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CLASSIFYING PL 5-MANIFOLDS BY
REGULAR GENUS: THE BOUNDARY CASE

MARIA RITA CASALI

ABsTRACT.  Inthe present paper, we face the problem of classifying classes of ori-
entable PL 5-manifolds M® with h > 1 boundary components, by making use of a
combinatorial invariant called regular genus G(M®). In particular, a complete classifi-
cation up to regular genus five is obtained:

G(M®) = p <5== M= # (" x Sy,

where% = G(0M?®) denotes the regular genus of the boundary 9M® and (Hj, denotes
the connected sum of h > 1 orientable 5-dimensional handlebodies Y, of genusa; > 0
(i=1...,h),sotha sl o ="%.

Moreover, we give the following characterizations of orientable PL 5-manifolds M®
with boundary satisfying particular conditions related to the “gap” between G (M%) and

either G(0M°®) or the rank of their fundamental group rk(wl(M5)) :

G(aM®) = G(M®) = g = M5 =~ (I,
G(M®) =% = G(M®) — 1 = M° = (8" x SH#"H,,
G(OM®) = % = G(M®) — 2 = M = #(S* x S#H,
G(M®) = rk(ﬂl(MS)) =0 =M ¥ ,(s* x ShHH, .

Further, the paper explains how the above results (together with other known prop-
erties of regular genus of PL manifolds) may lead to a combinatorial approach to 3-
dimensional Poincaré Conjecture.

1. Introduction. Asfar as closed orientable PL 5-manifolds are concerned, many
(partial) classification results are known, which make use of a (non-negative) combina-
torial invariant called regular genus (see [G,]); in particular, we may collect them into
the following statement, where the symbol = means PL-homeomorphism, #n(S* x SY)
denotes the connected sum of m copies of S* x S*, and S* x S? (resp. S* x S?) indicates
thetrivia (resp. non trivial) 3-sphere bundle over the 2-sphere.

THEOREM 1 ([FG1],[CG],[C3]). Let M® be a closed orientable PL 5-manifold, with
regular genus G(M?®), and fundamental group of rank k(1 (M®)).
a) G(M®) =0 & M> S5,
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b) GIM®) =m< 7 & M® 2 #,(S* x SY);

c) if G(M®) = 8, then either M° = S3 x S? or M° = §3 x S? or M = #g(S* x S1);

d) G(M®) = rk(my(M®)) = m & M = #y(S* x SY);

e) itisimpossiblethat rk(my(M®)) + 1 < G(MS) < rk(m (M%) +7;

f) if G(M®) = m = rk(m1(M®)) + 8 and 7;(M®) is a free group, then either M® =
#in-a(S* x SLIH(S® x ) or M5 = #y, 5(S* x SHHS® x ).

In the present paper, the attention isfixed upon orientable PL 5-manifol dswith bound-
ary, and the classification effort is carried out in case of “low” regular genus, in case of
“restricted gap” between the regular genus of the manifold and the regular genus of its
boundary?, and in case of “restricted gap” between the regular genus and the rank of the
fundamental group of the manifold.

The main results achieved are presented in the following theorems, where M® is as-
sumedto bean orientable PL 5-manifold with h > 1 boundary components, S? x D (resp.
S? x D3) indicates the trivial (resp. nontrivial) 3-ball bundle over the 2-sphere, and %
denotes the boundary connected sum; further, if Y, (o« > 0) denotes the orientable 5-
dimensional handlebody of genus « (i.e. the orientable PL 5-manifold obtained from the
5-ball D° by pairwise identification of 2« disjoint 4-balls of its boundary), then we will
awaysindicate by ™H,, the connected sum WH, = Y, #- - - #Y,,, with X o5 = o

THEOREM 2. If G(M®) = p < 5,then M5 = # o (S* x SH#"H,, where ) =
G(OM®) (0<% < o).

THEOREM 3. @) G(OM®) = G(M®) = o & M® =~ (W} ;
b) G(OM®) = % = G(M®) — 1 & M® = (S* x Sh)#VH;
) G(OM®) = % = G(M®) — 2 & M® = #,(S* x SH#VH,;
d) if GEM®) = % = G(M®) — 3 and 1 (M%) = x*,Z then either M> =
#3(S* x SH#VH,, or M® = (S? x D¥)°%#VHy, or M3 = (S? x D)%V,

THEOREM 4. @) G(M®) = rk(mi(M®)) = o & M® = #, 4 (S* x SH#"H,, where
% = G(om®);
b) itisimpossible that rk(m1(M®)) + 1 < G(M®) < rk(m(M9)) +4;
c) if M® 2 #, o (S* x SH#VH,, then G(M®) > rk(m1(M®)) + 5 + 32(OM°), where
(2(0M®) denotes the second Betti number of the boundary oM®;
d) if G(M®) = rk(m1(M®)) +5, then M® = [1{#, (S* x §Y)/i = 1,...,h}, where
11 denotes a disjoint union and Y-, o = %.

The proof of Theorems 2, 3 and 4 will be postponed till Section 4; in fact, the paper
is organized as follows:
e in Section 2, we introduce and analyze the so called (1, n — 1)-handle presenta-
tions of PL n-manifolds, for n > 4 (i.e. particular handle-presentations, where
only handles of indices 1 and n — 1 appear);

1 Note tha—as proved in [CP]—the inequality G (aM") < G(M™) holds for every PL n-manifold M".
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e in Section 3, we givethe necessary preliminaries about regular genusand its back-
ground (i.e. the representation theory of PL manifolds by edge-col oured graphs);
further, some technical Lemmasare obtained, yielding the combinatorial hypoth-
esis which ensure a 5-manifold M® to admit a (1, n — 1)-handle presentation;

e in Section 4, the main theorems are proved, together with other consequences
(see, for example, Corollary 9 and Corollary 10, where G(S? x D®) = 7 and
G(S® x D?) = 6 are respectively computed).

