
ON THE SEMISIMPLICITY OF MODULAR 
GROUP ALGEBRAS. II 

D. S. PASSMAN 

Let G be a discrete group, let K be an algebraically closed field of charac­
teristic p > 0 and let KG denote the group algebra of G over K. In a previous 
paper (2) I studied the Jacobson radical JKG of KG for groups G with big 
abelian subgroups or quotient groups. I t is therefore natural to next consider 
metabelian groups, and I do this here. The main result is as follows. 

THEOREM 1. Let K be an algebraically closed field of characteristic p and let a 
group G have a normal abelian subgroup A with G/A abelian. Then JKG ?± {0} 
if and only if G has an element g of order p such that the A-conjugacy class gA is 
finite and such that the group G/ jVG(gA) is periodic. 

Note that since ^o(gA) 3 A and G/A is abelian, we do in fact have 
VG{gA) AG. 

The proof is basically simple but there are a number of technical details 
involved. We start with a series of lemmas. 

LEMMA 2. Let F be afield and let the polynomial ring F[x] act on a vector space V. 
Let W be a finite-dimensional subspace of V. Suppose that S is an infinite set 
of positive integers and that for each s £ S the sum 

W + x'W + x2sW + x*sW + . . . 

is not direct. Then there exists non-zero f(x) 6 F[x] and non-zero w £ W with 
f(x)w = 0. 

Proof. We can assume that V = F[x]W. Since T^is finite-dimensional, F i s a 
finitely generated F[x] module. Thus, since F[x] is a principal ideal domain, 
there exists vu v2, . . . , vn 6 V and fi(x),f2(x), . . . ,fn(x) 6 F[x] such that 
every element v 6 V can be written as 

v = giO; x)Vi + g2(v; x)v2 + . . . + gn{v\ x)vny 

and the polynomials gi(v;x) are determined modulo fi(x). 
Since W is a finite-dimensional F-subspace, it follows that every element 

v G Wean be written as in the above with deg gt{v; x) S t for all i = 1 ,2 , . . . , » 
and some fixed integer /. Choose s £ S with s > t. The hypothesis then implies 
that there exists w0, wi, . . . , wk 6 W, not all zero, with 

Wo + XsWi + . . . + XksWk = 0. 
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If we write wt as above with deg gj{wt\ x) < s, then we have 
k n 

Thus, fj(x) divides £*= 0 xisgj(wi', x). 
Suppose that the ordering of Vi, . . . , vn is so chosen tha t / i (x) , . . . , / r (#) are 

not zero while the remaining/ r + i(x), . . . ,fn(x) are zero. Thus we see that for 
each j = r + 1, • . • , n we have 

k 

0 = 2 XlS gj(Wi',x) 

and since deg gj{wù x) < s, this yields gj{wt\ x) = 0. Thus, if 

/ (*) = fiMf2(x) . . . / r W , 

then/ (x) ^ 0 a n d / ( x ) ^ i = 0 for all i. Since some wt is non-zero, the result 
follows. 

Let Z denote the ring of integers. A polynomial/(x) G Z[x] is primitive if the 
greatest common divisor of the coefficients of f(x) is 1. By Gauss' lemma, a 
product of primitive polynomials is primitive. 

LEMMA 3. Let A be an additive abelian group acted upon by Z[x] and let B be a 
finitely generated subgroup. Let S be an infinite set of positive integers and suppose 
that for each s £ S the sum 

B + xsB + x2sB + xzsB + . . . 

is not direct. Then there exists a non-zero element b G B and a primitive poly­
nomial f(x) G Z[x] with f{x)b = 0. 

Proof. For each prime p let Ap = {a G A\ pa — 0} and let 

A0 = {a G A| ma = 0 for some m G Z, m ^ 0}. 

Thus Ap is a vector space over GF(^) , A0 is the torsion subgroup of A, and 
A/A0 is a torsion-free Z module. Of course, each of the At is fully invariant, 
and hence Z[x]-invariant. 

