ON THE SEMISIMPLICITY OF MODULAR
GROUP ALGEBRAS. II

D. S. PASSMAN

Let G be a discrete group, let K be an algebraically closed field of charac-
teristic p > 0 and let KG denote the group algebra of G over K. In a previous
paper (2) I studied the Jacobson radical JKG of KG for groups G with big
abelian subgroups or quotient groups. It is therefore natural to next consider
metabelian groups, and I do this here. The main result is as follows.

THEOREM 1. Let K be an algebraically closed field of characteristic p and let a
group G have a normal abelian subgroup A with G/A abelian. Then JKG = {0}
if and only if G has an element g of order p such that the A-conjugacy class g is
finite and such that the group G/ N ¢(g*) is periodic.

Note that since A¢(g4) 2 A and G/A is abelian, we do in fact have
v c(g*) AG.

The proof is basically simple but there are a number of technical details
involved. We start with a series of lemmas.

LeEMMA 2. Let F be a field and let the polynomial ring F[x] act on a vector space V.
Let W be a finite-dimensional subspace of V. Suppose that S is an infinite set
of positive integers and that for each s € S the sum

W+ x*W + x2W + «¥*W + ...
s not direct. Then there exists non-gero f(x) € Flx] and non-zero w € W with

fx)w = 0.

Proof. We can assume that V' = F[x]W. Since W is finite-dimensional, V is a
finitely generated F[x] module. Thus, since F[x] is a principal ideal domain,
there exists v1,9s,...,% € V and fi(x), fo(x), ..., f.(x) € Flx] such that
every element v € V can be written as

v =g,1(0;x)vy + g2(v; )02 + ... + 2. ; x)v,,

and the polynomials g;(v; x) are determined modulo f;(x).
Since W is a finite-dimensional F-subspace, it follows that every element

v € W can be written as in the above with deg g;(v;x) < tforalli =1,2,...,n
and some fixed integer ¢. Choose s € S with s > ¢ The hypothesis then implies
that there exists wo, w1, . .., w; € W, not all zero, with

wo + xSwy + ...+ xFw, = 0.
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If we write w; as above with deg g;(w,; x) < s, then we have
k n
0= z% z:l xgi(wi; x)v,.
= =
Thus, f;(x) divides 3% g, (w,; x).

Suppose that the ordering of vy, . . ., v, is so chosen that f1(x), . .., f,(x) are
not zero while the remaining f,11(x), ..., f,(x) are zero. Thus we see that for
eachj =7+ 1,...,n we have

k
0= Z_% x® g (wi;x)
and since deg g;(w;; x) < s, this yields g;(w;; x) = 0. Thus, if
fx) = fi)falx) ... frlx),

then f(x) # 0 and f(x)w; = 0 for all 7. Since some w; is non-zero, the result
follows.

Let Z denote the ring of integers. A polynomial f(x) € Z[x]is primitive if the
greatest common divisor of the coefficients of f(x) is 1. By Gauss’ lemma, a
product of primitive polynomials is primitive.

LEMMA 3. Let A be an additive abelian group acted upon by Z[x] and let B be a
Jfinitely generated subgroup. Let S be an infinite set of positive integers and suppose
that for each s € S the sum

B+ x°B + x*B 4+ x3°B + ...
is not direct. Then there exists a non-zero element b € B and a primitive poly-
nomial f(x) € Z[x] with f(x)b = 0.
Proof. For each prime p let A,= {a € 4| pa = 0} and let
Ao= {a € A|ma = 0 for some m € Z, m # 0}.

Thus A4, is a vector space over GF (p), 4, is the torsion subgroup of 4, and
A/A, is a torsion-free Z module. Of course, each of the 4, is fully invariant,
and hence Z[x]-invariant.

