
JFP 28, e4, 47 pages, 2018. c© Cambridge University Press 2018. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/

4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original

work is properly cited.

doi:10.1017/S0956796818000047

1

An extended account of contract monitoring
strategies as patterns of communication�

CAMERON SWORDS, AMR SABRY

and SAM TOBIN-HOCHSTADT

Computer Science, Indiana University, IN, USA

(e-mail: cswords,sabry,samth}@indiana.edu)

Abstract

Contract systems have come to play a vital role in many aspects of software engineering.

This has resulted in a wide variety of approaches to enforcing contracts—ranging from

the straightforward pre-condition and post-condition checking of Eiffel to lazy, optional,

and parallel enforcement strategies. Each of these approaches has its merits, but each has

required ground-up development of an entire contract monitoring system. We present a unified

approach to understanding this variety, while also opening the door to as-yet-undiscovered

strategies. By observing that contracts are fundamentally about communication between a

program and a monitor, we reframe contract checking as communication between concurrent

processes. This brings out the underlying relations between widely studied enforcement

strategies, including strict and lazy enforcement as well as concurrent approaches, including

new contracts and strategies. We show how each of these can be embedded into a core

calculus, and demonstrate a proof (via simulation) of correctness for one such encoding.

Finally, we show that our approach suggests new monitoring approaches and contracts not

previously expressible.

1 Introduction

Behavioral software contracts, originally introduced by Meyer (1992), have become

an integral part of modern programming practice, where they are used to specify and

ensure program correctness. In the first-order, functional setting, programmers write

predicates (i.e., functions that take an input and return a Boolean value as a result)

to check program properties at function boundaries: the pre-condition predicate is

applied to the function input; the function is run on its input (if the pre-condition

predicate holds); and the post-condition predicate is applied to the function result.

If either predicate returns false, the program terminates with an error.

Programming, however, is more complex: programs utilize higher order functions,

effectul operations, massive data structures, lazy evaluation mechanisms, and more.

This added complexity must be addressed by the contract system: for higher order

functions, we must delay contract enforcement (Findler & Felleisen, 2002); effectful

� This research was funded by the National Science Foundation under grant numbers 1117635, 1217454,
1540276, 1518844, and the National Security Agency.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

2 C. Swords et al.

operations may affect values that were previously checked; massive data structures

may be prohibitively expensive to inspect; and over-evaluating input may change

program behavior.

Researchers have proposed myriad contract enforcement strategies in response to

these rising complexities, including lazy monitors (Degen et al., 2009; Chitil, 2012),

concurrent monitoring systems (Dimoulas et al., 2009), optional enforcement (Di-

moulas et al., 2013), and probabilistic contract verification (Moore et al., 2016;

Hickey, 2018).

While many of these systems initially appear incompatible, each of these ap-

proaches to contract enforcement share a common core: checking that a given

program fragment satisfies a contract requires executing some verification code, and

this execution is fundamentally distinct from the original program fragment. These

two pieces of code proceed independently, synchronizing at specific points. Prior

contract designs blur this distinction, fixing the evaluator interaction pattern in the

host language, providing a single enforcement strategy to the programmer. If we

preserve this distinction, however, these variations on evaluator interaction may be

directly encoded, allowing programmers to vary monitor behavior on a per-contract

basis, choosing the appropriate behavior for each contract.

Contributes and outline. This paper extends and refines the work presented by Swords

et al. (2015) in the following ways: we simplify the underlying calculus presented by

Swords et al. (2015), eschewing process tags (which governed termination behavior);

present a modified encoding of contracts as patterns of communication that ensures

each monitored term is evaluated in the correct process (whereas Swords et al. (2015)

always evaluate monitored terms in the monitoring process) include a number of

additional examples; introduce an additional monitoring strategy, fconc, for finally

concurrent monitoring; and present an extended proof that our eager verification

strategy simulates the λCON calculus presented by Findler & Felleisen (2002).

The paper proceeds as follows: we describe and discuss previous contract ver-

ification variants (Section 2); describe how these variations may be verified by

viewing contract monitors as separate evaluators (Section 3); present a concur-

rent process calculus as a unified system encoding multiple contract verification

strategies (Section 5); encode a number of modern verification strategies in this

framework (Section 6); demonstrate the multi-strategy approach to contract mon-

itoring (Section 7); present a simulation of Findler & Felleisen (2002) as eager

verification (Section 8); and present related works and conclude.

2 Background

\ In the conventional study of software contracts, a language designer extends

a core calculus with monitoring facilities that adhere to a specific monitoring

strategy, describing how contract verification interacts with the user program in

precise semantics. This semantic specification is a permanent fixture of the language,

dictating the behavior of contract verification across the entire program.

While modern contract software verification literature introduces a slew of such

specifications (Ergün et al., 1998; Findler & Felleisen, 2002; Chitil et al., 2003; Hinze

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 3

et al., 2006; Degen et al., 2009; Dimoulas & Felleisen, 2011; Disney et al., 2011;

Chitil, 2012; Dimoulas et al., 2013; Keil & Thiemann, 2015; Moore et al., 2016;

Hickey, 2018), each variation makes distinct decisions about the various trade-offs

for verification, including

• Should we treat contracts as specifications we must verify, ensuring values

adhere to these contracts regardless of their usage in the program?

• Should the user program wait while verification occurs?

• Should the user program have a role in verification (i.e., retrieving contract

results)?

These questions do not have definitive “yes-or-no” answers, but each represent a

gradient of answers has led to a number of semantic specifications for verification

monitors that each take different stances on these questions.

For example, the option contract system presented by Dimoulas et al. (2013)

suggests that we should sometimes treat contracts as specifications we must verify,

waiting while we do, and the user program plays a role in verification by choosing

to postpone or eschew contracts. At the other end of the spectrum, we can eschew

complete verification and removing the user’s role in verification, but still suspend

the program to check contracts, while we get spot-checking systems similar to those

described by Ergün et al. (1998).

To further explore these variations, we introduce a language (similar to the core

calculus presented by Degen et al. (2009) and CPCF presented by Dimoulas &

Felleisen (2011)):

E :=x | V | E E | if E then E else E | E binop E | (E,E) | fst E | snd E

| error | mon E E | pred/c E | pair/c E E

V :=λx. E | n | true | false | unit | (V , V) | pred/c V | pair/c V V

Most of these operations act as expected: we have variables x, values V (including

contracts), lambda abstractions and application, conditional branching, binary

operations, pairs with accessors, and errors (which raise “empty” errors for now,

to simplify presentation—they would normally carry blame information). E also

includes:

• monitoring mon E1 E2, which installs a runtime monitor that verifies the

contract E1 on the expression E2 such that the monitor either returns the

evaluated term (with potentially embedded monitors1) or raises an error;

• the predicate contract combinator pred/c E, where E must be a predicate

function (i.e., returns a Boolean based on a single argument);

• and the pair contract combinator pair/c E1 E2, where E1 and E2 are sub-

contracts to check on the first and second elements of the monitored pair

(respectively).

We may use these combinators to construct new contracts, such as a contract that

verifies its input is a natural number, and, further, use this definition and the pair

1 As we will see, contracts over structures may embed additional monitors in the resultant term that are
enforced as the evaluator explores the structure itself.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

4 C. Swords et al.

contract combinator to define a contract that will verify its input is a pair of natural

numbers:

nat/c := pred/c (λn. n � 0) (1)

nat-pair/c := pair/c nat/c nat/c (2)

Then, we may ask: what does it mean to evaluate mon nat/c 5? What about

mon nat-pair/c (5,−1)? To determine the answer, we must fix a semantic contract

verification strategy, choosing how to answer each of the questions above (and, as

we shall see in Section 2.4, any further questions these answers may raise).

Next, we examine the behavior of five different contract verification strategies,

which each take different positions on these questions. We have selected these five

because they are either well-represented in the literature (in the case of eager, semi-

eager, and promise-based checking), have elegant encodings into our model (which

directly correspond to the ownership flow model identified by Dimoulas & Felleisen

(2011)), or explore a various possible answers to our questions about the nature

of verification. These are not, however, the only possible strategies; we discuss a

number of additional strategies in Section 9.

2.1 Eager verification

Eager contract enforcement for software contracts, first presented by Meyer (1992),

brought into the functional world by Findler & Felleisen (2002), and repeatedly

refined (Ou et al., 2004; Findler & Blume, 2006; Flanagan, 2006; Degen et al.,

2009; Degen et al., 2010; Greenberg et al., 2010; Dimoulas et al., 2011), presents

the idea that contracts are fully-verified specifications, over-evaluating their input to

ensure the contract holds while the user program waits for the verification result.

To demonstrate this behavior, consider eagerly monitoring nat/c:

(λx. 10) (mon nat/c (2 + 3))

→ (λx. 10) (mon nat/c 5)

→ (λx. 10) (if (λn. n � 0) 5 then 5 else error)

→∗ (λx. 10) 5

→ 10

When the evaluator encounters the monitoring form (line 3), the user program

(attempting to apply (λx. 10) to (2 + 3)) is suspended, while the monitor evaluates

its input and verifies the contract. After the monitoring reduction ensures the

contract holds, it yields control back to the user portion of the program with the

monitored value (in this case, 5). If 5 had violated the contract, the monitor would

subvert the user program to raise an error.

This contract enforcement strategy treats contracts as concrete specifications

to fully verify, regardless of the program’s execution trace (e.g., how it uses the

contracted values). For example, consider taking the first element of a nat-pair/

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 5

c-contracted pair:

fst (mon nat-pair/c (5,−1))

→∗ fst (mon nat/c 5,mon nat/c − 1)

→∗ fst (5,mon nat/c − 1)

→∗ fst (5, error)

→∗ error

Enforcing a pair contract with an eager verification strategy immediately and

completely enforces each subcontract. In this case, even though the second element

of the pair (−1) is unused in the program’s result, the contract still detects that it is

not a natural number and signals an error.

As we can see, eager contract verification has a number of drawbacks:

• Treating contracts as fully verified specifications may inhibit verifying prop-

erties on infinite structures. For example, ensuring that each element of an

infinite stream is a natural number will cause the monitor will diverge.

• Suspending the user program, while the monitor proceeds can be computa-

tionally inhibitive. For example, consider

mon prime/c (23763 + 567) (3)

The user program waits while the contract monitor performs this check,

which may bottleneck applications. Similar situations may occur when, e.g.,

ensuring each element of a hash map adheres to a specific property. If eager

verification is the only monitoring strategy available, programmers may find

it too expensive to check many rich properties of their programs.

• Interrupting the user evaluator and over-evaluating inputs may produce differ-

ent program behavior, and may not always preserve the underling program’s

meaning (Owens, 2012). For example, consider the following predicate (meant

to be monitored on a function):

pred/c (λf. (f 5) = 0)

If the function diverges on input 5, but otherwise behaves correctly over the

course of the program, then monitoring this contract will cause divergence in

a program that may have otherwise terminated.

These drawbacks stem from the fundamental assumption of eager contract verifica-

tion: that contracts are concrete specifications that must be totally enforced as the

user program encounters them.

2.2 Semi-eager verification

The over-evaluation in eager verification suggests an immediate alternative: we

may maintain the user program suspension during verification, but postpone each

individual contract’s verification until the program demands the contracted value.

This semi-eager verification strategy, originally presented by Hinze et al. (2006) and

later refined (Findler et al., 2008; Degen et al., 2009; Degen et al., 2010; Dimoulas

& Felleisen, 2011; Chitil, 2012), specifies that only those values the program uses

will have their contracts verified.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

6 C. Swords et al.

To this end, the monitor reduction “boxes up” the contract and the monitored

expression as a value, suspending contract enforcement. When the user evaluator

demands the value (e.g., the boxed expression occurs in evaluation position), the

evaluator suspends the user program and enforces the contract, after which the

program resumes with the monitored value (if the contract holds) or raises an error

(if it does not).

To illustrate this behavior, consider evaluating the previous pair example with

semi-eager monitoring (where we represent contract-expression boxes as 〈contract |
expression〉 and reduction handles these as special forms when they occur in

evaluation positions):

fst (mon nat-pair/c (5,−1))

→∗ fst 〈nat-pair/c | (5,−1)〉
→∗ fst (mon nat/c 5,mon nat/c − 1)

→∗ fst (〈nat/c | 5〉, 〈nat/c | −1〉)
→ 〈nat/c | 5〉
→ 5

This example illustrates the primary behavioral difference from eager verification:

in semi-eager verification, contracts are no longer strict specifications, but any value

the program uses is correctly monitored. Such enforcement may prove invaluable:

we may check only those values we use out of an infinite stream or hash-map,

preserving program behavior, performance, and localized contract verification. Even

so, semi-eager verification has its own drawbacks:

• First, semi-eager enforcement is not faithful to the contract specification (De-

gen et al., 2009): we will not detect errors in unused values, and thus

cannot always trust our contracts as full specifications. This may also lead to

programmer evaluating values, such as taking the unused second element of

the pair, expressly for contract enforcement.