Set Bv = B C\ Av and B0 = B C\ A0. Since B is finitely generated, B0 is 
finite say of order m and B = Bo + 5 i , where B± is a finitely generated torsion-
free abelian group. Clearly mB C 5 i . For each i = 1 or p with p\m, let S* 
denote the set of 5 G «S with the sum 

Bt + xsBt + x2sBt + x*sBt + . . . 

not direct. We show that \JSt = S. 
Let s G S. Since 

JB + x s£ + x2sB + xzsB + . . . 

is not direct, there exists &o, &i, . . . , bk G B not all zero with 

h + xsbx + x2sb2 + . . . + x*'bk = 0. 
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If some bj has infinite order, then mbj 9e 0. Multiplying the above relation 
through by m and using mB C Bi we see that s G Si. Now suppose that all bt 

have finite order. There exist a prime p\m and an integer n with nbj ^ 0 for 
some j and pnbt = 0 for all i. Multiplying the above relation through by n we 
see that 5 G Sp. 

Since 5 = USt is infinite and the union is finite, it follows that St is infinite 
for some i. Suppose first that i = p is a prime. Then GF ip)[x] acts on ^4P. By 
Lemma 2 applied with F = GF(p), V = Ap, W = 5 P , 5 = Sp, there exists a 
monic polynomial fix) G GF(/>)[x] and non-zero b £ Bp with /(x)6 = 0. Let 
fix) G Z[x] be monic with /(x) = fix) mod £. Then since pb = 0, we have 
f(x)b = 0. Since fix) is clearly primitive, the result follows in this case. 

Now let Si be infinite and let Q denote the field of rationals. Then Q[x] acts 
on V = (A/Ao) ®zQ- Let IF = (B/B0) ®z Q. Then Wis a finite-dimensional 
subspace of V. By Lemma 2 applied to this situation with S = Si there exists 
non-zero g(x) G <2[x] and non-zero w 6 I f with g(x)î# = 0. We can clearly 
assume that gix) G Z[x]. Since 5/-#o is a torsion-free Z module, it is naturally 
contained in W and the quotient is periodic. Thus for some integer w ^ 0 , 
nw G B/Bo. Then g(x)nw = 0. Let &i G 5 i with &i + B0 = rae>. Then 
g(ff)&i G -So, and hence for some integer & 9£01kg(x)bi = 0. Write kg{x) = c/(#), 
where fix) is a primitive polynomial and c £ Z. Then f(x)cbi — 0. Since 
èi G -Si, bi 9^ 0, we see that b = cb\ j£ 0, and the result follows. 

LEMMA 4. Letf(x) G Z[x]be a primitive polynomial and let m G Z with m ^ 0. 
If I is the ideal generated by m and fix), then Z[x]/I is finite. 

Proof. We can assume that m > 0 and write m = pip2. . . pr as a product of r 
not necessarily distinct primes. Let d = deg fix). We will show that 
\Z[x]/I\ ^ md. 

If p is a prime, then since/(x) is primitive, it follows that 

fix) = f{x) mod £Z[x] 

is not zero. Since Z/pZ is a field, this implies that for any polynomial 
gix) G Z[x] there exist A(x), &(x) G Z[x] with 

g(x) == hix) + pkix) mod f(x)Z[x] 

and deg h(x) < d. 
Let gix) G Z[x]. We set koix) = gix) and we define htix), ktix) G Z[x] for 

i = 1, 2, . . . , r inductively by 

ki-iix) = ht(x) + pikfix) mod f(x)Z[x] 
with deg htix) < d. Setting 

hix) = hiix) + pih2ix) + pip2hix) + . . . + pip2. . . pr-ihrix), 

we then have 
gix) = hix) + mkrix) mod/(x)Z[x] 
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and deg h (x) < d. Thus 
g(x) = h(x) mod / . 

Since we may further restrict the coefficients of h{x) to be between 0 and 
m — 1, we see that \Z[x]/I\ ^ md. This completes the proof. 

If a G KG, then the supporting subgroup of a is the minimal subgroup Hoi G 
with a G KH. Clearly, H is the subgroup generated by all elements g G G 
which occur with non-zero coefficient in a. We let a ( l ) denote the coefficient 
of the identity in a. 

LEMMA 5. Let Q be a finite normal abelian p' -subgroup of a group E and let K 
be an algebraically closed field of characteristic p. 

(i) Let e be a primitive idempotent of KQ and let a G KE. If a — eae, then 
a G KC, where C = ^ ( t f ) . 

(ii) Let a G KE with a(l) 9^ 0. Then there exists a primitive idempotent e of 
KQ with eae (I) 5* 0. 