Set B, = BM A4, and By = B M A4,. Since B is finitely generated, By is
finite say of order m and B = By + By, where B; is a finitely generated torsion-
free abelian group. Clearly mB C B;. For each 1 = 1 or p with p|m, let S,
denote the set of s € S with the sum

Bi + sti + x”Bi + xssBi ‘I‘ “ee

not direct. We show that US; = S.
Let s € S. Since
B 4+ x°B + x*B + x*B + ...

is not direct, there exists by, by, . . ., by € B not all zero with
bo + xsbl + x“bz + “ee —l— x"sbk = 0.

https://doi.org/10.4153/CJM-1969-124-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-124-8

MODULAR GROUP ALGEBRAS. II 1139

If some b; has infinite order, then mb; # 0. Multiplying the above relation
through by m and using mB € B; we see that s € S;. Now suppose that all b;
have finite order. There exist a prime p|m and an integer n with nb; % 0 for
some j and pnb; = 0 for all 2. Multiplying the above relation through by # we
see that s € S,.

Since S = US.S, is infinite and the union is finite, it follows that .S, is infinite
for some 7. Suppose first that # = p is a prime. Then GF (p)[x] acts on 4,. By
Lemma 2 applied with ' = GF(p), V = 4,, W = B,, S = S,, there exists a
monic polynomial f(x) € GF(p)[x] and non-zero b € B, with f(x)b = 0. Let
f(x) € Z[x] be monic with f(x) = f(x) mod p. Then since pb = 0, we have
f(x)b = 0. Since f(x) is clearly primitive, the result follows in this case.

Now let S; be infinite and let Q denote the field of rationals. Then Q[x] acts
onV = (A4/40) ®;zQ.Let W = (B/By) ®z Q. Then W is a finite-dimensional
subspace of V. By Lemma 2 applied to this situation with S = S; there exists
non-zero g(x) € Q[x] and non-zero w € W with g(x)w = 0. We can clearly
assume that g(x) € Z[x]. Since B/B, is a torsion-free Z module, it is naturally
contained in W and the quotient is periodic. Thus for some integer z = 0,
nw € B/Byg. Then g(x)nw = 0. Let b, € By with by + By = nw. Then
g2(x)b1 € By, and hence for some integer & 5% 0, kg (x)b; = 0. Write kg(x) = ¢f(x),
where f(x) is a primitive polynomial and ¢ € Z. Then f(x)cb; = 0. Since
b, € By, by # 0, we see that b = ¢b; # 0, and the result follows.

LeEMMA 4. Let f(x) € Z[x] be a primitive polynomial and let m € Z withm # 0.
If I is the ideal generated by m and f(x), then Z[x]/I is finite.

Proof. We can assume thatm > 0and writem = pips ... p,asa productof »
not necessarily distinct primes. Let d = degf(x). We will show that
|Z[x]/1| < md.

If p is a prime, then since f(x) is primitive, it follows that

fx) = f(x) mod pZ[x]
is not zero. Since Z/pZ is a field, this implies that for any polynomial
g2(x) € Z[x] there exist k(x), k(x) € Z[x] with
g(x) = h(x) + pk(x) mod f(x)Z[x]

and deg 4 (x) < d.
Let g(x) € Z[x]. We set ko(x) = g(x) and we define k,(x), k;(x) € Z[x] for
1 =1,2,...,rinductively by

kioi(x) = hi(x) + piki(x) mod f(x)Z[x]
with deg %,;(x) < d. Setting

h(x) = hi(x) + piha(x) + prpohs(x) + ... + p1p2. .. prah,(x),

we then have

g(x) = h(x) + mk,(x) mod f(x)Z[x]
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and deg h(x) < d. Thus
g(x) = h(x) mod I.

Since we may further restrict the coefficients of i#(x) to be between 0 and
m — 1, we see that |Z[x]/I| < md. This completes the proof.

If « € KG, then the supporting subgroup of « is the minimal subgroup H of G
with @ € KH. Clearly, H is the subgroup generated by all elements g € G
which occur with non-zero coefficient in o. We let «(1) denote the coefficient
of the identity in e.

LemMA 5. Let Q be a finite normal abelian p’-subgroup of a group E and let K
be an algebraically closed field of characteristic p.

(i) Let e be a primitive idempotent of KQ and let « € KE. If a = eae, then
a € KC, where C = € x(e).