• Second, semi-eager enforcement is not idempotent. Degen et al. (2009) observe

verifying a contract in semi-eager verification may inadvertantly cause other,

pending verifications to be performed on that value. In this situation, an

unused value that violates its contract may raise an error if that contract is

applied a second time.

• Finally, this verification technique still suspends the user evaluator while

verification proceeds, and thus some contracts may still prove too expensive.

As we can see, semi-eager verification is also not a catch-all solution.

A remark on function contracts. Function contracts present a unique problem when

compared to other structural contracts: unlike pairs or larger structures, it is, in

general, impossible to ensure that a procedure behaves correctly for every input (as

they typically work over an infinite input space). To avoid this problem, Findler &

Felleisen (2002) propose an alternative approach to function contracts wherein a

function contract yields a new function, wrapping the input function in pre- and

post-condition checks:

mon (fun/c nat/c nat/c) (λn. n + 5) → λx. mon nat/c ((λn. n + 5) (mon nat/c x))

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 7

This definition suggests that function contracts are natively semi-eager, utilizing

the implicit delaying nature of λ to check values as they flow in and out of the

function (since checking the function’s entire domain and range is, in general,

impossible). Other, more “eager” approaches would entail either probabilistic or

static analysis for verification (Ergün et al., 1998; Xu et al., 2009; Nguyen et al.,

2014). We postpone discussing these alternatives until Section 9 in order to keep

function contracts similar, in nature, to their structural counterparts: each takes

some structure as input and returns the same structure with contracts nested in it.

2.3 Promise-based verification

In order to address the concern of evaluator interruption, Dimoulas et al. (2009)

introduce the notion of Future Contracts, presenting a concurrency model with a user

process and a monitoring process wherein the user process communicates contracts

and expressions to the monitoring process and the monitoring process concurrently

performs contract verification, reporting errors to the user process at pre-determined

synchronization points (Dimoulas et al. (2009) choose effectful operations to perform

this synchronization).

We may utilize a similar approach with inter-process communication and com-

putational promises (Friedman & Wise, 1976), written [〈e〉] where e is the expression

to retrieve the result when the promise is demanded by the user process. During

monitor insertion, the user evaluator communicates the contract and expression to

a concurrent process and resumes its computation, while the concurrent monitor-

ing process proceeds with verification and communicates the result, fulfilling the

computational promise.

For example, consider a program that expects a sorted list, generates a new

encryption key, and then uses that key to encrypt the list. If generating a new

encryption key is computationally intensive, it may be worthwhile to ensure the list

is sorted concurrently2:

User Process Promise Process

let list = mon sorted/c ls

in encrypt (gen-new-key) (retrieve list)

→∗ let list = [〈read ι〉]
in encrypt (gen-new-key) (retrieve list)

if (sorted?) ls

then write ι ls

else write ι error

→∗ encrypt (gen-new-key) (retrieve [〈read ι〉]) →∗ write ι error

→∗ encrypt V (retrieve [〈read ι〉])

→∗ error

2 In a real-world system, we would not write an error across a channel; we take this liberty here for
presentation purposes.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

8 C. Swords et al.

Similar to semi-eager verification, this promise-based verification model forces

promises when they occur in evaluation position and, as a result, only contract

results used in the final program output are communicated to the user evaluator.

Unlike eager and semi-eager verification, the user evaluator is not interrupted

during monitoring, and may proceed with its own computation separate from

contract verification. As Dimoulas et al. (2009) observe, this approach reveals a

potential optimization in multi-processor settings: the user evaluator may proceed

in parallel with the monitoring evaluator, allowing the user evaluator to spend less

time awaiting monitoring results.

The decision to eschew contracts as concrete specifications and remove monitoring

suspensions, unfortunately, has its own potential issues:

• First, promise-based verification falls victim to many of the previous concerns

of semi-eager verification (including lack of idempotence and verification anti-

patterns).

• Second, the user evaluator may end up “wasting cycles” on speculative

computation, performing operations that are unused after a contract signals

an error (or worse, must be rolled back, such as in the case of side effects such

as writing data to a file).

• Third, the cost of communication and promises may dominate program

performance.

• Finally, effectful contracts (e.g., a contract that maintains internal state) no

longer have a guaranteed execution order, and may yield unpredictable results.

As with eager and semi-eager verification before it, we can see that promise-based

verification is also not a perfect-fit solution.

2.4 Concurrent verification

In an attempt to relax and address some of the semantic complexity of the previous

verification approaches, we now consider an alternative, concurrent verification

technique that forgoes reporting the result to the user evaluator. Instead, the

monitoring process enforces the contract concurrently, either completing silently

or detecting and reporting an error (and halting the entire computation). This

concurrent enforcement may proceed as follows:

User Process Monitoring Process

let x = mon nat/c − 1 in (2 + 4) + x

→∗ let x = − 1 in (2 + 4) + x if (λn. n � 0) − 1 then unit else raise

→ (2 + 4) + −1 if − 1 � 0 then unit else raise

→ 6 + −1 if false then unit else raise

→ 5 raise

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 9

This program will either result in 5 or raise an error; which should we expect?

By removing the secondary synchronization point, we expose a further verification

question:

If the user evaluator does not explicitly ask for the contract result, should the

language runtime await it anyway?

Either answer is valid, and each has further implications.

If we do not wait, we get a concurrent, “best-effort” checking system: in the above

example, we may either receive 5 or raise as the final answer, dependent upon process

scheduling. While ultimately weaker than the previous verification techniques, this

best-effort approach may be ideal for enforcing expensive properties (such as

probabilistic primality checking) during a program. This concurrent verification

strategy, however, has its own pitfalls:

• First, concurrent verification may prove too weak to be reliable: a best-effort

approach to verification may inhibit programmers from reliably ensuring

program properties. For example, a probabilistic primality check contract may

not find a counter-example, even if the number is not prime.

• Second, scheduler-dependent results may only detect contract violations on

some program executions.

• Finally, effectful contracts may have unpredictable behavior.

To address the first two issues, we may instrument the language runtime to wait for

these monitoring processes to run to completion before reporting the result of the

user evaluator. This alternative, “finally-concurrent” verification approach recovers

the guarantees lost in concurrent verification by ensuring that every contract we

monitor is fully enforced before the user program terminates. In this above example,

this means the error will be always reported before the user program can yield 5 as

an answer. Even so, this finally concurrent approach has its own issues:

• First, finally concurrent verification yields a similar flavor of over-evaluation

as eager monitoring: enforcing a contract on a stream will never terminate,

and as a result, it is possible to create contract monitoring processes that never

terminate.

• Second, effectful contracts suffer the same problems that concurrent and

promise-based verification exhibit.

3 Unifying variations on verification

Each of the contract verification strategies we have seen have their own strengths

and weaknesses based on how, precisely, each chooses to interpret and answer our

verification questions. In light of these pros and cons, Degen et al. (2009) declare that

“faithfulness is better than laziness” for lazy languages, advocating that concrete

contract assurances are more valuable than any other properties. Conversely, Findler

et al. (2008) identify a number of contracts where semi-eager enforcement is critical

to maintain standard program asymptotics.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

10 C. Swords et al.

Swords et al. (2015) suggest that, for the practical programmer, none of these

strategies is going to fit every use case in a program, and that programmers should

be able to choose their verification strategy on a contract-by-contract basis to

address different needs over the course of a program. For example, a programmer

may wish to check that a tree is a binary-search tree in each of the following ways

in the same program:

• via eager monitoring after initial construction, to ensure that a list-to-tree

procedure produces the correct structure;

• via semi-eager monitoring, to check that each element touched during a binary

tree lookup satisfies the contract while preserving asymptotics;

• via promise-based monitoring, to inspect the tree while the program performs

additional, unrelated operations;

• and via concurrent monitoring, to ensure that a tree read from a file is sorted.

To facilitate this flexibility, we must give programmers a mechanism to select which

strategy they would like at a per-contract basis, and move between them freely. To

this end, we introduce a new check form:

E := ... | check E E E E

As with the mon operator, the check operation takes a contract and an expression

to monitor. In addition to these arguments, check also takes a strategy argument—a

value describing which enforcement strategy the monitor should use:

V := ... | S S := eager | semi | prom | conc | fconc

We may use these strategies in combination with the previously defined contracts

to produce each monitoring behavior. This revised check form also takes a blame

argument b, which we elided for mon. This blame argument is the standard, indy-

style three-tuple (Dimoulas et al., 2011), and thus we elide its precise definition and

further explanation. Blame inversion and dependent-style blame follow directly.

To demonstrate its immediate utility, consider a bst/c contract over binary trees,

parameterized by a strategy indicating how to enforce each recursive check. This

parameterization will allow us to write each of the contracts described above:

• check eager (bst/c eager) tree B will eagerly ensure that a tree is a binary-search

tree;

• check semi (bst/c semi) tree B will return a tree that will check that each

subtree is correctly-ordered as it is explored;

• check prom (bst/c prom) tree B will create a cascading chain of monitoring

processes for each node, and exploring the tree will synchronize with the

appropriate processes at each level;

• check conc (bst/c conc) tree B will concurrently enforce that the tree is a binary-

search tree using a similar set of cascading processes, but as a “best-effort”

check;

• and check fconc (bst/c fconc) tree B will do the same as the conc contract, but

force the program to wait for it to complete before terminating.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 11

These are not the only possibilities, however: the strategy argument to check describes

how the top-level monitor should behave, while the strategy argument to bst/c de-

scribes how each recursive contract (i.e., the contract applied to each child node) be-

haves. This fine-grained control allows us to freely intermix strategies to produce ad-

ditional verification patterns. For example, we may create a single promise-contained

check that eagerly enforces each subcontract as check prom (bst/c eager) tree B.

4 Unifying verification

Our strategy descriptions thus far appear to be specialized semantic forms, each

designed from the ground up to provide unique behavior. On the surface, this

suggests that each strategy requires unique implementation facilities. This perception,

however, is incorrect.

While it may be possible to encode each strategy as a custom, unique entity

as part of a specialized case for check, each of these strategies is, fundamentally,

a small variation on the same theme: a monitoring evaluator subverts the user

program, suspending it (or working concurrently), while it enforces the contract

on the monitored expression. Each strategy variation directly corresponds to how

and when this monitoring evaluator interacts with the user program, and how the

user program proceeds in the context of these interactions. To illustrate this idea,

consider evaluating the expression

5 + check eager nat/c (1 + 2)

First, the user program will evaluate (1 + 2), yielding 3. Next, the monitoring

expression check eager nat/c 3 will suspend the user program, while the monitoring

evaluator ensures that 3 is a natural number. Finally, the monitoring expression

yields 3 and the user evaluator resumes, evaluating 5+3 to 8 as the final result. This

derivation is presented in the top-half of Figure 1, where we have indicated the user

portions of the evaluation in blue and the monitoring portions in red . This value

flow between evaluators is reminiscent the ownership model described by Dimoulas

et al. (2011), where we account for the contract itself as an additional party.

Further, observe that we may separate out the monitoring portion of the program

from the user portion and explicitly model these evaluators and interactions (Disney

et al., 2011; Swords et al., 2015). We can apply this separation to our previous

example, yielding the derivation in the bottom-half of Figure 1, where the user and

monitoring programs explicitly interact to compute the final result.

This revised derivation reveals the fundamental nature of contract monitoring: a

contract monitor is a separate evaluator communicating with the user program. And

now we may vary the pattern of communication to produce our varied contract

enforcement strategies. This explicit account of interactions allows us to explore

the enforcement design space, expressing contract verification strategies in a single,

unified framework using evaluator interactions in order to examine their unique

behavior and interactions in a uniform system.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

12 C. Swords et al.

5 + mon nat/c (1 + 2)

5 + mon nat/c 3

5 + if nat? 3 then 3 else raise

5 + if nat? 3 then 3 else raise

5 + 3

5 + 3

5 + mon nat/c (1 + 2)

5+ seq (write (1+2)) read (λ v. if nat? v then (write v) else (write raise)) read

(λ v. if nat? v then (write v) else (write raise)) read5+ seq (write 3) read

(λ v. if nat? v then (write v) else (write raise)) 3

write 35+ read

5+3

8

Fig. 1. Separating an eager, flat contract into a pattern of communication. (We take nat?

to mean λx. x � 0 to simplify our presentation.) The first image depicts a single evaluator

indicating the different evaluation components of a software contract system, where the user

components are colored blue and the software contract system component is colored red .

The second image depicts performing verification in an explicitly separate evaluator.

5 A calculus for contract monitors

To solidify this notion of monitors-as-communication, we first need a calculus that

will let us reason about multiple evaluators and their interactions. We start with a

calculus based on Concurrent ML (Reppy, 1993; Jeffrey, 1998; Reppy, 1999), given

in Figures 2 and 3, including a term language e with values v and term reduction

“�−→”, and a concurrent reduction relation “⇒,” which extends term reduction to

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 13

Fig. 2. Syntax definitions for λ⇒
/c .

a finite set of interacting processes. This calculus is, in general, unremarkable: as

with most modern programming language, our calculus supports process creation

and communication events, raising and catching errors, and delaying and forcing

individual terms.