(iii) Suppose that E = E/Q has a finite normal p-subgroup P with È/P a 
torsion-free abelian group. Let e be a primitive idempotent of KQ and let 
7it 72, • • . , yn G KE with yt = eyte ^ 0. If the supporting subgroup of each of 
the yt is a p''-group, then we have 7172. . . 7» 9e 0. 

Proof, (i) Since Q A E, E permutes by conjugation the primitive idem-
potents of KQ. As is well known, if e\ and e% are primitive idempotents of KQ, 
then either etfi — 0 or ex = e2. Let e and a be given and write a = X) khh, 
where h G E and kh G K. Then 

eae = X khehe = X kneehh. 

Since eeh = 0 if h & C and e £ KQ Q KC, this yields a ^ eae ^ KC. 
(ii) Write a = Yli^ihu where a* G i£Ç a n d Ai, A2, . . . , A-, are in distinct 

cosets of Q with h\ = 1. Since a ( l ) 7̂  0, we have «i 7̂  0. Now Ç is an abelian 
//-group and K is algebraically closed of characteristic p. Hence in KQ we have 
1 = X ejt a sum of primitive idempotents. Now ai = X) ejai and 

a i ( l ) = a ( l ) F ^ O ; 

thus for some e = eù we have ea\eiX) = ^ai(l) 5̂  0. Since 

r T 

eae = ^ e a ^ e == ^ (ea^^hi and ea^* G -&(?, 
1 1 

we see that eae(l) = ^ai^(l) F^ 0. 
(iii) By (i), each 7* G # C . Furthermore, C 2 (? and if C = C/Ç, then 

C/(C P\ P) ~ CP/P is a torsion-free abelian group. Thus it suffices to assume 
that E = C, and hence that £ is central in KE. For all g G (? we have ge = \(g)e, 
where X is a linear character of Q. Moreover, since e is central if h G E, g G Q, 
then X(gh) = X(g). Let Ço be the kernel of X. Then Ço A E and Q/Qo is a cyclic 
//-group central in E. 
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Let D 3 Q with D/Q = P. If P is a Sylow ^-subgroup of D, then D = QP 
and IV(?o *s nilpotent. This easily yields Q0P A E. Let 7 denote the kernel of 
the natural epimorphism KE —» K(E/Q0P). Then I is the annihilator of 
Q0P = Qô P in KE, where for any finite subset 5 C E, S denotes the sum of the 
elements of S in KE. We will show the following two facts which will yield the 
result. First, for all i, yt G ele, and second that eKEe/ele has no zero divisors. 
Note that since e is central, eKEe = eKE and ele = el. 

If Yz € el, then 7iQ0P G e/QoP = {0}, and hence 7iQ0P = 0. Now yt = yte 
and £<3o = e\Qo\'j thus ^ 

0 = ytQoP = |Qo|Ti^ = |Qo|7«A 
Since Ço is a. £'-group, |<2o| ^ 0 in K, and hence Y*P = 0. Finally, since the 
supporting group of yt is a ^'-group and Y* ^ 0, this is clearly absurd. Thus 
yt G eIL 

Set E = E/QoP, D = D/Q0P, and let e be the image of e under the map 
KE —» i£E. Since e is an idempotent, 

el C e iŒ H J = *<>i££ H / ) = *J. 

This implies that eKE/el o^ eKE. Moreover, since D = Q(QoP), we see that 
eKD = eK. Thus eKE C^L Kll(E/(D), where the latter is a twisted group 
algebra for the torsion-free abelian group Ë/D. Now it is well known (and 
easily verified using a degree argument) that KlA has no zero divisors if A is a 
torsion-free abelian group. Thus as we remarked above, this suffices to prove 
the result. 

THEOREM 6. Let K be an algebraically closed field of characteristic p, let G be a 
group and let H be a normal subgroup of G. Suppose that H' is a finite pf-group and 
that every finite pf-subgroup of H is abelian. Let a G {JKG) C\ (KH) with 
a(l) 9e 0 and let L Ç H be the supporting subgroup of a. If x G G, then some 
power xj of x with j ^ 0 normalizes the cosetH/g for some element g G L of order p. 

We remark that the assumptions on H are certainly satisfied if H is abelian 
and in this case the proof is slightly simpler. However, as will be apparent later, 
we need this stronger result. 