Moreover, we note that the results of the present paper, arranged with other known
properties of the regular genus, lead to a possible combinatorial approach to 3-dimen-
sional Poincaré Conjecture.

In [CG], the following sequence of conjectures appears, and Conjectures C; and C,
together are shown to imply Poincaré Conjecture, for all closed orientable 3-manifolds
M3 of Heegaard genusH (M%) < 5.

CONJECTURE C,, ([CG]).  For every closed orientable 3-manifold M3, G(M3 x S") >
G(m3 x D").

Now, we are able to prove that Conjectures C; and C, together really imply Poincaré
Conjecture, for every closed orientable 3-manifold.

Infact, by Conjecture C, and Theorem 3, G(M2® xS?) > G(M3xD?) > G(M3 xS)+3
follows; on the other hand, G(M® x D) > G(9(M* x DY)) +2 = 2G(M®) + 2is a di-
rect consequenceof [CM; Proposition 5] (where arbitrary 4-manifolds M# with G (M#) —
G(0M*#) < 1 are proved to be decomposable as connected sums of 4-dimensional han-
dlebodies and—possibly—of S® x S'). Thus, by assuming Conjecture C;, we have

G(M?® x %) > G(M® x §1) +3 > G(M® x DY) +3 > 2G(M®) +5.

Poincaré Conjecture now easily would follow, since [CG; Coroallary I] and [B] imply that
G(z3 x S?) = 8, for every homotopy 3-sphere 33, and since G(2%) = H (%) < lisan
obvious contradiction.

2. PL n-manifolds admitting (1, n — 1)-handle presentations. It is well-known
that every PL n-manifold with boundary? admits a handle-presentation of type

M" = HO (H(ll) U---U Hg)) U---uU (H(lﬂfl) U--- UHMD)

-1

where every p-handleH® = DP x D" P (1 <p <n—1,1 <i <rp) isendowed with an
embedding (called attaching map) P': 9DP x D" P — 9(HOU: - -UHPPU- - UHED)).

DEFINITION L. A (1, n—1)-handle presentation of aPL n-manifold M" (with oM" #
() is ahandle-presentation where only 1-handles and (n — 1)-handles appear, i.e.

M'=HOUMHDP U UHD)UEHD U UHMD) 0<s<T).

2 For al basic notions of piecewise-linear (PL) topology, we refer to [RS].
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The purpose of the present section is to analyze the topological structure of PL n-
manifolds admitting a (1, n — 1)-handle presentation, for n > 5; note that, in dimension
n = 3, theclass of (1,n — 1)-handle presentations coincides with the whole class of
handle-presentations for manifolds with boundary, while in dimension n = 4 the same
problem has already been faced and solved in [CM, Theorem 1].

The following—quite obvious—statement will be helpful for our research; here, Y7,
denotesthe n-dimensional handlebody of genus« > 0.

ProrPosITION 1. A PL n-manifold M", with h > 1 boundary components, admits a
(1, n — 1)-handle presentation if and only if it admits a decomposition of type

M"=YU, Y] (0<s<r)

where p: YD — U, int(Dfy ") — 0V} isaregular embedding and DYyy%, . .., D, areh
digoint (n — 1)-balls contained into 0Yy. ]

Now, we are able to prove the characterization theorem for n-manifolds (n > 5)
admitting a (1, n— 1)-handle presentation; here, WH" denotesthe connectedsumof h > 1
n-dimensional handlebodies Y, of genusce; >0 (i = 1,...,h), sothat ™", o = «.

PROPOSITION 2. For everyn > 5, a PL n-manifold M", with h > 1 boundary com-
ponents, admitsa (1, n— 1)-handle presentation (withr > 0 1-handlesands < r (n—1)-
handles) if and only if

MM 2 #(S™ 1 x SHHOND

PrROOF. Via Proposition 1, one implication is just an obvious remark:
#H(S"1 x SHHMVHI_ may be decomposed as Y U Y1 (0 < s < 1), where :9Y? —
U{‘:lint(ﬂl){})*l) — 0Y! is the canonical embedding which sends the i-th S-factor of
YD = #,(S"2 x S into thei-th St-factor of 0Y! = #/(S"2 x St), forevery 1 <i <s.

Asfar asthe other implication is concerned, let usconsider M" = YU, Yg, ¢:0Y3 —
U, int(l]])?i)‘l) — 0Y} being agiven regular embedding.

Now, if S%), 1<i<sisthei-th St-factor of 9YQ = #(S"? x S'), then the s-
tuple (St = @(Sly), -+, Sy = ¢(S{y)) may be completed to an r-tuple (S}, - . ., Sfy,
Sls+y: - - - Sfpy) Of generators for the fundamental group of Y} = #(S"? x S'). By [L]
and [LP)], a self-homeomorphism v of 0V} exists, so that y/(Sj,) is thei-th S'-factor of
YN = #(S"2 x St), for every 1 < i < r, and so that v» may be extended to a self-
homeomorphism f/z of the whole handlebody Y. Moreover, [LP], [M] and [CH] state
that any self-homeomorphismf: #,(S™ 1 x St) — #,(S™ 1 xSt), (m > 3, p > 0) extends
to a self-homeomorphism f: Yprt — Yp*L. Thus, the composition ¢~ o ¢ 0 ¢:9YD —
UiL, int(@f; ) — 0YS— UL, int(Df; ™) may befirst completed to a self-homeomorphism

3 Note that, by [L] and [LP], v is generated by dliding 1-handles, twisting 1-handles, permuting 1-handles
and rotations.
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T:0Y] — Y2 (since, foreveryi =1,...,h, E*lowoapbw;l extendsto thewhole (n—1)-

ball ID[})*1 of aYD); then, T may be extended to a self-homeomorphism T: Y? — Y7
Finally, the proof follows by considering the homeomorphism

GUTMT = YPU, YD — YNU; YD = #(S™ x SH#VHD_ .