Term language. Expressions e include variables, values (including λ-abstractions and

communication channels ι), application, and a number of canonical operations (Pierce,

2002). A full type system, complete with a proof of type soundness, is provided as an

electronic appendix.3 Further, we elide the definition of δ, which is a partial function

that encodes binary and unary operator behavior. We also include the following:

• delay, a delaying construct that produces thunk-like objects (Ingerman, 1961);

• force, which evaluates delayed expressions (and any other term to a value);

• raise and catch, specialized to blame values:

— if raise v occurs without an error handler (i.e., in a D-Context), we discard

the surrounding context;

3 http://cswords.com/jfp17-type-safety.pdf

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

14 C. Swords et al.

Fig. 3. Dynamic semantics for λ⇒
/c .

— if raise v occurs under a handler catch v1 D[raise v], we discard the

intermediate, non-catching D-Context and apply the handler to the error

argument (as v1 v);

— if the evaluation under an error handler terminates with a value v, we

discard the handler and proceed with v.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 15

• and opaque blame values B, which represent blame information such as

positive, contract, and negative positions (following Dimoulas et al. (2011)).

We postpone defining check and our contract combinators until Section 6.

Processes & communication. The concurrent evaluation relation “⇒” extends the

“�−→” relation with a finite set of processes (i.e., terms with associated process iden-

tification numbers) with additional rules to handle the process-level operations for

channel creation (chan), process creation (spawn), and process communication (read,

and write). We define process identification numbers π such that 〈e〉π constitutes a

single process. A process configuration K,T , P has three components:

• K is a set of channel names for the configuration;

• T is a set of process identification numbers π that indicate the termination set

of a configuration, allowing us to define answer configurations:

Definition 5.1 (Answer configuration)

A configuration K,T , P is considered an answer configuration if, for every

π ∈ T , there is a process 〈e〉π ∈ P and e
�−→.

• and P denotes the set of processes in the configuration.

When convenient, we elide K and T from our traces and write P + 〈e〉π to mean

P ∪ {〈e〉π} to simplify presentation. The process reduction rules proceed as:

• [ProcStep] describes internal process reduction, lifting the term evaluation

relation “�−→” to configurations.

• [Spawn] and [FSpawn] describe process creation, which selects a new process

identification number π and create a new process with the provided expression.

The originating process proceed with unit. In the case of [FSpawn], the new

process identification number is also added to T , ensuring the process will

complete before the configuration is an answer configuration.

• [Channel] describes channel creation, where we select a new channel name ι,

add it to K , and continue with it in the process.

• [Synchronize] describes process synchronization, defined in terms of matched

events, where event matching is defined as

e1

ι
�
� e2 with (e′

1, e
′
2)

in Figure 3. If two processes are matched, they may communicate as a

reduction.

In λ⇒
/c , processes are immortal—if a process evaluates to a value v, it will remain in

the process set without further reductions.

6 Contracts as patterns of communication

With our core calculus in place, we may now define contract monitoring strategies in

a single, unified system, expressing each in terms of the language primitives we have

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

16 C. Swords et al.

introduced in λ⇒
/c . To begin, we define three contract combinators, pred/c, pair/c,

and fun/c, to use for our discussion:

pred/c
Δ
= λpred. λval blame. if pred val then val else raise blame (4)

pair/c
Δ
= λcon1 strat1 con2 strat2.

λpair blame. (check con1 strat1 (fst pair) blame,

check con2 strat2 (snd pair) blame)

(5)

fun/c
Δ
= λcon1 strat1 con2 strat2.

λf blame.

λx. check con2 strat2 (f (check con1 strat1 x (invert blame))) blame

(6)

In this encoding, a contract is a procedure that takes a value and a set of blame

information, yielding a term of the same type or raising an error. As before, the

pred/c contract combinator take a predicate and produces a contract that checks

that predicate. Similarly, the pair/c contract combinator takes two contracts and

associated strategies to enforce on each element of a pair (under the respective

strategies), yielding a pair contract. Finally, the fun/c contract combinator takes

two contracts and associated strategies and produces a function contract. When we

check this contract on some function f, the combinator yields a new function (to

“stand in” for the previous function), checking the first contract, or pre-condition, on

each input to this contracted f and checking the second contract, or post-condition,

on each of f’s results (Findler & Felleisen, 2002; Strickland et al., 2012).

With these combinators in place, we turn our attention to the contract monitoring

strategies described in Section 2, providing semantic definitions for each in terms of

λ⇒
/c .

6.1 Eager contract monitoring—interrupting the user evaluator

We begin with eager monitoring, where each contract is completely verified at

assertion time. To model this strategy as a pattern of communication, the initiating

process:

(EU1) creates a new communication channel ι;

(EU2) spawns a monitoring process that will evaluate the contract and communicate

the result across ι;

(EU3) provide the (evaluated) subject value to the monitoring process across ι;

(EU4) and retrieve the result from the monitoring process across ι and handle the

results (as explained below).

Dually, the monitoring process:

(EM1) receives the subject value v across ι;

(EM2) runs contract c on the value with the provided blame information;

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 17

check nat/c eager (2 + 3) b

seq (write i (2 + 3)) (conres (read ι))

seq (write i 5) (conres (read ι)) write i (catch inl (inr (nat/c (read ι) b)))

write i (catch inl (inr (nat/c 5 b)))

write i (catch inl (inr 5))

write ι (inr 5)conres (read ι)

conres (inr 5)

5

Fig. 4. Checking nat/c with eager.

(EM3) next, if the contract returns a value, the monitoring process injects it right

and, similarly, if the contract raises an error, the monitoring process catches

that error and injects it to the left;

(EM4) and writes the injected value across ι to the user process.

This interaction is presented in Figure 4 (with the monitoring process colored red).

These two evaluators synchronize at (EU3, EM1), to communicate the subject value

to the monitoring process, and again at (EU4, EM4), to communicate the verification

result. Because read is blocking, the user process will wait at (EU4) until the monitor

completes. We begin our definition of check by encoding this interaction as eager

verification4

e := · · · | check e e e e

D := · · · | check D e e e | check v D e e | check v v e D

check con eager exp B → let i = chan

in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

(conres (read i))

(7)

4 We use seq to mean λx y. y and let x = e1 in e2 as (λx. e2) e1, and use their extended forms that deal
with additional arguments in the usual way.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

18 C. Swords et al.

Recall that the check language form accepts the contract to check, the strategy to

check it with, the expression to check it on, and blame information. Note, however,

that we do not evaluate the monitored term until after the constructing the correct

monitoring pattern, which allows individual strategies to control (or delay) when to

evaluate the contracted term (such as in the case of semi monitoring).

The conres helper interprets the monitor result in the user process (as indicated

in EM4):

conres
Δ
= λx. case (x; inl y � raise y; inr z � z) (8)

If the value is left-injected (indicating a contract violation), we re-raise the error in

the process expecting the contract result, and, similarly, if the value is right-injected

(indicating that check did not raise an error), we return it to the process.5

To demonstrate this monitoring structure, consider the program in Figure 4,

which checks that (2 + 3) is a natural number. The monitor creates a process,

communicates the evaluated version of the term, and retrieves the results. If the

monitored expression had been −1 instead, the user process would instead terminate

with an error.

⇒∗ {〈(conres (read ι))〉π0
, 〈write ι (catch inl (inl (nat/c − 1 B)))〉π1

}

⇒∗ {〈(conres (read ι))〉π0
, 〈write ι (catch inl (raise B))〉π1

}

⇒∗ {〈(conres (read ι))〉π0
, 〈write ι (inl B)〉π1

⇒∗ {〈(conres (inl B))〉π0
, 〈unit〉π1

}

⇒∗ {〈raise B〉π0
, 〈unit〉π1

}

Pair and function contracts. Recall that eager monitors may “over-explore” their

input, detecting and signaling contract violations for values that are unused in

the user program. In faithfully recreating eager monitoring, we have preserved this

property. For example, we may define and verify an eager variation of nat-pair/c

from Section 2 as:

nat-pair/ceager
Δ
= pair/c nat/c eager nat/c eager (9)

fst (check nat-pair/ceager eager (5,−1) B)

A partial trace is given in Figure 5. This interaction results with an error in

the user process (π0) because −1 is not a natural number. Notice that there are

three monitoring evaluators in this derivation: the monitoring evaluator checking

nat-pair/ceager (π1), the evaluator checking nat/c on the first element of the pair

(π2), and the evaluator checking nat/c on the second element of the pair (π3). This

separation and interaction mirrors our previous description of eager checking: at

5 If, for some reason, a monitor causes a secondary error to occur, such as by violating a different
contract as part of its verification, the check/conres mechanism will also ensure this error is properly
propagated to the initiating evaluator. Our pair contract example utilizes this behavior to propagate
subcontract errors, too.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 19

fst (check nat-pair/ceager eager (5, -1) B) π0}
⇒∗ fst (conres (read ι)) π0

, write ι (catch inl (inr (nat-pair/ceager (5, -1) B))) π1}
⇒∗ fst (conres (read ι)) π0

, write ι (catch inl (inr (check nat/c eager (fst (5, -1)) B
,check nat/c eager (snd (5, -1)) B)

)) π1

⇒∗ fst (conres (read ι)) π0 , write ι (catch inl (inr (5,raise B))) π1 , unit π2 , unit π3}
⇒∗ fst (conres (read ι)) π0 , write ι (inl B) π1 , unit π2 , unit π3}
⇒∗ fst (conres (inl B)) π0 , unit π1 , unit π2 , unit π3}

Fig. 5. Enforcing nat-pair/ceager on the pair (5,−1).

(check nat-fun/ceager eager (λ x. 1) B) 5 π0}
⇒∗ (λ x. check nat/c eager (λ x. 1) (check nat/c eager x (invert B)) B) 5 π0

, unit π1}
⇒∗ check nat/c eager B π0}
⇒∗ seq (write ι ((λ x. 1) (check nat/c eager 5 (invert B)))) (conres (read ι)) π0

, write ι (catch inl (inr (nat/c (read ι) B))) π2}
⇒∗ seq (write ι ((λ x. 1) (conres (read ι)))) (conres (read ι)) π0

, write ι (catch inl (inr (nat/c (read ι) B))) π2

, write ι (catch inl (inr (nat/c 5 (invert B)))) π3}
⇒∗ seq (write ι ((λ x. 1) 5)) (conres (read ι)) π0

, write ι (catch inl (inr (nat/c (read ι) B))) π2}
⇒∗ seq (write ι 1) (conres (read ι)) π0

, write ι (catch inl (inr (nat/c (read ι) B))) π2}
⇒∗ 1 π0 , unit π1 , unit π2 , unit π3}

Fig. 6. Enforcing nat-fun/ceager on the function (λx. x) with input 5, eliding process of the

form 〈unit〉π except in the last step.

each level, the initiating evaluator writes a value across a channel and awaits the

monitoring evaluator’s result.

Function contracts proceed similarly, but without the nesting monitors, illustrating

one of the main revisions over the work presented by Swords et al. (2015): while

their work directly embeds each monitored term in the monitoring process, this

reformulation explicitly evaluates the monitored term in the user process before it

is given to the monitor. For example, consider monitoring the following function

contract on λx. 1:

nat-fun/ceager
Δ
= fun/c nat/c eager nat/c eager (10)

We present a trace of its usage in Figure 6. As evaluation proceeds, the term

((λx. 1) (check nat/c eager 5 (invert B)))

occurs in the user process, triggering the pre-condition check while the post-condition

check awaits the function result. After the pre-condition is complete, the user

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

20 C. Swords et al.

evaluator performs the actual function application ((λx. 1) 5), reflecting the value

flow in Figure 1.

Even so, these last two examples illustrate the over-eager nature of eager veri-

fication: while we did not inspect the second element of the pair (5,−1) and the

function λx. 1 did not use its argument, we still checked that each was a natural

number. We can see, now, that the fundamental problem is preemption: eager

evaluation explicitly suspends the initiating evaluator while verifying the contract,

only resuming the initiating evaluator once it is complete. As a result, the overall

computation performance is ultimately tied to contract performance, and to alleviate

this situation, we merely need to vary the pattern of communication between these

evaluators.

6.2 Semi-eager contract monitoring—postponing contract verification

Following the order in Section 2, we next encode semi-eager monitoring, indicated

with the semi strategy. Recall that, in semi-eager verification, the monitor must

suspend enforcement until the user evaluator demands the result, which we previously

described as “boxing up” the contract and value. To model this monitoring strategy

as patterns of communication, the initiating process:

(SU1) creates a delayed expression d and returns it to the user.