Proof. Let Gi = (H, x). Then by (2, Lemma 1), a G (JKGi) H (KH) and 
also a G JKL. Thus it clearly suffices to assume that G = Gi. Suppose first that 
Hx has finite order in G/H. Then for some j ?£ 0, x3 G H, and hence xj nor­
malizes H'g for all g G L. Now 1/ is a finite £'-group since L' C H', thus 
JKL' = {0}. Hence, since JKL ^ {0}, (2, Theorem 6) implies that L/U is not 
a ^'-group. Thus L contains an element of order p and the result follows in this 
case. 

We assume now that Hx has infinite order. Since G/H = (Hx) is infinite-
cyclic, (2, Theorem 6(iii)) implies that for each integer s > 0 and for each 
/3 G (JKG) C\ (KH) there exists r > 0 with 

(*) fflx'p**'. . . 0xr* = 0. 
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The polynomial ring Z[x] acts on the abelian group A = H/H' and we use 
the notation af(x) to denote the image of a under/(x). Set B = LHf/H''. Since L 
is finitely generated, so is B. Let D = {b G B\ bfix) = 1 for some primitive 
polynomial f(x) G Z[x]}. By Gauss' lemma, D is a subgroup of B, and hence D 
is also finitely generated. Set E — DZ[X]. Then £ is a finitely generated Z[x] 
module and by Gauss' lemma, for each a G E there exists a primitive poly­
nomial/(#) with af{x) = 1. Hence E C\ B = D. 

Let Eo be the torsion subgroup of E. Since Eo is a Z[x] submodule of E, E is 
finitely generated as a Z[x] module, and Z[x] is a Noetherian ring, it follows 
that Eo is a finitely generated Z[x] module. Let a G E0 be one such generator, 
say of order m > 0, and le t / (x) be primitive with a/(a;) = 1. If 

I = f(x)Z[x] + mZ[x], 

then (a)7 = 1. Hence (a)Z[x] is a homomorphic image of the additive abelian 
group Z[x]/I, and thus is finite by Lemma 4. Since Eo is finitely generated, it 
follows that Eo is finite. 

Write Eo = PQ, where P is its Sylow ^-subgroup and Q is its Sylow p' -
subgroup. Let Ë, Eo, and Q be subgroups of H containing Hr with Ë/H' = E, 
Eo/H' = Eo and Q/H' = Q. Then J50 is finite and Q is a finite //-subgroup of if 
since H' is a finite //-subgroup of H. Thus by assumption, Q is abelian. Nowx 
acts as an endomorphism on £ , Eo, and (5 with trivial kernel, and thus x acts as 
an automorphism on finite E0 and Q. Therefore for some integer j > 0, xj 

centralizes Ëo. 
Suppose that D C\P ^ (I). Since D C LH'/H' and i ï ' is a finite //-group, 

it follows easily that there exists g G L with g of order p such that i ï 'g G D H P . 
Thus, since a^ centralizes Eo/Hf = £ 0 , it follows that xJ" normalizes if'g and the 
result follows. We assume now that D C\ P = (1) and therefore that 

DQC\P = <1) 
and derive a contradiction. 

By Lemma o(ii) (with E = H, Q = Q), there exists a primitive idempotent 
e G i£(5 with 0 = eae and 0(1) F^ 0. Then the supporting subgroup of 0 is 
clearly contained in QL and 0 belongs to the KH ideal (JKG) P\ (KH). 
Moreover, by Lemma 5(i), 0 G KC, where C = ^ ( e ) . Write 

0 = 01*1 + 02*2 + • • • + ftA», 

where ft G K(QL Pi £ ) and *i, h2, . . . , hm are elements of (XL in distinct 
cosets of QL P E with *i = 1. Furthermore, we can assume that ft, A* G KC. 

Since efie = (3, Q Q QL P E, and ht G C, we see that efte = ft. Since 
0(1) 5* 0 we have ft ^ 0. Now ft e K(QL r\ Ë) and 

(@L P £ ) / # ' = QB r\ E = Q(B H E) = QD. 