3. Technical resultsabout crystallizationsand regular genus. In order to under-
stand how to compute the combinatorial invariant “regular genus’, we have to briefly
recall the basic notions of the representation theory of PL n-manifolds (for every n) by
edge-coloured graphs; for adetailed treatment, see [FGG], [Co], [LM] or [V].

According to [FGG], we say that afinite ball-complex K is a pseudocomplex iff:

o |K| = 1I{int(B) /B € K} (where LI denotes adisjoint union);

e if A,B € K, then AN Bisaunion of balsof K;

o for eech mball A € K, the poset {B € K/B C A}, ordered by inclusion, is
isomorphic with the lattice of all faces of the standard m-simplex.

Notethat, in general, a pseudocomplex isnot asimplicial complex, sinceits elements
may intersect in more than one face; notwithstanding this, we will always refer to an
m-ball B € K asto an m-simplex of K. Further, note that the (well defined) barycentric
subdivision of any pseudocomplex is actually asimplicial complex.

Now, it is easy to check that every PL n-manifold M" admits a coloured pseudodis-
section (K, £€), i.e. a pseudocomplex K with |K| = M", endowed with a vertex labelling
¢ by coloursof the set A, = {0,1,...,n}, which isinjective on every n-simplex of K.*
Moreover, a coloured pseudodissection (K, ¢) of M" may be combinatorially visualized
by means of an (n + 1)-coloured graph (I',v), where the multigraph I' = (V(I’), E(I'))
is the 1-skeleton of the (well defined) ball-complex dual to K, and the edge-coloration
v:E(N) — Anisgivenby v(e) = cif theedgee € E(IN) isdual to an (n — 1)-simplex of
K having no vertex labelled by colour c; (I, ) is said to represent M", since the reversed
processallowsto recontruct the associated coloured pseudodissection (K, £)—and hence
M"—from it.

Note that, for every subset B C A,, with #8 = m, a (possibly disconnected) m-
coloured graph 'g = (V(F),“/*l(B)) is well defined; by construction, its connected
components (which are said to be B-residues of ") are in bijection with the (n — m)-
simplices of K whose vertices are labelled by A, — {B}. The number of B-residues
of I is usually denoted by gg; in particular, if B = {i,j} (resp. B = {i,j,k}) (resp.
B = A, — {i}), we shall often write g;; (resp. gijx) (resp. ¢;) instead of gg, and g; (resp.
Gii) (resp. gi) instead of ga, — B.

Let Gv1 betheclassof (n+ 1)-coloured graphs (I, Y) which are regular with respect
tothe“ last” colour n, i.e. sothat I, isaregular graph of degreen.

A theorem of [P], together with its subsequent improvements (see [FGG] andits bibli-
ography), ensuresthat every PL n-manifold M" may berepresented by an (n+1)-coloured

4 For example, K may be the barycentric subdivision of any simplicial triangulation H of M", and ¢ may
associate to every vertex v of K the dimension of the simplex of H whose barycenter isv.
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graph (I,7) € Gp+1. More precisely, if the boundary OM" is either empty or connected,
M" is proved to admit acontracted triangulation (resp. a crystallization), i.e. acoloured
pseudodissection (K, &) containing exactly n + 1 vertices (resp. i.e. an (n + 1)-coloured
graph (,7) € Gna with g = 1, for every i € Ay); on the other hand, if 9M™ hash > 2
connected components, then any contracted triangulation of M" contains exactly nh + 1
vertices, and any crystallization of M" satisfiesgy, = 1 and g; = 1 for every i € An_;.

Obviously, if (I',7) € Gnq hasorder 2p = #V(I'), then (I, Y) contains2p < 2p degree
n + 1 vertices (which are said to be internal vertices) and 2p = 2p — 2p > 0 degreen
vertices (which are said to be boundary vertices); further, if B c A, (T,7) contains
g < gg internal B-residues (i.e. B-residues which result to be regular graphs), while
the other gg = gg — g > 0 onesare said to be boundary B-residues.®

It is not difficult to check that, if (I, 7) € Gn+1 represents a PL n-manifold M, then
every internal (resp. boundary) B-residue, with #8 = m < n, belongsto G, and repre-
sentsthe (m — 1)-sphere S™* (resp. the (m — 1)-ball D™ 1); moreover, M" is orientable
if and only if (I",7) is bipartite, and M" is closed if and only if (I",) has no boundary
vertex.

On the other hand, if (I',V) € Gy representsa PL n-manifold M" with (non-empty)
boundary dM™, then dM" is represented by the so called boundary graph® (ar, %) € G,
whose vertices are in bijection with the boundary vertices of ', and whose i-coloured
edges (i € An—1) arein bijection with the boundary {i, n}-residues of I'; thus, for every
B ¢ An_1, the number % of B-residues of I equals the number 9B(n; Of boundary
(B U {n})-residuesof I".

In[Gy] and [Gy] it is proved that every bipartite (n + 1)-coloured graph (I, V) € Gt
“regularly embeds’ (see [G;] for details) onto an orientable surface F., which depends
on the choice of a cyclic permutation e = (e1,€2,...en-1,en = n) of the colour set
Ap; the regular genus o.(I") of (I',Y) with respect to ¢ is defined as the genus of F.,
and is computable—also in the generalized case of a disconnected graph with g > 2
components—by means of the following combinatorial formula:

® 3 Gt Q=MD + @ =2+, = 29— 20.(0).
ieZn

Finally, the regular genus G(M™) of an orientable PL n-manifold M" is defined to be
the minimum value of g.(I"), for every crystallization (I",y) of M" and for every cyclic
permutation e of A

If (F,7) € Gpuy representsan orientable PL n-manifold M", and e = (e1, €2, ..., en-1,
en = N) isafixed cyclic permutation of Ay, then every subset B C A, inherits an induced
cyclic permutation eg; thus, formula (1) may be applied aso to compute the regular
genus o, (Mg) for every (possibly disconnected) subgraph I'g, and the regular genus
0-,(ar) for the (possibly disconnected) boundary graph (ar, %y).