(ii) Let o € KE with a(1) 5% 0. Then there exists a primitive idempotent e of
KQ with eae(1) # 0.

(iii) Suppose that E = E/Q has a finite normal p-subgroup P with E/P a
torsion-free abelian group. Let e be a primitive idempotent of KQ and let
Yy Yoo o« o Vo € KE with v; = ey.e = 0. If the supporting subgroup of each of
the v; is a p'-group, then we have yyyz . .. v, #= 0.

Proof. (i) Since Q A E, E permutes by conjugation the primitive idem-
potents of KQ. As is well known, if e; and e, are primitive idempotents of KQ,
then either eje; = 0 or e; = e,. Let ¢ and a be given and write a = 3 kk,
where 2 € E and k, € K. Then

eae = Y kehe = 3 kee’h.

Since ee” = 0if h ¢ Cand e € KQ C KC, this yields @ = eae € KC.

(ii) Write @ = X ’a;h,, where a; € KQ and hy, ks, . .., h, are in distinct
cosets of Q with #; = 1. Since a(1) 5 0, we have a; # 0. Now Q is an abelian
p’-group and K is algebraically closed of characteristic . Hence in KQ we have
1 = 3 e;, a sum of primitive idempotents. Now a; = 3 ¢;a; and

al(l) = a(l) # 0;

thus for some ¢ = ¢; we have ea;e(1) = ea;(1) £ 0. Since

T T

eae = ), eahe = Y, (eas)h; and eai” € KQ,
1

1

we see that eae(l) = eaje(1) # 0.

(iii) By (i), each y; € KC. Furthermore, C 2 Q and if ¢ = C/Q, then
C/(C N P) ~ CP/P is a torsion-free abelian group. Thus it suffices to assume
that E = C, and hence that eis central in KE. Forall g € Q we have ge = \(g)e,
where M is a linear character of Q. Moreover, since e is central if # € E, g € Q,
then A(g") = A(g). Let Qq be the kernel of A. Then Qy A E and Q/Q, is a cyclic
p’-group central in E.
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Let D D Q with D/Q = P. If P is a Sylow p-subgroup of D, then D = QP
and D/Qy is nilpotent. This easily yields QuP A E. Let I denote the kernel of
tbs, natural epimorphism KE — K(E/Q.P). Then I is the annihilator of
0P = 0oP in KE, where for any finite subset S C E, S denotes the sum of the
elements of S in KE. We will show the following two facts which will vield the
result. First, for all ¢, v; ¢ ele, and second that eKEe/ele has no zero divisors.
Note that since e is ce/:lltral, eIg@e = ¢KE and ele = eé\

If v; € el, then v,QoP € eIQ,P = {0}, and hence v,QoP = 0. Now v; = v,e
and eQy = ¢|Qo; thus ~
0 = 7:QoP = |Qolv:eP = |Qolv.P.

Since Qo is a p’-group, |Qo| # 0 in K, and hence v,P = 0. Finally, since the
supporting group of v, is a p’-group and v; # 0, this is clearly absurd. Thus
v € el.

Set £ = E/QuP, D = D/Q,P, and let & be the image of ¢ under the map

KE — KE. Since e is an idempotent,

el CeKENIT =e(eKENI) = el.

This implies that eKE/el ~ K E. Moreover, since D = Q(Q.,P), we see that
éKD = ¢K. Thus éKE~ K'(E/D), where the latter is a twisted group
algebra for the torsion-free abelian group E/D. Now it is well known (and
easily verified using a degree argument) that K’4 has no zero divisors if 4 isa
torsion-free abelian group. Thus as we remarked above, this suffices to prove
the result.

THuEOREM 6. Let K be an algebraically closed field of characteristic p, let G be a
group and let H be a normal subgroup of G. Suppose that H' is a finite p’-group and
that every finite p’-subgroup of H is abelian. Let o € (JKG) N (KH) with
a(l) # 0 and let L C H be the supporting subgroup of a. If x € G, then some
power x? of x with j # 0 normalizes the coset H'g for some element g € L of order p.