When the delayed expression is forced, the forcing process (not necessarily the

initiating process):

(SU2) creates a new communication channel ι;

(SU3) spawns a monitoring process to evaluate the contract and communicate the

result across ι;

(SU4) provide the (evaluated) subject value to the monitoring process across ι;

(SU5) and retrieve the result across ι and handle the results (via conres).

Dually, the monitoring process:

(SM1) receives the subject value v across ι;

(SM2) runs contract c on the value with the provided blame information;

(SM3) injects the result appropriately;

(SM4) and writes the injected value across ι to the user process.

This pattern of interaction is almost identical to eager verification, synchronizing

at process states (SU4, SM1) and (SU5, SM4): the only difference is that this entire

computation is captured in a delayed expression (at SU1), giving the initiating

evaluator freedom to invoke (or ignore) the verification, as it chooses. This interaction

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 21

let x = check nat/c semi (2 + 3) B
in (f 5) + (force x)

let x = delay ...
in (f 5) + (force x)

(f 5) + (force (delay ...))

120 + (force (delay ...))

120 + (seq (write i (2 + 3)) (conres (read ι)))

120 + (seq (write i 5) (conres (read ι))) write i (catch inr (inl (nat/c (read ι) B)))

write i (catch inr (inl (nat/c 5 B)))

write i (catch inr (inl 5))

write ι (inl 5)120 + (conres (read ι))

120 + (conres (inl 5))

120 + 5

125

Fig. 7. Checking nat/c with semi. The monitoring process is not created until the initiating

evaluator forces the check result. The monitoring process is colored red .

is presented in Figure 7 (with). We extend our definition of check with this encoding:

check con semi exp B → delay

(let i = chan

in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

(conres (read i)))

(11)

This implementation directly corresponds to the eager implementation in

Equation (7), except the entire verification expression is delayed (highlighted in

yellow to show its addition), packaging up the verification computation until an

evaluator forces it. For example, we may semi-eagerly verify that (2 + 3) is a

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

22 C. Swords et al.

natural number. We sketch this verification Figure 7: when we force the delayed

cell, the evaluator creates a new process, performs the contract verification, and

continues the program with the result, yielding 125.

For structural contracts, this system of delaying and forcing contracts gives

programmers immense control over which parts of the structure are monitored. For

example, a semi-eager pair contract that ensures each element is a natural number

may forgo checking unused parts of the pair:6

{〈force (fst (force (check nat-pair/csemi semi (5,−1))))〉π0
}

⇒∗ {〈force (fst (delay ...“check nat/c on 5”... , delay ...“check nat/c on −1”...))〉π0
, ...}

⇒∗ {〈force (delay ...check nat/c on 5...)〉π0
, 〈unit〉π1

}

⇒∗ {〈5〉π0
, 〈unit〉π1

, 〈unit〉π2
}

Since the user evaluator never forces the second nat/c contract (that would have

checked if −1 is a natural number), the program completes without enforcing the

contract. In general, semi-eager verification allows users to verify precisely those

values they require.

On the use of delay and force. In semi (and prom, below) monitoring, we use delay

to produce delayed expressions as values that the user must explicitly force. We

take this as a necessary evil to facilitate our discussion: some verification strategies

require fine-grained delaying and forcing behavior in call-by-value calculi to correctly

recreate less-eager evaluation mechanisms. We elect to do this with explicit delay

and force operations in our presentation in order to explicitly clarify the nature of

the evaluator interactions for these strategies, allowing force to propagate across

our user programs. We tolerate this intrusion in our presentation to better explain

the nature of these synchronizing monitors in order that the working semanticist

may directly compare how and when the user evaluator interacts with them. In a

programming language intended for everyday use, however, this forcing mechanism

may clutter the program and inconvenience the programmer. As such, we suggest

that they should be concealed in a language implementation, using implicit forcing at

evaluation sites (and some transparent structure, such as, e.g., chaperones (Strickland

et al., 2012) for delaying structure) to remove this complexity.

6.3 Promise-based contract monitoring—concurrent checking with synchronization

Our next contract verification strategy is promise-based verification, indicated by

prom, which returns a promise to the initiating evaluator while verification proceeds

concurrently. Unlike the box-driven description in Section 2, we utilize delay (and

read’s blocking nature) to provide promise-like behavior in verification results: when

the initiating process forces the promise, it will block until the verification is complete

(if the verification has previously finished, the initiating process will receive this result

6 The nat-pair/csemi contract is similar to nat-pair/ceager , replacing eager with semi.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 23

immediately). To model this strategy via patterns of communication, the initiating

process:

(PU1) creates a new communication channel ι;

(PU2) spawns a monitoring process that will evaluate the contract;

(PU3) provides the (evaluated) subject value to the monitoring process across ι;

(PU4) and finally, returns delay (conres (read ι)) as our “promise.”

Dually, the monitoring process:

(PM1) receives the subject value v across ι;

(PM2) runs contract c on the value with the provided blame information;

(PM3) injects the result appropriately;

(PM4) and writes the injected value across ι to the user process.

These two evaluators synchronize twice: first at (PU3, PM1), and later at (PM4) when

the user process forces the delayed expression created in (PU4). The forced expression

will perform a blocking read across ι, receiving the contract result via conres. This

interaction is presented in Figure 8, and we extend check to support prom as:

check con prom exp B → let i = chan

in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

(delay (conres (read i))))

(12)

As with semi, this implementation directly corresponds to the eager implementation

in Equation (7), aside from the addition of delay to delay reading the result. This

should be unsurprising: the variation between eager and promise-based contract

monitoring is precisely when the initiating evaluator receives the answer, allowing

programmers to perform secondary computations while monitoring continues con-

currently. An example of this enforcement interaction is given in Figure 8. Moreover,

if these concurrent processes are run in parallel, the prom strategy allows contract

verification to happen while speculatively performing additional computation.

In both semi and prom verification, the initiating process is given precise control

over how to retrieve the contract result, using the same mechanism in both places.

Note, however, that this equivalence assumes that the monitored term and contract

are both pure; if either is not, semi and prom would no longer be interchangeable.

6.4 Concurrent contract monitoring—complete evaluator decoupling

Our next strategy, conc, eschews having a process retrieve the monitor result to

provide concurrent contract verification. Instead, the monitoring evaluator proceeds

concurrently without reporting its result. Modeled as patterns of communication,

the initiating process:

(AU1) creates a new communication channel ι;

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

24 C. Swords et al.

let x = check nat/c prom (2 + 3) B
in (f 5) + (force x)

let x = seq (write i (2 + 3)) (delay ...)
in (f 5) + (force x)

let x = seq (write i 5) (delay ...)
in (f 5) + (force x)

let x = delay (conres (read ι))
in (f 5) + (force x)

(f 5) + (force (delay (conres (read ι))))

120 + (force (delay (conres (read ι))))

120 + (conres (read ι))

120 + (conres (inr 5))

120 + 5

125

write i (catch inl (inr (nat/c (read ι) B)))

write i (catch inl (inr (nat/c 5 B)))

write i (catch inl (inr 5))

write ι (inr 5)

Fig. 8. Checking nat/c with prom. The monitoring process does not communicate its final

result until the initiating evaluator forces the check result. The expression (f 5) is a stand-in

for additional computation in the initiation process before synchronization. The monitoring

process is colored red .

(AU2) spawns a monitoring process that will evaluate the contract;

(AU3) provides the (evaluated) subject value to the monitoring process across ι;

(AU4) and continues with the evaluated subject value.

Dually, the monitoring process:

(AM1) receives the subject value v across ι;

(AM2) and runs the contract c on the value with the provided blame information.

These two evaluators synchronize once, at (AU3, AM1), to communicate the subject

value. This interaction is presented in Figure 9 (with the monitoring process colored

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 25

5 + check nat/c -1 B

5 + (seq (write ι -1) -1)

5 + -1

4

nat/c (read ι) B

nat/c -1 B

raise B

Fig. 9. Checking nat/c with conc. The monitoring process continues concurrently while the

initiating process computes the result.

red). We extend check with this encoding of conc:

check con conc exp B → let i = chan

in seq (spawn (con (read i) B))

(let x = exp in seq (write i x) x)

(13)

Using our previous definition of answer configurations, we see that conc contracts

represent contracts that may not finish; if the contract is still running when π0

terminates, its result is ignored. For example, consider concurrently enforcing nat/c

on −1:

{〈5 + (check nat/c conc − 1 B〉π0
} ⇒∗{〈4〉π0

, 〈... check in progress ...〉π1
} or

{〈4〉π0
, 〈raise B〉π1

}
(14)

Our ⇒ relation is nondeterministic, and thus this monitor may or may not complete

before the initiating evaluator, resulting in “best-effort” checking.

For structural and functional contracts, this approach will yield numerous, nonde-

terministic processes, meaning errors may be reported non-deterministically if there

are multiple contract violations. This has the downside of so-called “heisenbug”-

style errors, but the upside is that programmers may utilize concurrent behavior

for weak, long-lived contracts. It is also imaginable that these violations may be

reported as “warnings” to the programmer instead, indicating problematic values

without bringing the program to a halt.

As a further example of nondeterministic enforcement, consider this function

contract enforcement:

{〈(check (fun/c nat/c conc nat/c conc) eager (λx. x + 1) B) 5〉π0
}

⇒∗{〈(λx. check nat/c conc ((λx. x + 1) (check nat/c conc x (invert B))) B) 5〉π0

, 〈unit〉π1
}

⇒∗{〈check nat/c conc ((λx. x + 1) (check nat/c conc 5 (invert B))) B〉π0

, 〈unit〉π1

, 〈nat/c 5 (invert B))〉π2
}

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

26 C. Swords et al.

⇒∗{〈check nat/c conc ((λx. x + 1) 5) B〉π0
, 〈unit〉π1

, 〈nat/c 5 (invert B))〉π2
}

⇒∗{〈check nat/c conc 6 B〉π0
, 〈unit〉π1

, 〈5〉π2
}

⇒∗{〈6〉π0
, 〈unit〉π1

, 〈5〉π2
, 〈nat/c 6 B)〉π3

}

This enforcement has a few oddities:

1. We call the top-level check with eager: if we had used conc, the function contract

combinator would have produced the monitored procedure in the monitoring

process, and the user program would have proceeded with λx. x + 1. It is

conceivable that checking a function contract with conc may perform some sort

of enumerative analysis, run concurrently, checking the function against inputs

for the remainder of the program’s run. This approach, however, has a number

of drawbacks, including input-based dispatched to determine if the value is a

procedure (via, e.g., Racket’s procedure? operation (Flatt & PLT, 2010)),

introducing non-uniform strategy behavior. Clojure’s core.spec (Hickey,

2018) adopts a similar approach for higher-order function contracts, where

higher order function inputs are randomly checked with sampled values to

ensure they conform to the specification. We encode this strategy in the

Section 9.

2. The user process π0 proceeds without regard for the pre- or post-condition

enforcement, while this may not be the case, based on scheduling, it further

illustrates the “best-effort” nature of concurrent verification.

As previously discussed, this verification technique may often be “too weak” for

many properties that a programmer must rely on.

6.5 Finally-concurrent contract monitoring—verification without synchronization

In order to provide programmers with “start and forget” verification with stronger

guarantees, we introduce fconc verification. Similar to conc verification, fconc

monitoring processes elides secondary synchronization with the initiating process.

Unlike conc, however, we ensure the monitor completes before the configuration is

considered “done.” To this end, we us the spawn variant fspawn, which creates a

new process and adds its process identification number to a list of final processes

T , ensuring any answer configuration includes its full evaluation. With this system

in place, the initiating fconc process:

(AU1) creates a new communication channel ι;

(AU2) spawns a final monitoring process that will evaluate the contract;

(AU3) provides the (evaluated) subject value to the monitoring process across ι;

(AU4) and continues with the evaluated subject value.

Dually, the final monitoring process:

(AM1) receives the subject value v across ι;

(AM2) and runs the contract c on the value with the provided blame information.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 27

5 + check nat/c -1 B

5 + (seq (write ι -1) -1)

5 + -1

4

nat/c (read ι) B

nat/c -1 B

raise B

Fig. 10. Checking nat/c with fconc. The initiating and monitoring processes each proceed

concurrently, and the green box indicate an answer configuration.

This interaction is presented in Figure 10 (with the monitoring process colored red),

which is nearly identical to Figure 9, with the addition of the answer configuration

in green . The only difference between fconc and conc is this notion of process

finality, and thus its implementation simply exchanges spawn for fspawn:

check con fconc exp B → let i = chan

in seq (fspawn (con (read i) B))

(let x = exp in seq (write i x) x)

(15)

When we use fconc to assert a contract, we may now trust that the contract will

run to completion before the program enters an answer configuration:

∅, {π0};{〈(check nat/c fconc − 1 B) + (check nat/c fconc 3 B)〉π0
}

⇒∗ {ι}, {π0, π1, π2};{〈−1 + 3〉π0
, 〈nat/c − 1 B〉π1

, 〈nat/c 3 B〉π2
}

⇒∗ {ι}, {π0, π1};{〈8〉π0
{〈raise B〉π1

, 〈nat/c 3 B〉π2
}

⇒∗ {ι}, {π0, π1};{〈8〉π0
{〈raise B〉π1

, 〈3〉π2
}

Even though one contract raised an error, we must still wait for each fconc contract to

complete before termination. This “start and forget” contract verification technique

exposes a new avenue for verification: programmers can, e.g., read in a file and

speculatively start examining and using the input while being sure that, before the

program is done, they will know the data is correct.