5 Notethat, if n ¢ B, every B-residue is an internal residue.
6 Obvioud y, the boundary graph isapossibly disconnected graph, having as many components as the bound-
ary manifold oM".
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From now on—for sake of notational simplicity—the fixed cyclic permutation e =
(e1,€2,...en—1,en = N) Will be assumed to be the identity on Ap; thus, we shall always
write i instead of «;, for every i € A, and o (resp. og) (resp. %) instead of o, () (resp.
0:5(TB)) (resp. o.,(3r)).

For our purposes, some general formulae—which extend similar ones already proved
in [CG] and [C,]—result to be useful.

ProPOSITION 3. With the above notations, the following relations hold:
(2c) Ge-1,0t1 = Ge—1ccr1 t (0 —0e) +(e — Q) Ve ¢ {0, n— 1};
(20) On1 = Ono1+(0—0p) +(d5—9) — %n-11+ %n-101;
(20-1) Gn-2n = Gn-2n-10 + (0 — 0n-1) + (Gr—1 — 8) — Won—2 + BGn-2,n-10;
3) G risn=Gi st —0)—Co—%)—(@—%9—¢) foriec{0,n-1};
4 9 = (o + g - Q+o—o— o+ o5 for every i,j non-consecutivein A,, with
{i.j} # {0.n—1};
(B G; =6+ — (901 +(2— %) — (o — %) — (& — %) + (o5 — %) for every
i,] non-consecutivein An_1.

ProOF.  First of al, note that the Euler characteristic computation of all pseudocom-
plexes represented by {i, j, k}-residues of I" easily yields the following relations:

(6) 20k =0+ tGx— 5 Vij ke

(6) 20ijn+%ij = Gij+ Gin+Gn— 5 Vi,j €A1

Then formula (2;), for every ¢ € A, may be obtained by applying relation (1) both to
(T',7) € Gp+1 and to its subgraph "¢, and by making suitable use of formulae (6) and/or
(6).

Further, note that, for i € {0, n— 1}, the comparison between formula (2;) applied to
an (n + 1)-coloured graph and the same formula applied to its boundary graph, directly
yields formula (3;).

Asfar asrelation (4) is concerned, it is sufficient to apply formula (2)) both to (I, Y)
and to its subgraph M finally, formula (5) easily follows from relation (4), applied both
to (I',) and to its boundary graph. "

L et us now restrict our attention to the case of (I",7) € Ge being a crystallization of
an orientable PL 5-manifold M®, with h > 1 boundary components; when we apply the
above formulae (2), (3), (4), (5) to (I',”) or to the subgraph 'y (k € As), we have to
remindthat g = gz = gz = 1, while%g = g = hand g = O for every i € A4, and that
Ok = "Qﬁ = 0 (since every 3-coloured graph representing either S? or D? has always
regular genus zero). Moreover, the following statement lists other interesting relations.

PROPOSITION 4. Let (I',7) € G bea crystallization of an orientable PL 5-manifold
M®, with connected boundary aM® # (). For every cyclic permutation e = (e, ..., €4,
es = 5) of As, we have:

(7) 20 =%; L for everyi € As;

(8) 205 = X o0&;
> %

(9) Gopz = 2(0 — %) — (05 — %) — (05 — %3) — (05 — %z) +2h—2>2h — 2,
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(10) gi3s =20 — (03 +o3+0g) *2h—1>2h— 1.

PROCOF. In[C;; Lemmag], the Euler characteristic of a(possibly disconnected, with
g closed components and g bounded components) 4-manifold M* has been computed
by means of the regular genera associated to any 5-coloured graph representing M*:
X(M*) =25+ — 20 +%+ i ;.

Hence, formulae (7) and (8) directly follow, since—in the hypothesis of the state-
ment—I;, with i € A4, consists of h > 1 connected components, each one representing
D*, while 'z is aconnected graph representing S*.

L et us now consider the 6-coloured graph (I, ) € Gg of the statement; summing up
relations (2,), (30) and (34), together with an appropriate use of formulae (6) and (6'),
gives:

013+051 + Q35
= Qso1 + Jass + J1zs + 30 — 2% — 05 — (05 — %p) — (03 — %z) +3h— 3
1 . . . .
= 5(901 + Qo + 015 + O12 + 13 + 023 + Gaa + a5 + Gus — o1 — °0z4)
3. 1_
— 2P~ 7P*80—2% — 05— (0o — “0p) — (ea —"ex) +3 - 3.

Now, formula (1) yields:

1 ) . 1 . 3 1
5(913 +05+0s=(1—0— 53904 +tp+ Zﬁ) - 5(3901 +%931)
3. 1_
— 2P~ 7P +30— 2% — 05— (eo — “0o)
— (03 — %) +3n—3.

Thus, the computation of ggs; givenin (9) follows from afurther use of relation (6'),
together with an application of formula (1) to the 4-coloured graph or »:

Oesa = O135
= 1+2(0 — %) — 05 — (05 — %p) — (03 — %3z)
1_ 1
* 5P 5('3901 + %934 + %13 +%goa) + 30 — 3
= 2(0 — %) — (05 — %p) — (05 — %) — (03 — %z) + 2 — 2.