We remark that the assumptions on H are certainly satisfied if H is abelian
and in this case the proof is slightly simpler. However, as will be apparent later,
we need this stronger result.

Proof. Let G; = (H, x). Then by (2, Lemma 1), « € (JKG,;) N (KH) and
alsoa € JKL. Thusit clearly suffices to assume that G = G;. Suppose first that
Hx has finite order in G/H. Then for some j # 0, x’ ¢ H, and hence %’ nor-
malizes H'g for all g € L. Now L’ is a finite p'-group since L' C H’, thus
JKL' = {0}. Hence, since JKL # {0}, (2, Theorem 6) implies that L/L’ is not
a p’-group. Thus L contains an element of order p and the result follows in this
case.

We assume now that Hx has infinite order. Since G/H = (Hx) is infinite-
cyclic, (2, Theorem 6(iii)) implies that for each integer s > 0 and for each
B8 € (JKG) N\ (KH) there exists r > 0 with

(*) ﬁﬁzaﬁxza .. an = 0
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The polynomial ring Z[x] acts on the abelian group 4 = H/H’ and we use
the notation a’® to denote the image of @ under f(x). Set B = LH'/H'. Since L
is finitely generated, so is B. Let D = {b € B| b/® =1 for some primitive
polynomial f(x) € Z[x]}. By Gauss' lemma, D is a subgroup of B, and hence D
is also finitely generated. Set E = D?*l, Then E is a finitely generated Z[x]
module and by Gauss’ lemma, for each a € E there exists a primitive poly-
nomial f(x) with ¢/® = 1. Hence EN B = D.

Let E, be the torsion subgroup of E. Since E, is a Z[x] submodule of E, E is
finitely generated as a Z[x] module, and Z[x] is a Noetherian ring, it follows
that E, is a finitely generated Z[x] module. Let ¢ € E, be one such generator,
say of order m > 0, and let f(x) be primitive with «/® = 1. If

I = f(x)Z[x] + mZ]x],

then (¢)! = 1. Hence (@ )?"*! is a homomorphic image of the additive abelian
group Z[x]/I, and thus is finite by Lemma 4. Since E, is finitely generated, it
follows that E; is finite.

Write Eo = PQ, where P is its Sylow p-subgroup and Q is its Sylow p'-
subgroup. Let E, E,, and Q be subgroups of H containing H' with £/H' = E,
Ey/H' = Eqand Q/H' = Q. Then E,is finite and ( is a finite p’-subgroup of H
since H’ is a finite p’-subgroup of H. Thus by assumption, { is abelian. Now x
acts as an endomorphism on E, E,, and  with trivial kernel, and thus x acts as
an automorphism on finite E, and (. Therefore for some integer j > 0, x7
centralizes E,.

Suppose that D M P 5 (1). Since D € LH’/H’ and H’ is a finite p’-group,
it follows easily that there exists g € L with g of order p such that H'g € D M P.
Thus, since x7 centralizes Eo/H’ = E,, it follows that x’ normalizes H'g and the
result follows. We assume now that D M P = (1) and therefore that

DQNP = (1)
and derive a contradiction.
By Lemma 5(ii) (with E = H, Q = (), there exists a primitive idempotent
e ¢ KQ with 8 = eae and $(1) # 0. Then the supporting subgroup of g8 is
clearly contained in QL and B belongs to the KH ideal (JKG) N (KH).
Moreover, by Lemma 5(i), 8 € K C, where C = %y (e). Write

B = Blhl + 62]7/2 + ...+ Bmhrm

where 8; € K(OL N E) and hy, ks, . . ., h, are elements of QL in distinct
cosets of QL M E with h; = 1. Furthermore, we can assume that g8;, #; € KC.
Since eBe = 8,0 C OLN E, and h; € C, we see that ef,e = B;. Since
B(1) % 0 we have 8; # 0. Now 8; € K(QL N E) and
(OLN E)/H' = QBNE = QBNE) = QD.