7 Multi-strategy contracts

Beyond choosing which strategy to use for each contract, programmers may also

freely intermix strategies in λ⇒
/c , yielding flexibility and utility beyond traditional con-

tract systems. First, we summarize our strategies so far, giving their implementations

together in Figure 11.

7.1 A flexible binary-search tree contract

Our first example is our strategy-parameterized binary tree contract from Section 3.

While it is possible to construct this contract in λ⇒
/c , we take some liberties here for

simplicity of presentation, namely

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

28 C. Swords et al.

check con eager exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))
(write i exp)
(conres (read i))

check con semi exp B → delay
(let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))
(write i exp)
(conres (read i)))

check con prom exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))
(write i exp)
(delay (conres (read i))))

check con conc exp B → let i = chan
in seq (spawn (con (read i) B))

(let x = exp in seq (write i x) x)

check con fconc exp B → let i = chan
in seq (fspawn (con (read i) B))

(let x = exp in seq (write i x) x)

Fig. 11. The aggregate contract verification strategies presented in Section 6.

• We assume we may directly match on trees with named constructors:

case (t; leaf� e1; node val tleft tright � e2)

(otherwise, we would have to define a binary tree as a sum type);

• and we assume a fixpoint operator μ as

(μf x.e) v → e[μf x.e/f][v/x]

Recall from Section 3 that our binary-search tree contract should act as follows:

• check eager (bst/c eager) tree B will eagerly ensure its input is a binary-search

tree;

• check semi (bst/c semi) tree B will return a tree that will check that each node

is correctly-ordered as it is explored;

• check prom (bst/c prom) tree B will create a cascading chain of monitoring

processes for each node, and exploring the tree will synchronize with the

appropriate processes at each level;

• and check conc (bst/c conc) tree B will concurrently enforce that the tree is a

binary-search tree using a similar set of cascading processes.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 29

• and check fconc (bst/c fconc) tree B will do the same as the conc contract, but

force the program to wait for it to complete before terminating.

To define bst/c, we must check that each value in the left sub-tree is less than (or

equal to) the node’s value and each value in the right sub-tree is greater (or equal

to) than the node’s value. To do this, we must propagate node values downward

through subcontracts. This requires a dependent tree contract, wherein each sub-

contract is given the current node’s value as an input before enforcement. We define

this combinator, tree/dc, as:

tree/dc := λ cleaf sleaf cnode snode cleft cright srec. (16)

λtree b.

casetree (tree;

leaf �check cleaf sleaf leaf b;

node v tl tr �node (check cnode snode v b)

(check (cleft v) srec tl b)

(check (cright v) srec tr b))

This combinator takes seven arguments7

1. cleaf is a contract for leaf nodes ;

2. sleaf is the strategy describing how to enforce cleaf;

3. cnode is a contract for internal tree values;

4. snode is the strategy describing how to enforce cnode;

5. cleft and cright are two procedures that expect a node value as input and yield

the appropriate contracts for the left and right sub-trees (respectively);

6. and srec is the strategy describing how to recursively enforce the resultant

contract on the left and right subtrees.

We can use this dependent contract combinator to define bst/c as8:

any/c := pred/c (λx. true) (17)

bst/c := λs. μ bst/c s lo hi. (18)

tree/dc any/c eager

(pred/c (λx. (lo � x) && (x � hi))) eager

(λv. bst/c s lo v) (λv. bst/c s v hi) s

This contract ensures that each leaf of the tree is any value and each internal value

in the tree is within the correct numeric bounds. As bst/c eager, this contract must

traverse the entire tree to enforce this constraint, requiring O(n) time (whereas a

insertion algorithm would require O(log n) time in a sorted tree). We can forgo such

a strong guarantee, however, and use bst/c semi to enforce the invariant on exactly

the nodes we visit during the program, recovering O(log n) complexity for insertion.

7 Other variants of this contract include one that uses a single strategy at every contract, and one
that uses the same strategy for the node’s value and subtrees. These alternatives, however, trade
expressiveness for programmatic ease.

8 We could also ensure the tree’s values are int? by adding it to the value contract conjunction.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

30 C. Swords et al.

Furthermore, we can completely decouple the evaluation via bst/c prom, starting the

entire assertion in concurrent processes and only synchronizing with (and waiting on)

those nodes required by the program, perform best-effort verification with bst/c conc,

and even use fconc for finally concurrent, start-and-forget verification. Further, we

can check bst/c eager under prom, constructing a promise that will concurrently

enforce the entire contract. And each of these different variations sprout forth from

the same definition of bst/c. Even further, we may define a secondary version of

bst/c, called call bst/cs, which takes an additional strategy s2 to use for node value

contract enforcement, allowing us to control exactly when to verify each value in

addition to the general recursive verification scheme:

bst/cs := μ bst/cs s1 s2 lo hi. (19)

tree/dc any/c eager

(pred/c (λx. (lo � x) && (x � hi))) s2
(λv. bst/cs s1 s2 lo v) (λv. bst/cs s1 s2 v hi) s1

In this definition, we use s2 to enforce the node predicate at each level.

7.2 A lazy tree fullness contract

Our second example tackles the problem of lazily ensuring that a binary tree is full

(that is, each node’s subtrees have the same height). Findler et al. (2008) identify

such checks as requiring upward value propagation through monitored structures,

which is generally impossible with structural contracts. To illustrate this problem,

we define the predicate full? and use it to create a predicate contract:

full? := let f = μ full tree .

casetree (tree;

leaf �0;

node v tl tr �let hl = full tl

hr = full tr

in if (hr = hl) && (hl � 0) && (hr � 0)

then 1 + hl

else − 1

in λt. 0 � (f t)

(20)

full/c := pred/c full? (21)

In general, we must traverse an entire tree to know if it is full: each node must first

inspect its children, using the recursive results to determine if it is full, propagating

heights upward to ensure the property. This style of value propagation through

monitored structures generally inhibits semi-eager enforcement: if we enforce full/c

using semi on a tree t, the monitor will traverse the entire tree when forced.

Alternatively, we can adopt the side-channel style of contract definition presented

by Swords et al. (2015), which allow multiple contracts to collaborate to ensure

global properties. Using the conc strategy and communication, we may postpone

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 31

checking any contract until its subcontracts are complete by having each contract

communicate with its subcontracts. While complex in concept, the only additional

facility we require is a choice-based reading operation (to allow us to communicate

with multiple subcontracts at once).

This choice operator is a straightforward addition to λ⇒
/c: we extend the “matches”

relation from Figure 3 to support choice as:

e1

ι
�
� e2 with (e′

1, e
′
2)

e1

ι
�
� choice e2 e3 with (e′

1, e
′
2)

e1

ι
�
� e3 with (e′

1, e
′
3)

e1

ι
�
� choice e2 e3 with (e′

1, e
′
3)

The [Synchronize] operation in Figure 3, in conjunction with this extended

definition, allow us to perform choice-based communication via choice. We may

now use this operation and a dependent tree contract with this “callback”-style

communication to create a semi-eager fullness contract, given as

full/fc := μfull i . (22)

let il = chan

ir = chan

in tree/dc (pred/c (λ . seq (write i 0) true)) eager

(pred/c (λ . let h1 = choice (read il) (read ir)

h1 = choice (read il) (read ir)

in if h1 = h2

then (seq (write i (1 + h1)) true)

else false))

conc

(λ . full il)

(λ . full ir)

semi))

Each contract invocation is parameterized by a communication channel i, indicating

where to write the current node’s height. At leaf nodes, the contract writes 0 to i

and succeeds. At internal nodes, we pass two fresh channels, il and ir to the left and

right subtrees respectively. Next, we assert (full il) and (full ir) on the appropriate

subtrees, utilizing the dependent contract to delay these invocations until usage time

(to prevent divergence). Each of these subcontracts are monitored with semi and

thus will not be verified until the initiating process demands these subtrees. Finally,

the node value contract, monitored with conc, retrieves its subtree heights across

il and ir . If these two heights are equal, the contract writes the appropriate height

across i and succeeds (triggering its parent’s fullness test); if not, the contract signals

a violation.

This communication pattern allows each contract to propagate values via side-

channel communication, working together to lazily establish global properties

about programs. Such a contract is only possible after full separation of the

monitor evaluator from the user evaluator and exposing communication tools to

contract writers, facilitating contract verification in a custom-crafted traversal of the

monitored structure.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

32 C. Swords et al.

Findler and Felleisen, 2002

c = λ x. c | c c | x | if c then c else c | true | false | n | c op c
| c c | contract(c) | blame(c) | cc,x,x

C = | C c | V C | C op c | V op C | if C then c else c
| C c | contract(C) | blame(C) | cC,x,x | CV,x,x

V = λ x. c | n | true | false | V V | contract(V) | VV V,x,x

C[V contract(V2),p,n
1] −→C[if V2 V1 then V1 else blame(p)]

C[(VV3 V3,p,n
1) V2] −→C[(V1 VV3,n,p

2)V4,p,n]

C[e] −→C[e] (if e e)

λ x. c V c[x/V]

if true then c1 else c2 c1

if false then c1 else c2 c2

n1 + n2 n1 +n2

n1 ≤ n2 true (if n1 ≤ n2)

n1 ≤ n2 false (if n1 n2)...

Fig. 12. A subset of the λCON language from Findler & Felleisen (2002). We have renamed

their E to C and e to c to avoid ambiguity.

Effectful tree fullness. Unsurprisingly, this is not the only solution to lazily ensuring

tree fullness. Utilizing effectful contracts, we can imagine a dependent contract that

keeps track of its recursion depth and, in each leaf node, reports this depth to a

secondary process. This secondary process will then raise a contract violation if it

ever received two disagreeing depths, indicating the tree is not full. This style of

effectful contract verification allows programmers to check global properties with

less overhead.

8 Embedding Findler & Felleisen (2002) into λ⇒
/c

We set out to provide a unifying framework for contract semantics, a sort of

“assembly language” target for recreating, understanding, and comparing contract

strategies. To demonstrate our accomplishment, we now prove that eager in λ⇒
/c

simulates the eager contract verification semantics presented by Findler & Felleisen

(2002), up to alpha-equivalence and unit elimination. This proof is, in a sense,

straightforward: our work follows Findler & Felleisen (2002) to recreate eager

verification in λ⇒
/c in terms of interacting evaluators, and thus our proof is primarily

concerned with extracting and recovering the individual evaluators for contract

monitoring, separating the user portions of the program from the monitoring ones.

We start with the core language λCON presented by Findler & Felleisen (2002),

given in Figure 12. This λCON definition elides a handful of forms from the version

presented by Findler & Felleisen (2002), including list and fixpoint operations (since

neither are relevant to the discussion) and, more importantly, their outer val rec

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 33

form, defined as follows (with appropriate evaluation contexts to match, which

evaluate the bindings before the body):

p = d · · · c
d = val rec x : c = c

Here, each binding has two values associated as x : V1 = V2, where the first represents

a contract on the second. Findler & Felleisen (2002) install these contracts on each

occurrence of x in the program via their I operator (given in Figure 14 of their

technical report) such that, if x is bound as val rec x : e1 = e2, then each usage site

of x is rewritten as xe1 ,x,n to enforce the contract e1 (where x indicates the positive

blame party, which is the binding itself, and n represents the negative blame party,

which is defined by the variable’s context). Findler & Felleisen (2002) provide

this machinery to more closely match the module interaction system and blame

coordination in Racket, which is unnecessary for demonstrating that their individual

monitors proceed via eager verification. As such, our simulation assumes that each

clause in the outer val rec form has been completely evaluated and substituted in,

eschewing p and d syntax forms (and their associated evaluation contexts).

Our simulation works via three translation relations from λCON to λ⇒
/c , defined as

“�”, “→→e”, and “→→v” in Figures 13 and 14. This translation relies on one additional

modification to λCON: Findler & Felleisen (2002) use their language’s if operation

to perform predicate contract verification, and we must be able to identify when

such an expression is a contract verification expression (as opposed to a conditional

expression in the user program portion) so that we can extract it into a separate

process. In order to distinguish between conditionals that are part of contract

verification (e.g., if contract value then value else error) from other if expressions, we

“recolor” the if expressions to indicate their origin:

• We color each if expression that originates in the user program with ◦,

indicating it is part of the user program.