Further, it is not difficult to get the inequality ggs; > 2h — 2, by recalling that the
pseudocomplex K (which has h > 1 boundary components) is strongly connected: for
example, in case h = 2, two internal triangles o and 7 surely exist, so that o (resp.
7) hasitsi-labelled and j-labelled vertices (resp. its i-labelled vertex) on one boundary
component and its k-labelled vertex (resp. its j-labelled and k-labelled vertices) on the
other boundary component, {i, j, k} being a suitable permutation of {0, 2,4}.
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On the other hand, summing up relations (2;), (23) and (2s), together with an appro-
priate use of of formulae (6) and (6'), gives:

Qo2 + U24 + Q40 = Qo12 + G234 + Qaso + 30 — (03 + 03 +05) +2h — 2
1 . .
= 5(901+912+902+923+934+924+g45+950+940—0904)
3. 1_
—ZP—5Pp*+30— (05 +o3+op) +2h -2
4 2
Now, formula (1) yields:

1 1 .3
5(902*'924‘*940)2(1—9—56904*'[3*'25)

1 3. 1_
+§0904— P~ 3P+3e—(ei*eztog) +2h—2.
Hence, the computation of g;3¢ givenin (10) may be completed by afurther use of rela-

tion (6).

Finaly, the inequality g;3c > 2h — 1 is a consequence of the existenceof h > 1
boundary components (each one containing at least an edge between its 1-labelled and
3-labelled vertices) and of the strong connectedness of the pseudocomplex K (which
implies the existence of at least h — 1 edges, with 1-labelled and 3-labelled end-points,
“connecting” the h boundary components. ]

If (T,7) € Gg is assumed to be a crystallization of a PL 5-manifold M® (with h > 1
boundary components), then the vertex set of the associated coloured pseudodissection

(K,©)is
VK) = 0, o VD, DD DD e

with £(vi) =i, for every i € As.

For every {i,j} C As (resp. {i,j,k} C As), let K(i,]) (resp. K(i,j, k)) denote the 1-
dimensional (resp. 2-dimensional) subcomplex of K generated by {v € V(K)/¢(v) €
{i,j}} (resp. {v € V(K)/&(v) € {i,j,k}}), and let N(i, ) (resp. N(i,j,k)) be aregular
neighbourhood of |K(i, j)| (resp. |[K(i, ], K)|) into the polyhedron |K|. Moreover, if {i,j} C
Dy (resp. {i,j, k} C Ag), let K(i,j) (resp. K(i, ], k)) denote the subcomplex of K(i, ) (resp.
K(i, ], K)) consisting only of the 1-simplices (resp. 2-simplices) which are internal in K,
together with their faces, and set K (i, ) = K(i,j)NaK (resp. %Ki, j, k) = K(i, ], k) NoK).

Notethat, if {{i,j,k}, {i’,j’, k'} } isapartition of As, then the 5-dimensional submani-
foldsN(i, j, k) and N(i’,j’, k') giveriseto adecompositionM® = N(i, j, K)U, N(i’,j’, K'), ¢
being a (partial) boundary identification. Thus, it becomesinteresting to get information
about the topological structure of the above described subcomplexesof K.

LEMMA 5. Let (I',7) € G be a crystallization of an orientable PL 5-manifold M®,
with h > 1 boundary components.
a) Ifthereexisti,j, k € As, withi, j non-consecutivein As — {k} and {i,j} # {0, 4},
suchthat g — g5 — %k = 0, then K(i, j, k) collapsesto K(i, j);
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b) if thereexisti, j, k € A4, withi, j non-consecutivein Ay — {k}, such that 0 — % —
o — o5 = 0, then K i, , k) collapsesto % i, j, k) UK(i, ).

ProoF. Formula(4), applied to theresiduel™; of (I, ), glvesgwk (gnk+gﬂk g+
(0 — o5 — 051, for every i, j non-consecutivein A5 — {k}, with {i, J} #{0,4}. Thus, if
Ok — Ok — O = 0 isassumed, % = Gt 9k — % obviously holds, and K(i, j, k) surely
collapsesto K(i, ) by atrivial extension of [Cl Lemma5] (or [CG; Lemma 14]).

On the other hand, formula (5), applied to the residue I'; of (I, V) (with k # 5), gives
G = (G + G + (0 — %0 — o5 — o5). for every i, j non-consecutivein Ay — {k}. Thus,
if of — % — oy — o5 = Oisassumed, g, = Gy + Gy obviously holds.

Note that, since the edg&s of K(i,j) are a set of generators for the fundamental group
(see [CPY]), every edge of K(I k) and K(j k) is face of a triangle of K(| j, K), at least;
further, the fact that 'y has no internal component implies the existence of at least a
trianglein K(i, j, k) having its (s, k)-face, for s € {i,j}, on the boundary of K.

It is now easy to check that, if gy > G, with {r,s} = {i,j}, then the edges of
K(s, k) are faces of at mqst gﬁk —1=0y+ gjk — 1 < 294 — 1triangles; thus, at least
Oy — O + 1 triangles of K(i, j, k) may collapse from their “free” interna (s, k)-face. On
the other hand, if gy < ;;, some triangle of K(i,j, k) may obviously collapse from its
“free” internal (r, k)-face. Moreover, since the above considered collapses do not affect
the property g; = O andleaveK(i, ) fixed, the processmay beiterated, until eachtriangle
of K(i, , k) collapses either from its “free” internal (i, k)-face, or from its “free” internal
(j, k)-face. Finally, since relation gﬁk = Ot qk holds at every step, the result of the
whole collapsing processis nothing but %Ki, j, k) U K(i, ), as statement (b) claims. =

Thefollowing Lemma makes use of Lemma5 to provethat under suitable combina-
torial hypothesis, the decomposition M® = N(i, j, k) U, N(i’,j’, k') induced by a partition
{{i.j,k}, {i",j’,K'}} of A, isindeed a (1, 4)- handlepresentarﬂon.

LEMMA 6. Let (I',7) € Gg be a crystallization of an orientable PL 5-manifold M5,
with h > 1 boundary components. If there exist i j € As such that o5 =0, then M° =
#a(S* x S Hy, for suitablea, b, with0 < b <%, and0 < a < p — %.