Since QD~§ Eand QD N P = (1), we see that QD is a p’-group, and hence so
is QL N E. Thus the supporting group of 81, and in fact of each 8;, is a p’-group.
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Let S denote the set of all positive integer multiples of j and let s € S. Then
by (*) there exists r > 0 with the ordered product

T

(+) IT (85 h" + 87" + ... + Ba™

i=0

I} = 0.
Now jls, thus x° centralizes e. Hence, since x° leaves E invariant, we see that
B:*** € KE and B,** = ¢B8,*""¢ # 0. Moreover, since the supporting subgroup

of 81 is a p’-group, the same is true for the supporting subgroup of 8,***. Hence
by Lemma 5(iii) (with E = E, Q = Q),

() 81817 °B*" . .. B2 # 0.

Set A = A/E = H/E and set B = BE/E = LE/E. Then Z[x] acts on
abelian A, and B is a finitely generated subgroup. Since ks, ks, . . . , by € L)
and they are in distinct cosets of LO N E, it follows that they are in distinct
cosets of E. Hence Ehy, Ehs, . . ., Eh,, are distinct elements of B. Therefore,
since by = 1, (x*) and (x*#) easily imply that the product

BX B X B X...X B"

is not direct. Since this assertion holds for all s € S, the multiplicative analogue
of Lemma 3 implies that there exists b € B, b 5 1, and a primitive polynomial
f(x) € Z[x] with 8@ = 1. Now B = BE/E, therefore b = Eb for some b € B.
Thus ’® € E and hence there exists a primitive polynomial g(x) € Z[x] with
p/® 9@ = 1. By Gauss’ lemma, f(x)g(x) is primitive and hence b € D C E.
Thus Eb = b = 1, a contradiction, and the result follows.

The following lemma can be used to give an alternate proof of (2, Theorem 3).

LEMMA 7. Let G be a group with a normal abelian subgroup A of finite index and
let H= {g € G|[4: €4(g)] < ©}. Then H is a subgroup of G containing A.
Let K be a field and let I be a non-zero ideal of KG. Then I N KH #= {0}.

Proof. H is clearly a subgroup of G. Let g1, g5, . . ., g, be a complete set of
coset representatives for 4 in G. Suppose that g; = 1 and that the numbering
is so chosen that g1, gs,..., ¢, € H while g;41,..., g, € G — H. Then any
element @ € KG can be written uniquely as o = > ;"a,;g; with a; € KA. For
convenience, set NV(a) equal to the numberof j =7 4+ 1, ..., n with a; # 0.

Thus N(e) = 0if and only if « € KH.

Since I 5 {0}, there exists @ € I with a; # 0. Among all such elements,
choose « so that N(a) is minimal. Suppose that N(a) # 0. Then we have
a; # 0 and a; # 0 for some j > 7. Now there is only a finite number of b € 4
with a0 = «;, and there is an infinite number of distinct commutators
(a, g;) = aga~'g; 1 for a € A4 since g; € G — H. Hence we can choose a € 4
so that if b = (q, g;), then ab 5 ay. Set

B =ba — aaa! =3 Biyg.
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Then since 4 is abelian, 8; = a;{b — (a,g:)}. ThusB, = 0,81 = a1(b — 1) # 0,
and a; = 0 implies 8; = 0. This yields 8 € I, 81 £ 0 and N(8) < N(a), a
contradiction. This implies that we must have had N(a) = 0 so that
a € I N\ KH and thus I N\ KH # {0}.

Proof of Theorem 1. Suppose first that JKG # {0}. Let H; be the subgroup
of G such that G D H; D A and H;/A is the Sylow p-subgroup of abelian G/A4.
Since G/H, is an abelian p’-group, (2, Theorem 6) implies that

I, = (JKG) N\ (KH;) # {0}.

Now H;/A is a locally finite group, thus there clearly exists a group H» with
H1 QHQ ) A, [H2A] < o and 12 = Ilﬂ (KHz) #= {O}. Let

H={g € H|[A:F.(g)] < 0}.

By Lemma 7, H is a subgroup of H,; and I = I, N\ (KH) # {0}. Clearly
I = (JKG) N (KH).