• We modify → in λCON to produce if• forms as:

C[V contract(V2),p,n] −→ C[if• V2 (V) then V else blame(p)]

Evaluation for both if◦ c then c else c and if• c then c else c otherwise proceed as

if c then c else c in λCON , and now our translation can determine which if expressions

are part of contract enforcement in order to correctly translate them into λ⇒
/c .

The � operator relates a term c with an expression e, a set of new channels K ,

and a set of processes P , where the translated expression is meant to fill process π0.

The additional →→e and →→v helper relations translate terms and values in λCON into

equivalent term-level expressions in λ⇒
/c , respectively.

The intuition is that � acts as the main translator, focusing in on the next redex

of the program, while →→e evaluates each unevaluated portion of the program (i.e., c

occurrences in context C) and →→v translates each evaluated portion of the term (i.e.,

V occurrences in context C). Next, we define a series of lemmas and finally prove

our simulation result:

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

34 C. Swords et al.

Embedding Translation

c (K, P, e)

true (/0, /0, true) false (/0, /0, false) n (/0, /0, n)

x (/0, /0, x)
c →→e e

λ x. c (/0, /0, λ x. e)

c1 ∈V c1 →→v e1 c2 (K, P, e2)
c1 c2 (K, P, e1 e2)

c1 /∈V c1 (K, P, e1) c2 →→e e2

c1 c2 (K, P, e1 e2)

c1 ∈V c1 →→v e1 c2 (K, P, e2)
c1 op c2 (K, P, e1 op e2)

c1 /∈V c1 (K, P, e1) c2 →→e e2

c1 op c2 (K, P, e1 op e2)

c1 (K, P, e1) c2 →→e e2 c3 →→e e3

if◦ c1 then c2 else c3 (K, P, if e1 then e2 else e3)

c1 (K, P, e1) c2 →→e e2 c3 →→e e3
f resh ι f resh π p = write ι (catch inl (inr (if e1 then e2 else e3))) π

if• c1 then c2 else c3 ({ι K, {p P, conres (read ι))

c1 ∈V c1 →→v e1 c2 (K, P, e2) f resh f f resh b f resh x
(c1 c2) (K, P, λ f b. λ x. check e2 eager (f (check e1 eager x (invert b))) b)

c1 /∈V c1 (K, P, e1) c2 →→e e2 f resh f f resh b f resh x
(c1 c2) (K, P, λ f b. λ x. check e2 eager (f (check e1 eager x (invert b))) b)

c (K, P, e) f resh x f resh b
contract(c) (K, P, λ x b. if e x then x else raise b)

c (K, P, e) B ≈ e
blame(c) (K, P, raise B)

c1 /∈V c2 /∈V c1 →→e e1 c2 (K, P, e) B ≈ (p,n)
cc2,p,n

1 (K, P, check e2 eager e1 B)

c1 /∈V c2 ∈V c1 (K, P, e1) c2 →→v e2 B ≈ (p,n)
f resh ι f resh π p = write ι (catch inl (inr (e2 (read ι) B))) π

cc2,p,n
1 ({ι K, {p P, seq (write ι e1) (conres (read ι)))

c1 ∈V c2 ∈V c1 →→v e1 contract(c2) →→v e2 B ≈ (p,n)
f resh ι f resh π p = write ι (catch inl (inr (e2 e1 B))) π

ccontract(c2),p,n
1 ({ι}, {p}, conres (read ι))

c1 ∈V c2 ∈V c3 ∈V c1 →→v e1 c2 →→v e2 c3 →→v e3
f resh ι f resh π f resh x B ≈ (p,n)

cc2 c3,p,n
1 (/0, /0, λ x. check c3 eager (e1 (check c2 eager x (invert B))) B)

Fig. 13. Embedding procedure for λCON into λ⇒
/c .

Lemma 8.1

If c ∈ V and c � (K, P , e), then e ∈ v, K = ∅, and P = ∅.

Proof (Sketch)

This proof establishes that values in λCON are related to values in λ⇒
/c .

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 35

Embedding Translations

c →→e e

true →→e true false →→e false x →→e x n →→e n

c →→e e
λ x. c →→e λ x. e

c1 →→e e1 c2 →→e e2

c1 c2 →→e e1 e2

c1 →→e e1 c2 →→e e2

c1 op c2 →→e e1 op e2

c1 →→e e1 c2 →→e e2 c3 →→e e3

if◦ c1 then c2 else c3 →→e if e1 then e2 else e3

c →→e e f resh x f resh b
contract(c) →→e λ x b. if e x then x else raise b

c →→e e
blame(c) →→e raise e

c1 →→e e1 c2 →→e e2 B ≈ (p,n)
cc2,p,n

1 →→e check e2 eager e1 B

V →→v v

true →→v true false →→v false n →→v n
c →→e e

λ x. c →→v λ x. e

c →→v e f resh x f resh b
contract(e) →→v λ x b. if e x then x else raise b

c →→v e
blame(c) →→v raise e

c1 →→v e1 c2 →→v e2 c3 →→v e3 B ≈ (p,n) f resh x

cc2 c3,p,n
1 →→v λ x. check c3 eager (e1 (check c2 eager x (invert B))) B

Fig. 14. Sub-translation relations →→e and →→v for embedding λCON into λ⇒
/c .

Proof proceeds by induction on c and our constraint that it is a value, then inversion

on the translation relation. �

Lemma 8.2

If c = C[c0] such that c0 is the next redex, then c � (K, P , e) has some derivation

tree as
D

c � (K, P , e)

then D contains c0 � (K0, P0, e0).

Proof (Sketch)

Findler & Felleisen (2002) prove unique decomposition for c terms, and proof

proceeds by induction on the structure of C and inversion on D. �

Lemma 8.3 (Embedding Reduction)

If c ∈ λCON such that · � c : t (that is, c is well-typed), c −→ c′, and c � (K, P , e)

and c′ � (K ′, P ′, e′), then K, {π0}, {〈e〉π0
} + P ⇒∗ K ′′, {π0}, P ′′ such that

K ′′, {π0}, P ′′ =α,unit K
′, {π0}, {〈e′〉π0

} + P ′.

Proof

This proof establishes that each evaluation step in λCON corresponds to a sequence

of evaluation steps in λ⇒
/c . We make the following simplifying assumptions:

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

36 C. Swords et al.

• We appeal to alpha equivalence for our reduction in order to avoid the

need to explicitly track and name channels and process identifiers in terms

of their creation, so that we do not need to worry that the exact channel

name or process identifier is used between steps, only that each name is used

alpha-equivalently.

• We disregard processes of the form 〈unit〉π in our embedding; many of these

are left over when contracts are done checking, and ensuring each exists would

require keeping track of each contract checked up until the current point in the

derivation.

Next, we note that the termination set will always be precisely {π0} since neither

our translation relation nor eager monitors will introduce a fspawn term, and thus

we do not need to consider the termination set for the proof. Recall, also, that we

distinguish contract-checking if expressions from others for translation purposes.

We proceed by induction on “c −→ c′′. Except for contract enforcement oper-

ations, our translation directly preserves the source language syntax, and thus we

only present the contract-related cases in detail:

Case: C[V contract(V2),p,n
1] −→ C[if• V2 V1 then V1 else blame(p)]

Using �, we have:

C[V contract(V2),p,n
1] � (P , K, e)

C[if• V2 V1 then V1 else blame(p)] � (P ′, K ′, e′)

Since C is static, the term inside of C is the next redex and thus it will be translated

by →→v and →→e, whereas V
contract(V2),p,n
1 will be translated by � (via Lemma 8.2).

Furthermore,

V1 ∈ V V2 ∈ V V2 →→v e2

B ≈ (p, n) V1 →→v e1 contract(V2) →→v λx b. if e2 x then x else raise b

fresh ι fresh π p = 〈write ι (catch inl (inr (V2 V1 B)))〉π
V

contract(V2),p,n
1 � ({ι}, {p}, conres (read ι))

and

c1 � (K, P , e1) c2 →→e e2 c3 →→e e3

fresh ι fresh π′ p′ = 〈write ι (catch inl (inr (if e1 then e2 else e3)))〉π′

if• V2 V1 then V2 else blame(p) � ({ι′} � K, {p′} � P , conres (read ι))

Thus, P = P0 � {p} and K = K0 � {ι} (taking ι = ι′ and π = π′). Then, it is sufficient

to show that

K � {ι}, {π0}, P0 � {p} � 〈E[conres (read ι)]〉π
⇒ K � {ι}, {π0}, P0 � {p′} � 〈E[conres (read ι)]〉π

This follows directly because p reduces to p′ by our definition of term reduction

relation “�−→” and [ProcStep] in the “⇒” relation.

Case: C[(VV3 �→V4 ,p,n
1) V2] −→ C[(V1 V

V3 ,n,p
2)V4 ,p,n]

We use the same argument to deal with context C as in the previous case, yielding

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 37

some K0 and P0 for the reduction. Then,

V
V3 �→V4 ,p,n
1 ∈ V V

V3 �→V4 ,p,n
1 →→v efc V2 � (∅, ∅, e2)

V
V3 �→V4 ,p,n
1 V2 � (∅, ∅, efc e2)

where the channel and processes in the premises are empty by Lemma 8.1 and efc
is the result of the translation

V1 →→v e1 V3 →→v e3 V4 →→v e4 B ≈ (p, n) fresh x

V
V3 �→V4 ,p,n
1 →→v λx. check e4 eager (e1 (check e3 eager x (invert B))) B

The right-hand side of the reduction proceeds as

(V1 V
V3 ,n,p
2) /∈ V V4 ∈ V (V1 V

V3 ,n,p
2) � (K ′, P ′, e1 e′

2) V4 →→v e2 B ≈ (p, n)

fresh ι fresh π p = 〈write ι (catch inl (inr (e4 (read ι) B)))〉π
(V1 V

V3 ,n,p
2)V4 ,p,n � ({ι} � K ′, {p} � P ′, seq (write ι e1 e′

2) (conres (read ι)))

where

V1 ∈ V V1 →→v e1 V
V3 ,n,p
2 � (K ′, P ′, e′

2)

(V1 V
V3 ,n,p
2) � (K, P , e1 e′

2)

The exact shape of e′
2 depends upon the shape of V3. Since c is well-typed, it is

either a flat or function contract. We proceed by consider each, appealing to this

series of reductions to prove each:

Subcase: V3 = contract(V ′
3)

V3 ∈ V V3 ∈ V V3 →→v e2 contract(V3) →→v e3 B ≈ (p, n)

fresh ι fresh π p = 〈write ι (catch inl (inr (e3 e2 B)))〉π
V

contract(V3),p,n
3 � ({ι}, {p}, conres (read ι))

Thus, it is sufficient to show

K0, P0 + 〈E[(check e4 eager (e1 (check e3 eager x (invert B))) B) e2]〉π0

⇒∗ K0 � {ι, ι′}, P0+〈E[seq (write ι (e1 (conres (read ι′)))) (conres (read ι))]〉π0

+〈write ι (catch inl (inr (e4 (read ι) B)))〉π
+〈write ι (catch inl (inr (e3 e2 B̄)))〉π

which follows from our reduction semantics in λ⇒
/c .

Subcase: V3 = V3i �→ V3o

Since both V2 and V3 are values, we translate this as

V2 ∈ V V3i ∈ V V3o ∈ V V2 →→v e2 V3i →→v e3i V3o →→v e3o

fresh ι fresh π fresh x B̄ ≈ (n, p)

V
V3i �→V3o,n,p
2 � (∅, ∅, λx. check e3o eager (e2 (check e3i eager x B)) B̄)

Thus, it is sufficient to show

K0, P0 + 〈E[(check e4 eager (e1 (check e3 eager x (invert B))) B) e2]〉π0

⇒∗ K0 � {ι}, P0+〈E[seq (write ι (e1 e2v)) (conres (read ι))]〉π0

+〈write ι (catch inl (inr (e4 (read ι) B)))〉π

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

38 C. Swords et al.

where

e2v = λx. check e3o eager (e1 (check e3i eager x B)) B̄

which follows from our reduction semantics and unit equality to account for the

missing unit-value process created by constructing the contracted function value

for V2. �

Finally, we state the embedding theorem as

Theorem 8.1 (Embedding Correctness)

If c ∈ λCON such that · � c : t, c −→∗ V , c � (K, P , e), and V →→v v,

then K, {π0}, {〈e〉π0
} + P �−→∗ K ′, {π0}, 〈v〉π0

+ P ′.

Proof

First, no translation will produce an fspawn form, and thus T remains constant.

Then the proof proceeds by induction on the length of −→∗ and Lemma 8.3. �

This proof demonstrates that our approach to eager monitoring faithfully recreates

the original presentation and, more generally, that defining contracts as patterns of

communication maintains previous models while exposing their internal workings at

a finer granularity. Additional simulation proofs will be more complex, but follow

this same approach: syntactic munging plus a little process management.