PROOF. Let usassumethe existenceof i,j € As, withi # 5, such that o = 0, and
let (00, 101, 20 3D) denote the (ordered) 4-tuples induced by € on As — {l j}; then,
formulae (7) and/or (8) imply

(07 — 0@? — ogai — 23m7) + (07 — i — 0307) = 0if = 0
(Q] - a@] — Opwj — Qi(ij)]) + (Qj — i@ — Qé(ij)j) =05 = 0,
where—for sake of conciseness—wea$ume"gi =0incasej = 5.
Since the four addenda are non-negative integer (see relations (4) and (5), together
with the trivial inequalities % =9+9—9 and gﬁ >0+ gq — (g — %)), we have

both o; — o3a; — Qg(u)g = 0and ¢; — %; — ogw; — oswi = O; thus, Lemma 5
implies that both K(j, 100, 31)) collapses to K (10, 3y and K (i, 0, 20y collapses to
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K (0, 2Dy U K (i, 00D, 21)). Moreover, since the regular neighbourhood of any sim-
plex of % (i, 0, 20D) is a collar of a 4-ball embedded in AM®, the decomposition of
M® induced by the partition {{j, 14,30}, {i,00, 20} } of As may be thought of as
M® = Y, U, Ys, for astitable ¢:0Ys — UL, int(@f) — OV, with r = g5 5 —
(G + T3 — 1) (recall that amaximal tree of K(1(), 3W) isuninfluent) and's = &g i) —
(g *+ Gy — 1) +h (recall that amaximal tree of K(0, 2D is uninfluent, too, and that
(i, 00, 201y has h connected components).

Now, M5 = #,(S* x S)#"H, follows from Proposition 1 and Proposition 2 of the
second section, with a = s = (o — %) — (ogm — %gm) — (@30 — %3m) * Ogwam. and
b=r—s=9%+ ZE:O(—l)kQRmJ - an)(u) - aQQ(u) — Opidi T 0130 - m

In case the crystallization (I, ) being assumed to gain the regular genus G(M®) of
the 5-manifold M®, then Lemma 6 may be improved as follows.

PROPOSITION 7. Let M® be a connected orientable PL 5-manifold M2, with h > 1
boundary components; let (I,7) € Gg beacrystallizationof M®ande = (1, ... 4,65 =
5) be a cyclic permutation of As, so that o. (1) = G(M®). If thereexisti,j € As such that

i =0, then g; = Ofor everyk € As, and M® 2 #, ,,(S* x S#"VH,,.

PROOF. By Lemma 6, we have M®> = #,(S* x SH#VH,, witha = (o — %) —
(Q@(ij) - aQ@(u)) - (Qé(ij) - aQé(ii)) + 0436 » andb = aQ + Zﬁ:o(—l)kgkan - 0@601) - aQQ(ij) -
O3 t 0iamam - Since the regular genus is sub-additive with respect to connected sum
of n-manifolds, we have o = G(M®) < a+b = o — g3 — 030 *+ 0330 < o, from
which o3¢ = 03 = 0 obviously follows. Moreover, G(OM®) = b = % + o) + 031 —
%000 — %050 — gz = % implies ogy = %opm, 030 = %30 and ogizn = 0. Further, we
already know that o5 = Ovyields g; = o34y + 03a; and 0 = 04 * 03;; thus, obviously,
o = g = Ofollows. Finally, it is now easy to check—by means of formula (7)—that
also gy = 05 = 0 holds, and hence the statement results to be completely proved. =

We concludethe paragraph with afurther result on the topol ogical structure of the sub-
complexes N(i, j, k), which improves a similar one already stated in [Cg] for contracted
triangulations of closed 5-manifolds.

LEMMA 8. Let (I',7) € G be a crystallization of an orientable PL 5-manifold M®,
with h > 1 boundary components. If there exist i,],k € As, with i,j non-consecutivein
As — {k} and i, k non-consecutivein As, {i,j} # {0,4}, {i,k} # {0,4}andg; < g,
such that o; — o3 — o =1 and g —oy—o5 =1 then either N(i,j, k) & Y, with
O<m=p—g—g+o—1lor NG,j, k) = N(F)%Y, where N(F) is the regular
neighbourhood of a closed orientable (resp. non orientable) surface of genusg > 0
(resp.§ > 1)andm= o — ¢; — o + 05 — 29 (resp. M= o — g; — 0; + 05 — ).

PrOOF. By formula (4), the hypotheses give:

Ok = Gk * O+ (1~ G);
G5 = % * G+ (1 — )
Gk =%+ %— G
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Wewant now to perform asequenceof elementary collapsesonK(i, j, k), not affecting
K(i,j): sinceit isknown that the edges between two fixed vertices are a set of generators
for the fundamental group (see[CP]), thisimpliesthat, at every step, the total number of
edges belonging to K(i, k) U K(j, k) which are face of no triangle must be g; — 1 at most.
Thus, if g < gy is assumed, with {r,s} = {i, |}, relation Uik < 20 — (g — 1) yields
only the following two possibilities:

(-) exactly gy — 1 edgesof K(s, k) are face of no triangle of K(i, j, k), while the other
ones are face of exactly two triangles;

(-) some triangles of K(i,j,k) may collapse from their “free” edges belonging to
K(s k).

By iterating the process, a new pseudocomplex C (consisting of 2¢c > 0 triangles) is

obtained, so that (if ¢ # 0):
¢ C containsc edgeshelongingto K (i, k) and ¢ edgesbelonging to K (j, k) which are
face of exactly two triangles of C, and g, — 1 further edges, belonging to K(l, k)
(with | € {i,j}), which are face of no triangle of C;
o C containsall g edgesof K(i, k).

Now, let S, with #5 = p > 0, be the (possibly empty) subset of triangles of C,
having a “free” edge belonging to K(i, ); it is easy to check that, for every o € S, the
collapse of ¢ alows a finite sequence of collapses of triangles of C, from their “free”
edges belonging alternatively to K(j, k) and to K(i, k), till an edge of K(i, k) (which was
face of two trianglesin C) results to contain no triangle.