Since (XD £ £ and CD Pi P = (1), we see that QD is a //-group, and hence so 
is QL P E. Thus the supporting group of ft, and in fact of each ft, is a //-group. 
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Let S denote the set of all positive integer multiples of j and let s £ S. Then 
by (*) there exists r > 0 with the ordered product 

(**) n {**v"+h'W+.. . + A.XV} = o. 
Now j\s, thus xs centralizes e. Hence, since xs leaves Ë invariant, we see that 
Pixi* G KË and Pixia = efiixise 5* 0. Moreover, since the supporting subgroup 
of /3i is a ^'-group, the same is true for the supporting subgroup of fiix%$. Hence 
by Lemma 5(iii) (with E = Ë, Q = Q), 

(***) Ptff'Pi**' • • • ft*" ^ 0. 

Set À = A/E = H/Ë and set B = BE/E = LË/Ë. Then Z[x] acts on 
abelian A, and B is a finitely generated subgroup. Since Ai, h2, . . . y hm £ LQ 
and they are in distinct cosets of L(5 Pi E, it follows that they are in distinct 
cosets of Ë. Hence Ëhi, Ëh2, . . . , Ehm are distinct elements of B. Therefore, 
since hi = 1, (**) and (***) easily imply that the product 

B X BxS X 5*2s X . . . X Bxrs 

is not direct. Since this assertion holds for all s (z S, the multiplicative analogue 
of Lemma 3 implies that there exists 5 G B, b ^ 1, and a primitive polynomial 
fix) G Z[x] with 6A*) = i. Now 5 = BE/E, therefore b = Eb for some b G B. 
Thus &/(J) G £ and hence there exists a primitive polynomial g(x) G Z[x] with 
frfwow = i# By Gauss' lemma, f(x)g(x) is primitive and hence b £ D ÇZ E. 
Thus Eb = b = 1, a. contradiction, and the result follows. 

The following lemma can be used to give an alternate proof of (2, Theorem 3). 

LEMMA 7. Let G be a group with a normal abelian subgroup A of finite index and 
let H = {g £ G\ [A: ^A{£)\ < °° }• Then H is a subgroup of G containing A. 
Let K be afield and let I be a non-zero ideal of KG. Then I P KH ^ {0}. 

Proof. H is clearly a subgroup of G. Let gi, g2, . . . , gn be a complete set of 
coset representatives for A in G. Suppose that g\ = 1 and that the numbering 
is so chosen that gi, g2, . . . , gr € H while gr+i, . . . , gn G G — H. Then any 
element a G KG can be written uniquely as a = S i ^ g z with at G KA. For 
convenience, set N(a) equal to the number of j = r + 1, . . . , n with a3- 9^ 0. 
Thus N(a) = 0 if and only if a G KH. 

Since I 9^ {0j, there exists a G / with ai ^ 0. Among all such elements, 
choose a so that N(a) is minimal. Suppose that N{a) ^ 0. Then we have 
a\ 7* 0 and a y ̂  0 for some j > r. Now there is only a finite number of fr G 4̂ 
with aib = «i, and there is an infinite number of distinct commutators 
(af gj) = agja~lgrl for a G 4̂ since gj G G — iJ. Hence we can choose a f i 
so that lib = (a, gy), then «ifr 7e ct\. Set 

P = ba — aaar1 = ]£ 0*g*. 
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Then since A isabelian, 0* = at{b — (a, gt)}. Thus/3j = 0, 0i = ai(6 — 1) ^ 0, 
and at = 0 implies 0, = 0. This yields 0 G 7, 0i ^ 0 and iV(/3) < JV(a), a 
contradiction. This implies that we must have had N(a) = 0 so that 
a e mKHandthusir\KH ?* {0}. 

Proof of Theorem 1. Suppose first that JKG ^ {0}. Let Hi be the subgroup 
of G such that G 2 ïïi D 4 and iîi/^4 is the Sylow ^-subgroup of abelian G/A. 
Since G/Hx is an abelian ^'-group, (2, Theorem 6) implies that 

I i = {JKG)r\(KHx) * {0}. 

Now iIx/^4 is a locally finite group, thus there clearly exists a group H2 with 

i l l 2 #2 2 i4, [ i l2 :4] < oo and I 2 = h C\ (KH2) * {0}. Let 

H = {geH2\[A:tfA(g)]<«>}-
By Lemma 7, i l is a subgroup of H2 and I = I2 r\ (KH) ^ {0}. Clearly 
I = (ZKG) H (iOI). 