9 Related works

The first language for specification and verification was Gypsy, introduced by

Ambler et al. (1977). Later, Meyer (1992) introduced the term software contract

with the language Eiffel, along with our moderns notions of pre- and post-condition

contract enforcement, and Findler & Felleisen (2002) brought software contracts

into functional languages.

9.1 Additional software contract verification techniques

After Findler & Felleisen (2002) brought software contracts into functional pro-

gramming, a cottage industry of software contract verification techniques sprung

up (Hinze et al., 2006; Findler et al., 2008; Degen et al., 2009; Dimoulas et al., 2009;

Chitil, 2012; Dimoulas et al., 2013; Moore et al., 2016). Swords et al. (2015) provides

a framework for expressing their interactions, and we extend and revise that work.

In this work, we selected five strategies because of their frequency in the literature,

their apparent utility, and their direct encodings. Unsurprisingly, these are not the

only variations on contract verification.

Option Verification. Dimoulas et al. (2013) introduce option contracts, which allow

modules to optionally enforce contracts or eschew contracts while adopting respon-

sibility, avoiding unnecessary contract enforcement. It is possible to replicate this

behavior in λ⇒
/c , using the same pattern of encoding and structures as Dimoulas

et al. (2013) in the presence of the option strategy. Such an implementation would

be particularly effective in a chaperone-based system.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 39

Random Checking. Ergün et al. (1998) and Dimoulas et al. (2013) each describe

random testing for program correctness, which has since gained popularity in

Clojure’s core.spec library (Hickey, 2018), where their higher order function

contracts adopt generative checking, producing sample inputs to ensure that the

provided function behaves correctly, and their flat contracts are verified eagerly.

We can replicate this behavior using a gen strategy that accepts a generator g and

ensures its input adheres to such generated values:

check con (gen g) exp b →
let i = chan

in seq (spawn (write i (catch inl (let f = (con (read i) b)

in (inr (seq (check-fn f g) f)))))

(write i exp)

(conres (read i))

(23)

If f is a function, the check-fn procedure will use the provided generator to randomly

test it before returning it; otherwise, the strategy behaves as eager.

Future Contracts. Dimoulas et al. (2011) introduce concurrent contracts via future

contracts, which we base our prom contract verification on, wherein terms and

their contracts are sent, as messages, to a secondary evaluator for verification. It

is straightforward, however, to imagine a strategy that sends contract-expression

pairs to a global, concurrent process and extending effectful operations with

synchronization operations.

Security Enforcement Contracts. Moore et al. (2016) introduce contracts to model

authorization and access control (Moore et al., 2016), which provide a domain-

specific language for writing security-centric contracts. It is conceivable to recreate

such behavior as a strategy with customized contract inputs, wherein the strategy

inspects the structure of its contract and acts accordingly. Doing so would require

modifying λ⇒
/c to support the dynamically bound parameter scope system this

contract model requires, but we speculate that the process portion of our calculus

may be utilized for this task.

Lazy Contracts. First described by Chitil et al. (2003) as assertions (without blame

mechanisms), Degen et al. (2009) later described lazy contracts as allowing the user

evaluator to drive the contract evaluator, wherein the contract evaluator suspends

verification until the user evaluator evaluates the subject term. For example, checking

a predicate on a pair will not force the pair will suspend verification until the user

evaluator evaluates the pair; if the user program never does, the monitor will never

verify the contract. Degen et al. (2012) give a sketch of implementation, suggesting

that the monitor spawn a separate thread that waits until the arguments to the

assertion are evaluated and then executes the contract.

This model of monitoring, when translated into λ⇒
/c , demonstrates its intrusive

interaction with the main evaluator: to facilitate this user-driven monitoring, we

must construct a layer of indirection for both evaluators such that the user evaluator

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

40 C. Swords et al.

is forcing an expression drives the lazy monitor. Swords et al. (2015) give a sketch of

a possible implementation that includes recursively parsing the input expression e.

This approach closely mirrors the implementation provided by Degen et al. (2010),

wherein individual call-by-need cells register callbacks for contract monitors. Even

so, Degen et al. (2012) observe that such lazy verification violates basic blame

consistency, and thus has questionable utility.

9.2 Contracts as processes

Dimoulas et al. (2009) and Disney et al. (2011) each explore the notion of contracts

using message passing, and, further, the runtime verification literature contains

a number of additional examples of using messages to verify program proper-

ties (Havelund & Rosu, 2001; Barnett et al., 2005; Chen & Roşu, 2007). In each

case, however, the work has different design goals from Swords et al. (2015) and our

work. Dimoulas et al. (2009) model and explore concurrent contracts; Disney et al.

(2011) precisely model and explain temporal contracts with non-interference and

trace completeness; our work explores modeling contracts as secondary evaluators

and varying evaluator interactions to encode multiple verification strategies in the

same framework.

Dimoulas et al. (2009) introduce concurrent contracts via future contracts, wherein

terms and their contracts are sent, as messages, to a secondary evaluator for

verification. Dimoulas et al. (2009) observe that this approach is familiar in the

broader runtime verification community. We extend the idea of a secondary contract

evaluator to creating a separate evaluator for each individual contract, and vary

how and when contracts and results are communicated to provide programmers

with myriad verification mechanisms that they may choose on a per-contract

basis.

Disney et al. (2011) utilize multiple contract verification processes to moni-

tor and validate communications as (quasi-)recursive, long-running middle-man

processes that mediate module interactions. In their system, contracts forward

messages between these modules, inspecting constants and starting sub-monitors

for structural contracts. This process separation uses isolation to ensure, a priori,

contract non-interference. Our approach and focus differs in that we do not model

“client” and “server” modules, instead presenting a user “program” interacting with

contract processes directly; we do not require (or desire) non-interference in our

contracts, allowing them to inspect modify, and otherwise manipulate contracted

terms (e.g., by installing wrappers); and, finally, the focus of our work is allowing

contracts to vary their method of verification the program on a per-contract

basis and exploring these interaction patterns for programmer utility and semantic

breadth.

Even so, these works share a notion of contracts as processes, suggesting that the

temporal contracts outlined by Disney et al. (2011) may be directly encoded in λ⇒
/c ,

and that the calculus presented by Disney et al. (2011) might be modified to support

λ⇒
/c-style multi-strategy verification (via adding delay operations and modifying their

guard procedure) at the cost of some of their guarantees (such as non-interference).

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 41

9.3 Contracts in lazy languages

Chitil et al. (2003) brought runtime verification to Haskell as assertions, which

eschews blame and uses assertions closer to comprehensions than the contract

structures we have seen here. Hinze et al. (2006) introduced full contracts with

blame and a strict assertion operation for Haskell, inducing our current notion of

“semi-eager” verification. Chitil (2012) also encode semi-eager verification in the

Haskell language following by almost direct implementation of Findler & Felleisen

(2002) into a call-by-name language.

Degen et al. (2009) introduce and compare semi-eager and eager verification in

Haskell. They present a semi-eager contract system as a direct encoding of the

contract verification presented by Findler & Felleisen (2002), relying on Haskell’s

underlying semantics to add the appropriate laziness. Their eager implementation,

conversely, utilizes Haskell’s seq operator to subvert Haskell’s evaluator into forcing

eagerly-contracted expressions.

Reformulating our own contract interactions in a lazy variation of λ⇒
/c follows sim-

ilarly, but presents a unique challenge in the form of intermixing strategies: we must,

at some point, stop the strictness behavior to avoid over-evaluating lazy subcontracts.

This ultimately requires both forcing and “unforcing” operations in order to stop

strict evaluator positions from over-evaluation. For example, consider evaluating

check (pair/c nat/c semi nat/c semi) eager (5,−1)B

The two interior contract must “unforce” the forcing operation of the outer

semi if they are to ensure delayed verification behavior, mirroring our delay/force

interactions in λ⇒
/c .

9.4 Contract metatheory

Blume & McAllester (2004) present the first exploration of contract metatheory,

introducing and exploring contract safety for eager contracts, and Findler & Blume

(2006) describe function contracts as pairs of projections. We diverge from contracts

as pairs of projections, following Findler’s later position that this view was too

rigid (Findler, 2014).

Guha et al. (2007) present the problem of parametric, polymorphic contracts

as first-order values, and Ahmed et al. (2017) revisit this problem and prove

parametricity. We appeal to this notion in our type system, relying on polymorphic

contract combinators.

Finally, Keil & Thiemann (2015) provide denotational semantics for eager contract

verification. While the system here is, in some sense, a metatheory for verification, we

do not claim strong mathematical properties about any individual strategy (though

it may be possible to recover them through further embedding proofs).

9.5 Surveys of contract verification

Degen et al. (2009) present descriptions of eager, semi-eager, and lazy software

contract verification systems, characterizing each system’s behavior in a call-by-need

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

42 C. Swords et al.

programming language via four properties (meaning reflection, meaning preserva-

tion, faithfulness, and idempotence). They ultimately conclude that “faithfulness is

better than laziness.” Dimoulas & Felleisen (2011) go further, classifying different

approaches through observational equivalence, based on when and how they are en-

forced (with axes of static versus run-time and tight, loose, or shy-loose respectively).

They also introduce the notion of a shy contract, which is analogous to the lazy

verification presented by Degen et al. (2009): it is only allowed to inspect parts of the

program that are evaluated at runtime. Degen et al. (2012) revisit different contract

verification systems in call-by-need languages, evaluating them for completeness and

meaning preservation, classifying a number of contract systems (Findler & Felleisen,

2002; Chitil & Huch, 2006; Hinze et al., 2006; Degen et al., 2009; Xu et al., 2009)

by these properties. Conversely, our work follows Swords et al. (2015): instead

of classifying verification strategies via secondary properties, we have presented a

semantic-based comparison by directly encoding each verification strategy in λ⇒
/c .

9.6 Alternative contract enforcement mechanisms

Our presentation uses runtime enforcement of contracts that all exist at the value

level. This is not, however, the only enforcement mechanism available. Ou et al.

(2004), Flanagan (2006), and Greenberg et al. (2010) each present a model of

contract usage similar to refinement types (Freeman, 1994) tracking these contracts

at the type level and enforcing (and accruing) them as values flow through these

types. The work by Greenberg et al. (2010) in particular has recently been the

subject of multiple extensions, including space efficiency (Greenberg, 2015), data-

types (Sekiyama et al., 2015), and stateful contracts (?). While manifest contracts

are closely related to standard contracts (and Racket’s chaperone and impersonator

system (Strickland et al., 2012)), our work treats contracts as values instead of

type-level terms.

Xu et al. (2009) and Nguyen et al. (2014) both present static verification models for

contract verification, using static analyses to determine which contracts hold prior to

running the program. While related, this style of static checking is orthogonal to our

presentation here: we do not attempt to subsume static checking with our framework.

Clojure’s core.spec library (at https://clojure.org/guides/spec) also supports

enforcing contracts in different ways. Unlike our multi-strategy approach, however,

the spec library allows users to determine which programming phase to check the

provided specification (or “spec”) at: the spec written for the program may be used

to both instrument the runtime (via software contracts) and to generate sample

data to probabilistically check functions, etc., without running the program itself.

Combining our multi-strategy approach with multi-phase checking remains as future

work.

Finally, Shinnar (2011) presents contract assertions in the context of concurrency

and software-transactional memory, focusing on effectful contracts interacting with

Software Transactional Memory in Haskell, using Haskell’s monadic effect system.

They introduce the idea of delimited checkpoints for STM, allow memory changes to

be observed and rolled back, supporting specification contracts alongside “framing”

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 43

contracts, which ensure programs do not exhibit specific behaviors, and separation

contracts, which combine these to provide separation logic-esque behavior. The roll-

back capabilities also allow the program to undo effects in the event of contract

violations, and integrating such a mechanism into λ⇒
/c may allow us to address the

effect-related shortcomings of promise-based and concurrent contract verification.

This integration remains as future work.

9.7 Complete blame and contract monitoring

Multiple approaches to runtime verification blame assignment have been pro-

posed (Wadler & Findler, 2009; Greenberg et al., 2010; Ahmed et al., 2011;

Dimoulas et al., 2011, 2012), with special attention given to function contracts

(and, in particular, dependent function contracts). Since our contract combinators

are library functions, we can provide any blame assignment approach necessary

(including indy semantics (Dimoulas et al., 2011)).