Hence, it iseasy to check that the resulting pseudocomplex C’ consistsof 2¢’ triangles
(0 < ¢’ <c¢) and contains:

e ¢’ edgesbelonging to K(i, k) and ¢’ edges belonging to K(j, k) which are face of
exactly two triangles of C’;

o p edges belonging to K(i, k) which are face of no triangle of C’;

e g; — 1 further edges, belonging to K(1, k) (with I € {i,j}), which are face of no
triangle of C;

°*g;—p edges belonging to K(i, j).

Moreover, the number of edges belonging to K(i,j) which are face of no triangle in
C’ must be less or equal to the number of edges of K(i, k) which have been “lost” in
the process from K (i, j, k) to C’ (since the edges of K(i, k) are a set of generators for the
fundamental group, too); thus, at least (g; —p) — (g —C' —P) = ¢ +(g —g) = ¢
edges belonging to K(i, k) are face of more than two triangles of C’.

Thisobviously impliesthat either C’ resultsto be agraph (fromwhich N(i, j, k) = Y,
with0 <m= OG- —G=0—0—0to5— 1 easily follows) or C’ may be obtained
from thetriangulation T of an orientable (resp. non-orientable) surface F of genusg > 0
(resp. @ > 1), by suitable vertices identifications and by further addition of external
edges, having the end-pointson T.

Finally, since each vertex identification and each external edge correspondsto a 1-
handle attached to the regular neighbourhood of the surface, the thesisfollows by adirect
computation:

N(i, j, k) = N(F)%#Ym,
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withm = [(2—2g+¢)—(g;+g+D)]+(g; —¢) = §;— G —G+1-20 = 0—o;—0;+05—29
(resp.m= [(2—8+C)—(g+g+ D] +(g5—C¢) = G —G—G+1-0= 0—0;—0;+0;—0).m

4. Proofsof themaintheorems. Wearenow ableto provethefirst of our character-
ization theorems, which concerns 5-manifolds whose regular genus exceeds the regular
genus of their boundary by less than three.

PROOF OF THEOREM 3. Let M® be a connected orientable PL 5-manifold M®, with
h > 1 boundary components, satisfying the inequality G(M®) < G(aM®) +2; further, let
(T,7) € Ge beacrystallizationof M® and e = (&1, ... 4,5 = 5) beacyclic permutation
of As, sothat o = o.(I) = G(M®).

Since% = o.,(ar) > G(0M®), relation (9) yields:

(05 — %0p) + (05 — %05) + (03 — %03) < 200 — %) < 4

hence, there existsi € {0, 2,4} so that o; — %; < 1.

Now, the inequality o; — %; — o5 — o5 > O (which holds true for every j, k non-
consecutivein A4 — {i}) implies the existence of two coloursi, j € As such that o; =0.
Thus, M® = # , (S* x S)#"H,, directly follows from Proposition 7, and the direct
implications of statements (a), (b), (c) result to be proved.

As far as the reversed implications are concerned, it is sufficient to recall that
G(s* x S = 1and G(Y,) = G(dY,) = «, and to make use both of the sub-additivity
of regular genus with respect to connected sum and of relation rk(vrl(M“)) < G(MM)
(see[CP)).

Let usnow assume (I,7) € Gg beacrystallization of M®, and e = (1, ...€4,65 = 5)
be a cyclic permutation of As, so that o = o.(7) = G(M®) and % = 0., () = ¢ — 3.
Relation (9) yields:

(05 — %5) + (05 — %03) + (03 — %3z) < 2(0 — %) = 6;

hence, either there exists i € {0,2,4} so that g; — %; < 1 (which implies M® =
#, 4,(S* x Sh#VH, , as above proved) or gy, = 2h — 2 and g; — %; = 2 for every
i € {0,2,4}. In the second case, it is not difficult to check that, if o5 > 1Vi,j € Asis
assumed (otherwise, M® = #, ,,(S* x S")#"H,, would follow again), then ¢; = 1 and
05 = %; = o;—2holdVi € {0,2,4},j # 5; moreover, formula(5) implies that relations
o5 = 1andg;g = 09? = g?—z holdasofori {l, 3},Vj 75 5. Hence, 01—0j3— 075 = 03—
03 — 03z = 1easily follows, and Lemma 8 yields the topological structure of N(1, 3, 5):
either N(1,3,5) = Yo, g OF N(1,3,5) = N(F)"#Yay,ggﬂ,zg, g being the genus of the
closed surface F. On the other hand, since o5 — %5 — 055 — 05z = 0, Lemma5(b) yields
N(0,2,4) = Ys,withs = 83— (95 +93—1)+h = (0—%)— (23— %) —(05—%z)+03; = O,
i.e.N(0,2,4) = D°. Finally, since my(M®°) = m1(N(1,3,5)) = #nZ implies F = S, the
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thesis follows from Proposition 1 and Proposition 2 of the second section (in the partic-
ular case's = 0): either M3 2 (S x D3)%"H,, or M® = (S? x D3V, .

COROLLARY 9. G(S$? x D%) = 7; G(S? x D3) > 7.

PrOOF.  SinceG(0(S? x %)) = G(9(S? x D)) = 4 (see[Cav]), both G(S? x D?) >
7 and G(S? x D) > 7 are direct consequencesof Theorem 3(a),(b).

On the other hand, a crystallization of S? x D® of genus seven may be easily obtained
from the 6-coloured graph (F®,y®) depicted in Figure 1, which represents S? x D3
and satisfies p. (M) = 7, e being the identity on As: (T, YD) directly results from the
“standard” crystallizations of S? and D3, by an obvious modification of the construction
described in [GG]. ]

PROOF OF THEOREM 4. As usual, if M is a connected orientable PL 5-manifold
M®, with h > 1 boundary components, let (I,7) € Gg be a crystallization of M° and
e = (e1,...€4,€5 = 5) be acyclic permutation of As, so that o = p.(I") = G(MP).

