holomorphic line bundle det(€£) on S x X. There exists a
C*°-Hermitian metric hgey(g) of det(£) such that hgey(g),z = Ndet(e)|{2}x x 18 flat for any z € S.

We have the decomposable filtered Higgs bundle (P;&;,6;) on (X, Dy). Let hoop be the
decoupled harmonic metric of (€, 0)|x\p, such that det(heoz) = Pet(€),z-

LEMMA 7.20. The metrics heo . (z € S) induce a C*-metric of sy x)\p-

Proof. Tt is enough to study locally around any point xg € S. By using the examples in §6.3.3,
we can construct a C°°-Hermitian metric hy of L"y\ﬁ such that (i) ho is flat around D and (ii)
h0|yz\5z is adapted to P;(Ly,). By using Lemma 7.23 below, we can construct a C*°-function
f on Y such that hy, = efhow (x € 8) is a family of flat metrics LIJA\@‘ It induces a family of
decoupled harmonic metrics ho , of (&, Gz)| X\D, such that they give a C'°°-Hermitian metric ho
of &sxx)\p- Note that det(hs,) induces a flat metric of det(&,, f,). For each x €S, because
both det(ha ;) and hgey(e),, are flat metrics of det(£;), we obtain that a, >0 determined by
det(ho) = azhger(e) 2~ Because det(ha ;) (x € S) give a C*-metric of det(E)|(sx x)\p, We obtain
that a, (z € S) give a C°°-function on S. Because hoo » = e‘az/rhgyx, we obtain that h , induces
a C'°°-metric of S(SXX)\D' [l

Let hi, be a harmonic metric of (&;,t0;) such that det(hs) = hger(g)- Let (Vi,0:) =
(51,9x)|x\px. We obtain the automorphism s(hey, ht,) of Vi determined by hyz =heo s -
S(hoo,:m ht,x)-

THEOREM 7.21. Let o € S. Let K be any relatively compact open subset in X \ D,. Let Sy be
a neighbourhood of xo such that Sy x K is relatively compact in (S x X )\ D. For any { € Zxy,
there exist positive constants C(¢, K) and €(¢, K) such that the L?-norms of s(heg g, hiz) —id
(x € Sp,t > 1) on K with respect to hoo o, gx and the Chern connection of heo 5 are dominated
by C(¢, K) exp(—e(¢, K)t).

7.3.3 Refined statement Let xg € S. For any P € D,,, let (Up, zp) be a simply connected
holomorphic coordinate neighbourhood of P in X such that UpND,, ={P} and that zp
induces (Up, P) ~ (B(2),0). Moreover, we assume that zp induces a holomorphic isomorphism
between neighbourhoods of the closures of Up and B(2). Let S; p be a relatively compact open
neighbourhood of z( in S such that

DN (Sl,P X UP) C Sl,P X {‘Zp‘ < (1/4)rankE}.

Let & be a connected open neighbourhood of xg in mPEDm S1,p-

For P€D,, and x €8, let hyp, be the harmonic metric of (&, 0:)f.,|<1} such that
by pa|f|zp|=13 = Noo,z|{|zp|=1}- We note that Condition 6.17 is satisfied for hy, 47, by Lemma 7.15,
and we can apply Proposition 6.18 to h; p,. We construct Hermitian metrics Et,a: of & (€ &)
from hooz and hy pg (P € Dy,) as in §7.1.3. Let s(ﬁﬁm, hiz) be the automorphism of &, deter-
mined by hy :Em . s(ﬁm, htz). By using Proposition 6.18, we obtain the following theorem in
the same way as Theorem 7.14, which implies Theorem 7.21.

THEOREM 7.22. For any (€ Zxy, there exist positive constants C(¢) and €(¢) such that the
L?-norms of

S(higs hig) —id (2 €81, t>1),

with respect to ﬁt,x, gx and Et,x are dominated by C({) exp(—e({)t).
41

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press


https://doi.org/10.1112/mod.2024.9

TAKURO MOCHIZUKI AND SZILARD SZABO

7.3.4 Appendiz Let M be a compact oriented C°°-manifold. Let S be a C°°-manifold. Let
gsxm be a Riemannian metric of S x M. For each x € S, we set M, :={z} x M. Let g, and A,
denote the induced Riemannian metric and the associated Laplacian of M,,.

LEMMA 7.23. Let fi be a C*°-function on S x M such that [,, fidvoly, =0. Let fo be a
function on S x M determined by the conditions Ay (fonr,) = fijm, and fM,, Joju, dvolg, =0.
Then, fy is C*°.

Proof. We explain only a sketch of a proof. For any = € S, let f; . := fja,. Let Sp be a relatively
compact open subset in S. There exists a uniform lower bound of the first non-zero eigenvalue of
the operators A, (z € Sp) (see [Lil2, Theorem 5.7]). There exists Cy > 0 such that || fi »||z2 < Co
(z € 50). By Az(fi1z) = fo, for any £ € Z> there exists C1(¢) > 0 such that || f1 (|2 < C1(¢€) for
any x € Sy. Let (i) € Sy be a sequence convergent to 2:(c0) € Sy. There exists a subsequence 2/ ()
convergent to z(co) such that the sequence f; ,(;) is weakly convergent in L% for any ¢ € Z>¢. The
limit f satisfies A(fw) = f2,0(cc) and sz(m) foo dvolg, ., =0. We obtain fu = fi ;(oc)- Hence,
f1,2 and their derivatives in the M-direction are continuous with respect to z € S.

Let S1 be a relatively compact open subset of S equipped with a real coordinate sys-
tem (x1,...,x,). Let [0;, A;] be the differential operator on Sy x M defined by [0;, Az|(f) =
0;(Az(f)) — Az(0;f). It does not contain a derivative in the Si-direction. Note that [0, Ag](f1,2)

and their derivative in the M -direction are continuous with respect to x €.Sj. Let fl(Jx) be
the solution of the conditions Ax(fl(JgZ) =0;fo.n — 05, Az f1,, and fMI fl(Jaz dvol,, =0. Choose
y=(y1,...,yn) € S1. We define functions F£j> on M, by Fggj) =(zj —y;) N1z — fry) if 2 £ y;,
and FY) = (9 if 2;=y;. They satisty Ag(FS) = (25 —y;) " (fow — foy — (Do — D) f1) if
z; #y; and Ax(FgEj)) =0} fon — 05, Azl fiz if zj =y;. Then, by an argument in the previous
paragraph, we can prove that Féj ) and their derivatives in the M-direction are continuous with
respect to . This implies that fi, is Cl-with respect to = and that 9; f1 , = fl(]gz By a similar
argument, we can prove that fi, and their derivatives in the M-direction are C°° with respect
to x. O
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