Ensuring complete monitoring, defined by Dimoulas et al. (2012), in particular,

introduce the notion of complete monitoring, a fundamental correctness criterion for

contract systems that generalizes correct blame assignments by ensuring each value

that moves between components is monitored. Unfortunately, proving this property

for λ⇒
/c is particularly challenging for a number of reasons. First, their definition

relies on multiple modules. We would need to first extend λ⇒
/c with a module model

(likely as interacting processes, following Disney et al. (2011)). Second, Dimoulas

et al. (2012) use an ownership-and-obligation model to define complete monitoring,

and we would need to replicate this in a multi-process setting where we explicitly

model each contract verifier as a separate entity. In particular, we would need to

address how value ownership changes when transferring value to monitors and,

further, when transferring results (e.g., when values flow through multiple monitors

toward the answer, such as for pairs, or when a delayed reference is forced after being

communicated). Finally, complete monitoring is tells us little about some strategies,

including conc: complete monitoring only requires that the program terminates with

a value, diverges, or correctly detects a contract violation, and, if every contract is

enforced under conc, a λ⇒
/c scheduler may always complete the user process without

checking any outstanding contracts. This suggests that, in the context of “best-effort”

contracts, complete monitoring is not a sufficient requirement.

Gradual Typing. Gradual typing uses runtime verification in the form of casts and

coercions to ensure that values have the correct types as they flow through the

program (Siek & Taha, 2006). Similar to contract verification, there are a variety

of ways to enforce these properties and track blame (Herman et al., 2007; Wadler

& Findler, 2009; Vitousek et al., 2014). Siek et al. (2009), in particular, provide

a discussion of different approaches in the literature, recreating each by adding

optional reduction rules to the same calculus and demonstrating how different sets

of these reduction rules exhibit different behaviors. Our work here similarly compares

the field of contract verification strategies, but we diverge in our use of processes,

our direct encoding of each strategy into an underlying core calculus, and our

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

44 C. Swords et al.

strategies’ coexistence in the same surface language. Applying our communication-

based approach to gradual typing remains as future work, but hints as the possibility

of multiple error detection semantics existing together in the same language.

10 Conclusion

In this paper, we have presented a unifying framework for contract semantics,

refining and extending the work presented in Swords et al. (2015). These extensions

include a clarified semantic model that clarifies which process evaluates which part

of each monitor, an explicit semantics for an fconc contract verification (thus

demonstrating how new contract systems may use target λ⇒
/c), extended explanations

of the previous work’s multi-strategy approach to verification, and an extended

presentation of metatheoretical results. There is a sample implementation of this

work available for Racket at https://github.com/cgswords/ccon.

Future work. There is still much to explore in strategy-based contract monitoring.

At the beginning of this paper, we identified three dimensions in the design space

that each allow for a gradient of answers and whose answers lead to further

questions about the behavior of runtime contract verification. The strategies here

are not a covering of the design space, but an exposure, all expressed in a single,

canonical framework that can be extended and used to implement and compare other

verification patterns. This approach also hints at potential strategy combinators,

or “meta-strategies”, that allow us to combine and modify verification behavior.

Finally, this unified approach gives us room to ask how this work applies to other

runtime verification systems, explore the relation between this style of monitoring

and aspect-oriented programming, and investigate what lies beyond strategies.

Acknowledgments

We would also like to thank our JFP reviewers and editors for their excellent

discussion and feedback.

References

Ahmed, A., Findler, R. B., Siek, J. G. & Wadler, P. (2011) Blame for all. In Proceedings of

the 38th Annual Symposium on Principles of Programming Languages, POPL ’11. ACM.

Ahmed, A., Jamner, D., Siek, J. G. & Wadler, P. (2017) Theorems for free for free:

Parametricity, with and without types. In Proceedings of the 22th International Conference

on Functional Programming, ICFP ’17. ACM.

Ambler, A. L., Good, D. I., Browne, J. C., Burger, W. F., Choen, R. M., Hoch, C. G., &

Wells, R. E. (1977) Gypsy: A language for specification and implementation of verifiable

programs. In Proceedings of the ACM Conference on Language Design for Reliable

Software, Sigplan, pp. 1–10.

Barnett, M., Leino, K. R. M. & Schulte, W. (2005) The spec# programming system: An

overview. In Proceedings of the 2004 International Conference on Construction and

Analysis of Safe, Secure, and Interoperable Smart Devices, CASSIS ’04. Springer-Verlag.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 45

Blume, M. & McAllester, D. (2004) A sound (and complete) model of contracts. In Proceedings

of the 9th International Conference on Functional Programming, ICFP ’04. ACM.

Chen, F. & Roşu, G. (2007) Mop: An efficient and generic runtime verification framework.

In Proceedings of the 22nd Annual Conference on Object-Oriented Programming Systems

and Applications, OOPSLA ’07. ACM.

Chitil, O. (2012) Practical typed lazy contracts. In Proceedings of the 17th International

Conference on Functional Programming, ICFP ’12. ACM.

Chitil, O., & Huch, F. (2006) A pattern logic for prompt lazy assertions in haskell.

In Proceedings of the Symposium on Implementation and Application of Functional

Languages, IFL ’06. Springer.

Chitil, O., McNeill, D. & Runciman, C. (2003) Lazy assertions. In Proceedings of the

Symposium on Implementation and Application of Functional Languages, IFL ’03.

Springer-Verlag.

Degen, M., Thiemann, P. & Wehr, S. (2009) True Lies: Lazy contracts for lazy

languages (faithfulness is better than laziness) In Proceedings of the Arbeitstagung

Programmiersprachen (ATPS), ATPS ’09. Springer.

Degen, M., Thiemann, P. & Wehr, S. (2010) Eager and delayed contract monitoring for

call-by-value and call-by-name evaluation. J. Log. Algebr. Program. 79(7), 515–549.

Degen, M., Thiemann, P. & Wehr, S. (2012) The interaction of contracts and laziness. In

Proceedings of the 2012 Workshop on Partial Evaluation and Program Manipulation,

PEPM ’12. ACM.

Dimoulas, C. & Felleisen, M. (2011) On contract satisfaction in a higher-order world. ACM

Trans. Program. Lang. Syst. 33(5), 16:1–16:29.

Dimoulas, C., Findler, R. B., Flanagan, C. & Felleisen, M. (2011) Correct blame for contracts:

No more scapegoating. In Proceedings of the 38th Annual Symposium on Principles of

Programming Languages, POPL ’11. ACM.

Dimoulas, C., Findler, R. B. & Felleisen, M. (2013) Option contracts. In Proceedings of the

2013 International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA ’13. ACM.

Dimoulas, C., Pucella, R. & Felleisen, M. (2009) Future contracts. In Proceedings of the 11th

Conference on Principles and Practice of Declarative Programming, PPDP ’09. ACM.

Dimoulas, C., Tobin-Hochstadt, S. & Felleisen, M. (2012) Complete monitors for behavioral

contracts. In Proceedings of the European Symposium on Programming, ESOP ’12.

Springer-Verlag.

Disney, T., Flanagan, C. & McCarthy, J. (2011) Temporal higher-order contracts. In

Proceedings of the 16th International Conference on Functional Programming, ICFP

’11. ACM.

Ergün, F., Kannan, S., Kumar, S. R., Rubinfeld, R. & Viswanathan, M. (1998) Spot-checkers.

In Proceedings of the 13th Annual ACM Symposium on Theory of Computing, STOC ’98.

ACM.

Findler, R. B. (2014) Behavioral software contracts. In Proceedings of the 19th International

Conference on Functional Programming, ICFP ’14. ACM.

Findler, R. B. & Blume, M. (2006) Contracts as pairs of projections. In Proceedings of

the 8th International Conference on Functional and Logic Programming, FLOPS ’06.

Springer-Verlag.

Findler, R. B & Felleisen, M. (2002) Contracts for higher-order functions. In Proceedings of

the 7th International Conference on Functional Programming, ICFP ’02. ACM.

Findler, R. B., Guo, S.-Y. & Rogers, A. (2008) Lazy contract checking for immutable data

structures. In Proceedings of the Implementation and Application of Functional Languages.

Springer-Verlag.

Flanagan, C. (2006) Hybrid type checking. In Proceedings of the Conference Record of the

33rd Symposium on Principles of Programming Languages, POPL ’06. ACM.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

46 C. Swords et al.

Flatt, M. & PLT. (2010) Reference: Racket. Technical Report, PLT-TR-2010-1. PLT Inc.

http://racket-lang.org/tr1/.

Freeman, Tim. (1994) Refinement Types for ML. (Ph.D. Thesis), Carnegie Mellon University.

Friedman, D. & Wise, D. (1976) The Impact of Applicative Programming on Multiprocessing.

Technical Report 52. Indiana University, Computer Science Department.

Greenberg, M. (2015) Space-efficient manifest contracts. In Proceedings of the 42nd

Symposium on Principles of Programming Languages, POPL ’15. ACM.

Greenberg, M., Pierce, B. C. & Weirich, S. (2010) Contracts made manifest. In Proceedings

of the 37th Symposium on Principles of Programming Languages, POPL ’10. ACM.

Guha, A., Matthews, J., Findler, R. B. & Krishnamurthi, S. (2007) Relationally-parametric

polymorphic contracts. In Proceedings of the 2007 Symposium on Dynamic Languages,

DLS ’07. ACM.

Havelund, K. & Rosu, G. (2001) Monitoring Java Programs with Java Pathexplorer. Technical

Report, NASA Ames Research Center.

Herman, D., Tomb, A. & Flanagan, C (2007 April) Space-efficient gradual typing. In Trends

in Functional Prog, Page XXVIII. TFP ’07.

Hickey, R. (2018) Clojure core.spec Documentation [online]. Accessed February 18, 2018.

Available at: https://clojure.org/guides/spec.

Hinze, R., Jeuring, J. & Löh, A. (2006) Typed contracts for functional programming. In

Proceedings of the 8th International Conference on Functional and Logic Programming,

FLOPS ’06. Springer-Verlag.

Ingerman, P. Z. (1961) Thunks: A way of compiling procedure statements with some comments

on procedure declarations. Commun. ACM 4(1).

Jeffrey, A. (1998) Semantics for core Concurrent ML using computation types. Higher Order

Operational Techniques in Semantics. Cambridge University Press.

Keil, M. & Thiemann, P. (2015) Blame assignment for higher-order contracts with

intersection and union. In Proceedings of the 20th International Conference on Functional

Programming, ICFP ’15. ACM.

Meyer, B. (1992) Eiffel: The Language. Prentice-Hall, Inc.

Moore, S., Dimoulas, C., Findler, R. B., Flatt, M. & Chong, S. (2016) Extensible access

control with authorization contracts. In Proceedings of the 2016 International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’16.

ACM.

Nguyen, P. C., Tobin-Hochstadt, S. & Van Horn, D. (2014) Soft contract verification. In

Proceedings of the 19th International Conference on Functional Programming, ICFP ’14.

ACM.

Ou, X., Tan, G., Mandelbaum, Y., & Walker, D. (2004) Dynamic typing with dependent types.

Exploring New Frontiers of Theoretical Informatics, Levy, J.-J., Mayr, E. W., & Mitchell, J.

C. (eds), Boston, MA: Springer, US, pp. 437–450.

Owens, Z. (2012) Contract monitoring as an effect. Proceedings of the 1st ACM SIGPLAN

Workshop on Higher-Order Programming with Effects. HOPE ’12. ACM.

Pierce, B. C. (2002) Types and Programming Languages. MIT Press.

Reppy, J. H. (1993) Concurrent ML: Design, application and semantics. In Proceedings

of the Functional Programming, Concurrency, Simulation and Automated Reasoning:

International Lecture Series 1991-1992, McMaster University, Hamilton, Ontario, Canada.

Springer-Verlag.

Reppy, J. H. (1999) Concurrent Programming in ML. Cambridge University Press.

Sekiyama, T., Nishida, Y. & Igarashi, A. (2015) Manifest contracts for datatypes. In

Proceedings of the 42nd Symposium on Principles of Programming Languages, POPL

’15. ACM.

Shinnar, A. (2011) Safe and Effective Contracts. Technical Report, Harvard University.

Siek, J. G. & Taha, W. (2006) Gradual typing for functional languages. Scheme and Functional

Programming Workshop.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

An extended account of contract monitoring strategies 47

Siek, J. G., Garcia, R. & Taha, W. (2009) Exploring the design space of higher-order casts. In

Proceedings of the European Symposium on Programming, ESOP ’09. Springer-Verlag.

Strickland, T. S., Tobin-Hochstadt, S., Findler, R. B. & Flatt, M. (2012) Chaperones and

impersonators: Run-time support for reasonable interposition. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’12. ACM.

Swords, C., Sabry, A. & Tobin-Hochstadt, S. (2015) Expressing contract monitors as patterns

of communication. In Proceedings of the 20th International Conference on Functional

Programming, ICFP ’15. ACM.

Vitousek, M. M., Siek, J. G., Kent, A. & Baker, J. (2014) Design and evaluation of gradual

typing for Python. In Proceedings of the Dynamic Languages Symposium, DLS ’14.

Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In Proceedings

of the 18th European Symposium on Programming Languages and Systems. ESOP ’09.

Springer-Verlag.

Xu, D. N., Peyton Jones, S. & Claessen, K. (2009) Static contract checking for haskell. In

Proceedings of the 36th Annual Symposium on Principles of Programming Languages,

POPL ’09. ACM.

https://doi.org/10.1017/S0956796818000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000047

