
Variations of the Vecten configurations

HANS HUMENBERGER and MICHAEL de VILLIERS

We present some less known variations of the the Vecten configuration
and give purely geometric proofs for them. It is unlikely that these variations
(and even proofs?) are new, probably just well-hidden in the literature. If a
reader happens to know references for the variations discussed (or other
geometric proofs), please let the authors know. At [1] the reader can find a
dynamic webpage on our topic.

Theorem 1: Let  be an arbitrary triangle with outwardly erected
squares. Then the lines connecting the midpoints , ,  of the line
segments , ,  with the centres , ,  of the remote squares are
concurrent at point  (Figure 1).
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FIGURE 1

Theorem 2: In Figure 2, the line segments ,  and  are equal and
perpendicular to ,  and , respectively.
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FIGURE 2

In the following we will give a geometric proof of Theorems 1 and 2.
We will use the theorem of Finsler-Hadwiger and the Vecten configuration
in its standard form.

• Theorem of Finsler-Hadwiger: Let the squares  and
share the common vertex . Then the midpoints  and  of the
segments  and  together with the centres  and  of the
original squares form another square (Figure 3).
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For a short proof see e.g. [2] or [3, pp. 125f]. The theorem can also be seen
as an immediate consequence of the fundamental theorem of similarity (for a
proof see e.g. [2] or [4]).
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FIGURE 3

• It is well known from the standard Vecten configuration that the line
connecting the centres of two adjacent squares is perpendicular and
equal to the line connecting the common vertex of these squares with
the centre of the third square (Figure 4, where  and

).
FE = AD

FE ⊥ AD
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FIGURE 4

Proof of Theorems 1 and 2: In Figure 5 we construct  and erect
three further squares outwardly on its sides ,  and  with centres ,

, . This establishes a standard Vecten configuration which enables us to
conclude that the line segments ,  and  are concurrent at , the
Vecten point of . From the theorem of Finsler-Hadwiger we know
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FIGURE 5

that , ,  are the midpoints of the segments ,  and  (e.g. for :G H I UT VQ RS G
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note that  and ; thus  must be half a Finsler-
Hadwiger square and  the midpoint of ). This proves both Theorems 1
and 2.

GF = GE GF ⊥ GE GFE
G UT

From a generalisation of van Aubel's theorem to (directly) similar
rectangles erected on the sides of a quadrilateral proved in [4] and [5], we
obtain the following specialisation where squares are used, as shown in
Figure 6: , ,  and , ,

. Furthermore, as also shown in [4] and [5] for similar
rectangles, lines  and  respectively bisect angles  and ; hence
for squares, the four lines meeting at  make angles of .

FD = LD FE ⊥ LD FE ∩ LD = O KI = HJ KI ⊥ HJ
KI ∩ HJ = O

FE LD KOH KOJ
O 45°
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FIGURE 6

From this, by letting , it immediately follows for
triangles, with the usual Vecten configuration that , ,

. Further (what may not be so well known in the Vecten
context) , , , where ,  are the midpoints
of sides of erected squares as shown in Figure 7. In addition, the four lines

, ,  and  make  angles with each other.

A1 = A2 = L
FE = LD FE ⊥ LD

FE ∩ LD = O
KI = HJ KI ⊥ HJ KI ∩ HJ = O K J

FE LD KI HJ 45°
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Let us formulate these facts more precisely on their own as a theorem.

Theorem 3: Let  be a triangle with outwardly erected squares on its
sides and let , , , , , , ,  be midpoints of segments as shown in
Figure 8. Then:

�ABC
G H J K B1 B2 C1 C2

(i) there are three pairs of equal and perpendicular line segments:  and
,  and ,  and , and

KI
HJ GC1 HC2 IB1 GB2

(ii) , , , where
,  and  are the midpoints of ,  and , respectively.

HC2 ∩ IB1 = MBC KI ∩ GC1 = MCA HJ ∩ GB2 = MAB
MBC MCA MAB BC CA AB

Proof: (i) follows immediately from [4] and [5]. For (ii) we show that
.HC2 ∩ IB1 = MBC
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In the Vecten configuration it is well known (see e.g. [6]) that the
median of a flank triangle (e.g. ) is perpendicular to and half as long as
the opposite side of the initial triangle (e.g. ). Thus  and

, from which we can conclude that  is a parallelogram and
the diagonal  bisects the other diagonal . Likewise  also bisects

. Proofs of the other two intersections are analogous.

HB
AC HB = CC2

HB // CC2 HCC2B
HC2 BC IB1

BC
Finally, at the end of the paper, we come back to Figure 7 and highlight

an interesting additional fact. We draw a new figure (Figure 9a) and
formulate a corresponding theorem.

Theorem 4: The midpoints  and  of  and  together with the
midpoints  and  form a square (Figure 9a). Furthermore, this square
is concyclic with , the joint intersection of  and  as well as  and

.

X Y AD FE
MAB MCA

O AD FE KI
HJ
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Proof: This follows from a more general result in [7]. But we will give a
short proof. For the first part of the theorem (square ) we will use
Finsler-Hadwiger (Figure 9b) and show that  is a diagonally-
halved square, and similarly . Then it is clear that  is a
square.

MABXMCAY
MABYMCA

MABXMCA MABXMCAY

Let  be the point  reflected in , and  be the point  reflected in
. Then two squares arise, namely  and , and, following

Finsler-Hadwiger,  is a diagonally halved square. Since
, and since these two angles are

subtended by the same chord (diameter) , it follows that the square
is concyclic with .

D′ D AB F′ F
AC ADBD′ AF′CF

MABYMCA
∠MABYMCA = 90° = ∠MABOMCA

MABMCA
O

Of course, in a similar way there exist circles associated with the other
vertices  and  of , so there are three circles of this kind
(Pellegrinetti circles) associated with the Vecten configuration.

B C �ABC

It is left to the reader to further explore Vecten variations when similar
rectangles, similar rhombi, or similar parallelograms, are constructed on the
sides of a triangle (compare [4] or [5]).
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