It is known that, for every choice of {i,j} € As, a presentation (X; R) for the funda-
mental group 71(M°) of M°® exists, where X isthe set of all (As— {i,})-residuesof (', "),
but g; + g; — 1 arbitrarily chosen (see [CP]); thus, formula (4) implies that

tk(m1(M®%)) < 0 — 0; — g + 05

for every i, non-consecutivein As, {i,j} # {0,4}.

Now, if G(M®) = o = rk(m1(M®)) is assumed, g; = O obviously holds, for every
i € As; 50, M5 22 #, 4 (S* x S#MH,, directly follows from Proposition 7.

On the other hand, the inequality o; + o; — o5 < o — rk(m1(M?®)), together with rela-
tion (7), yields

(11) > (o * o) < 3 (o * 050 + i + %y < 2(0 = k(ma(M9)) )
KA j ki j
for every i,j non-consecutivein As, {i,j} # {0,4}.

Now, if G(M®) — rk(71(M°®)) < 4is assumed, the existence of at |east an addendum
ots = O easily follows: in fact, there are eight non-negative addendain the first member
of eachinequality, and they can not beall equal to one, sincerelation (8) gives ;s 0g =
20; € P.

Thus, M® = #,_, (S* x SY)#"H,, again follows from Proposition 7.

Asfar asparts (c) and (d) is concerned, note that the Euler characteristic computation
for closed 4-manifolds (see[C1] or [Cav]), applied to each connected component of OM?®,

7 Note that N(S?) is surely PL-homeomorphic to one or another of the two 3-ball bundles over the 2-sphere

(see [B]), and that the case N(1,3,5) = Y, implies M = MH, , which contradicts the hypothesis
5 = &5

G(M®) =% +3.
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gives:
4
B2(0M®) = 231 (0M®) — 2% + 3~ %;
j=0

= [51(0'\45) - (BQ - aQE)(IJ - aQé(u))]
+[B1(OM®) — (%0 — 0@‘10) - aQé(i))] + 0@; < 0Qi
where, for every i € A4, (00,10, 20, 30) denotes the (ordered) 4-tuples induced by ¢
onAy—{i}.
Hence, relation (11) yields

k;_(gm + g5) + 232(0M°) < k;_(erk + o) + %7+ %; < 2(0 = tk(ma(M?)) ).
i 0]

Since no addendum of type gz may be equal to zero (otherwise, M® =
#, 5,(S* x SH#MH,, would follow, against the hypothesis) and since the addenda of
type ors can not be all equal to one (as previously stated), o — rk(m1(M®)) > 5+ 32(0M°)
easily follows. In particular, ¢ — rk(m1(M®)) = 5 implies either the existence of an ad-
dendum grs = O (from which OM® = 9(#, 4,(S* x SY#H,,) = 11{#,(S® x SY) /i =
1,...,h}, with o) o = % directly follows) or the existence of %; = 0 (from which
OM5 = T[{#,(S® x SY) /i = 1,...,h}, with ¥, oy = a = G(OM®) < %, follows by
[CM; Lemma 3(a)]).

Now, in order to complete the proof of Theorem 4, we have to prove the reversed
implication of part (a); for, it is sufficient to recall that G(S* x S') = 1 and G(Y,,) =
G(0Y,) = «, and to make use both of the sub-additivity of regular genuswith respect to
connected sum and of relation rk(my(M")) < G(M") (see[CP)). .

PROOF OF THEOREM 2. Let M® be a connected orientable PL 5-manifold M®, with
h > 1 boundary components, satisfying the inequality G(M®) < 5; further, let (I',7) €
Ge be acrystallization of M® and e = (e1,...£4,5 = 5) be acyclic permutation of As,
sothat p = p.(I") = G(M°®) < 5.

By Theorem 4(a), (b), the fundamental group of the manifold satisfies either
rk(m1(M®)) = o (which implies M® = #, ,,(S* x SY#"VH,,), or rk(m(M®)) < 0 — 5
(i.e. M® simply connected with o = G(M®) = 5).

Further, Theorem 3 states that the only simply connected 5-manifold M® (M # #,D%)
with o — % < 3are (S? x D3)#(#,D%) and (S? x D3)#(#,D®), whose regular genusis at
least seven (see Corollary 9); thus, if o = 5isassumed, % < 1 necessarily holds.

Then, by applying relation (4) to each connected component of the boundary graph
(I, %), the existence of acolour i € A4 so that "g? = O directly follows; further, [CM;
Lemma 3(a)] ensuresthat OM® = [1{#,(S® x S1)/i = 1,...,h}, with ¥ o = o =
aQ - a@du) - aQQ(u = aQ - aQi(l) - a@ém) <1l

Now, oo = 0 contradictsthe hypothesisof simply connectedness: infact, [FG;] implies
M2 = M5#(#,D5), M5 being a closed orientable 5-manifold, with G(M®) = G(MS) = 5,
and Theorem 1(b) ensures M5 = #5(S* x St). On the other hand, if « = 1 = % is
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assumed, ¢ 7 =0 holds for every j € A4; hence, formula (9) yields oy + 05 + 0; <
2(0 —%) = 8, fromwhich theexistenceof i,j € As so that 0;=0 easily follows. Hence,
another contradiction occurs, since Proposition 7 would imply M5 22 #,(S* x SY)#MH,,
which is not a simply connected manifold. ]

COROLLARY 10. G(S® x D?) = 6.

ProOOF. The inequality G(S® x D?) > 6 is a direct consequence of the complete
classification of 5-manifolds up to regular genusfive (see Theorem 2).

On the other hand, a crystallization of S® x D? of genus six may be easily obtained
from the 6-coloured graph (F'@,v®?) depicted in Figure 2, which represents % x D?
and satisfies p. (F?) = 6, & being the identity on As: (F@, @) directly results from the
“standard” crystallizations of S® and D?, by an obvious modification of the construction
described in [GG]. n
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