We consider some properties of H. First, since H ~Q_ A, we have HAG. 
Second, since iI/^4 is a ^-group, we see that every finite ^'-subgroup of H is 
contained in A and hence is abelian. Finally, let gi, g2, . . . , gn be a complete 
set of coset representatives of A in H By definition of H, [A: ^\(gi)\ < °° » 
therefore [A: Hin^\(gi)] < oo. Hence [H:2f(H)] < oo, and thus | i l ' | < oo 
by (3, Theorem 15.1.13). Note that H' A G. 

There are two cases to consider. Suppose first that ^Hil'l and let g G Hr be 
an element of order p. Since all conjugates of g are contained in H'', we have g° 
finite. Thus gA is finite and G/JV Q{gA) is finite and hence periodic. 

Now let H' be a ^'-group. Since I ^ {0}, choose a G I with a ( l ) ^ 0 and 
let L be the supporting subgroup of a. Then L is finitely generated, and since 
LH'/Hr is abelian we see that L contains only a finite number of elements of 
order p and say that these are hi, h2, . . . , hm. Let Ci• = {x Ç G\ xj normalizes 
ht

A for some j ^ 0}. S ince^G{h A ) 2 -4 and G/A is abelian, we see that Ci is 
a subgroup of G. 

Let x G G. By Theorem 6 there exists an integer f F^ 0 such that xr 

normalizes the coset H'hi for some i, and then since H' is finite, there exists a 
suitably larger integer j such that xj centralizes H'ht. Now H ^ A, {ht}} thus 
clearly /^A C H'h^ Therefore xj centralizes, and hence normalizes, hA\ thus 
x G d. Thus G = {JimCit and so by (1, Lemma 7) we have [G:Ck] < oo for 
some k. Clearly G/Ck is torsion-free, therefore this yields G — Ck and hence if 
g = AA, then g has order >̂, gA is finite, and G/jVG{gA) is periodic. This com­
pletes the necessity part of the proof. 

Conversely, let g G G be given with g of order p, gA finite, and G/jVG{gA) 
periodic. Let H = (A, g); thus, since H 3 A, we have HAG. The map 
a —> (a> J?) i s easily seen to be an endomorphism of A with kernel *&A(g) and 
image (̂ 4, g). Thus 04, g) is a group which is clearly normal in H. Since 
H/(A, g) is abelian we have (A, g) = H' A G. Note that 

H'g= (A,g)g = gA, 
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hence H' is finite. Let a = Hr (1 — g) £ KG. We note that a ^ 0 since if 
g Ç i , then H' = (1) and if g g A, then H' C A We show now that ai^G is a 
nil ideal. 

Let P € KG. Then there exists a subgroup L of G with G "D L "O H, L/A 
finitely generated and fi £ KL. Thus a/3 £ aKL and we show that this latter 
ideal is nilpotent. Now L/jVL(gA) is a finitely generated periodic abelian group, 
and hence is finite. Since gA is finite, this implies that [L: &L(g)] is finite. Let 
gh #2,. • • » gn denote the distinct conjugates of g in L. These are of course all 
contained in H since HAL. Let a* = H'(l — gi) and let 
Since the at are all central in KH, we have 

ipLXi) (ax2) . . . (axr) = a i a i a 2
a 2 • . • an

an%i%2 . . . xr 

for some integers az- > 0 satisfying a\ + a2 + . . . + an — r. Moreover, H' is 
central in KH, thus at

a* = i î , a i ( l - gz)
at". Since (1 - gt)

v = 0, it follows that 
if r > w£, then the above product of r terms is 0, hence clearly (aKL)np = {0}. 
Thus aKG is a non-zero nil ideal, JKG ^ {0}, and the result follows. 

In a later paper I will show that if G is a finitely generated metabelian group, 
then JKG = (JKH) (KG) for some finite normal subgroup H of G. In partic­
ular, JKG is nilpotent. 

Added in proof. A systematic study of the Jacobson radical and the nilpotent 
radical of twisted group algebras can be found in " Radicals of twisted group 
rings", to appear in the Proceedings of the London Mathematical Society. 
The paper also contains the result on finitely generated metabelian groups 
mentioned in the last paragraph above. This result is obtained as a corollary 
of Theorem 1 and of certain general considerations. 
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