We consider some properties of H. First, since H 2D A4, we have H A G.
Second, since H/A is a p-group, we see that every finite p’-subgroup of H is
contained in 4 and hence is abelian. Finally, let gy, g3, . . ., g, be a complete
set of coset representatives of 4 in H. By definition of H, [4: € 4(g;)] < 0,
therefore [4: N:" @ 4(g:)] < 0. Hence [H:Z (H)] < o0, and thus [H’| < o0
by (3, Theorem 15.1.13). Note that H" A G.

There are two cases to consider. Suppose first that p||H’| and let g € H’ be
an element of order p. Since all conjugates of g are contained in H’, we have g¢
finite. Thus g* is finite and G/ A4 ¢(g*) is finite and hence periodic.

Now let H be a p’-group. Since I # {0}, choose @ € I with a(1) 0 and
let L be the supporting subgroup of a. Then L is finitely generated, and since
LH'/H' is abelian we see that L contains only a finite number of elements of
order p and say that these are &y, ks, . . . , hy. Let C; = {x € G| x? normalizes
kA for some j # 0}. Since A ¢(h4) D A and G/A is abelian, we see that C; is
a subgroup of G.

Let x € G. By Theorem 6 there exists an integer j' ¥ 0 such that x?
normalizes the coset H'h; for some 7, and then since H’ is finite, there exists a
suitably larger integer j such that x7 centralizes H'%;. Now H D A4, {h;}, thus
clearly 24 C H'h;. Therefore x? centralizes, and hence normalizes, %;4; thus
x € Ci;. Thus G = U1™C;, and so by (1, Lemma 7) we have [G:Ci] < o for
some k. Clearly G/Cy is torsion-free, therefore this yields G = C; and hence if
g = Iy, then g has order p, g4 is finite, and G/ A4 ¢(g4) is periodic. This com-
pletes the necessity part of the proof.

Conversely, let ¢ € G be given with g of order p, g4 finite, and G/A4 s(g4)
periodic. Let H = (4, g); thus, since H D 4, we have H A G. The map
a — (a, g) is easily seen to be an endomorphism of A4 with kernel % ,(g) and
image (4, g). Thus (4, g) is a group which is clearly normal in H. Since
H/(A, g) is abelian we have (4, g) = H' A G. Note that

Hg= (4,2zg = g%,
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hence H’ is finite. Let a = iI\’(l — g) € KG. We note that a # 0 since if
g€ A,then H = (1)andif g ¢ A4, then H C A. We show now that aKG is a
nil ideal.

Let 8 € KG. Then there exists a subgroup L of G with G 2 L D H,L/A
finitely generated and 8 € KL. Thus a8 € KL and we show that this latter
ideal is nilpotent. Now L/ A4 (g4) is a finitely generated periodic abelian group,
and hence is finite. Since g4 is finite, this implies that [L: % (g)]is finite. Let
g1, 82, - - ., € denote the distinct conjuggges of g in L. These are of course all
contained in H since H A L. Let a; = H'(1 — g;) and let %y, %9, . .., x, € L.
Since the «a; are all central in KH, we have

(oxy) (axe) . v . (ax,) = 0102®2 . . . 0™ %1 %2« o 4 Xy

for some integers a; > 0 sa/tisfying ay + a:+ ...+ a, = r. Moreover, f{\’ is
central in KH, thus a;% = H'*(1 — g,)%. Since (1 — g;)? = 0, it follows that
if # > np, then the above product of » terms is 0, hence clearly («KL)"? = {0}.
Thus aKG is a non-zero nil ideal, JKG 5 {0}, and the result follows.

In a later paper I will show that if G is a finitely generated metabelian group,
then JKG = (JKH)(KG) for some finite normal subgroup H of G. In partic-
ular, JKG is nilpotent.

Added in proof. A systematic study of the Jacobson radical and the nilpotent
radical of twisted group algebras can be found in ‘‘Radicals of twisted group
rings’’, to appear in the Proceedings of the London Mathematical Society.
The paper also contains the result on finitely generated metabelian groups
mentioned in the last paragraph above. This result is obtained as a corollary
of Theorem 1 and of certain general considerations.
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