ON. ANALYTIC FAMILIES OF COMPACT RIEMANN
SURFACES WITH NON-TRIVIAL AUTOMORPHISMS

AKIKAZU KURIBAYASHI

Introduction

The purpose of this paper is to investigate the moduli of compact Riemann
surfaces with non-trivial automorphisms.

We shall explain our problems by giving a summary of the contents.

In §1, we shall explain by some examples from where our problems occur.
We know that the problems of representations of the group of automorphisms
as linear transformations of the spaces of differentials have been studied. Our
first subject is a converse of these problems in a certain sense, that is, giving
a group G and a representation S of G, we wish to find such a Riemann
surface that has G as a subgroup of the group of automorphisms, and where
the representation of the group G is equivalent to S. From here many
interesting problems arise.

In §2, we consider a family 2(G, p) of Riemann surfaces with a prescribed
type of automorphisms (cf. 2.1) and study some properties of the family, by
which we are able to obtain some information about the structures of compact
Riemann surfaces of small genera, i.e.,, of genus 2 and 3. It seems to us an
interesting matter that we obtain Theorem 2.17 as a residual product.

In §3, we consider a family 2(g’, #, {»1,...,»,}) of Riemann surfaces
which is a subfamily of £2(n, o) with respect to the exponents uy, ..., v,
subject to certain conditions (cf. 3.1) and following the methods of Teichmiiller
[19], Ahlfors [2], and Bers [3], we shall devote ourselves to construct from
this family a complex manifold 4, which we shall call a generalized Teichmiiller
space. The’main result of this section is Theorem 3.21, which asserts that
4 is a 3 g'—3+r dimensional complex analytic manifold. Here the number
3 g'—3+r is nothing but the number of linearly independent quadratic dif-
ferentials which are invariant by the given automorphism with r fixed points.
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In §4, we shall deal with a special family 2(0, #, {», . .., »,}), from
which we obtain a generalized Teichmiiller space A(0, #, {»;}). We see that

Riemann surfaces R belonging to 2(0, n, {»;}) are of the form
Yr=(x—a)™- - (x—as)™, ntmy+ - +m;, r=s+1,

where m; (i=1, ...,s) are the numbers which are comf:letely determined by
vi, - . - , v as shown in Proposition 3.4.

Let J be the jacobian variety of R, and let ¢, be the birational correspondence
of R with itself given by (%, y) - (%, ¢y), where ¢ is a primitive #-th root of
unity. Denote by 6(¢) the automorphism of J corresponding to &. Let & be
the canonical polarization of J, and p the automorphism of Q(¢) such that
¢*=¢"1. Then we get a polarized abelian variety of type {Q({), ¢, p} in the
sense of Shimura [16] for a certain representation ¢ of degree g. Here g is
the genus of R.

On the other hand it is known by Shimura [16] that there exists a sym-
metric domain H which parametrizes an aﬁalytic family of polarized abelian
varieties .2 of type {Q(¢), ¢, o}.

We shall investigate the appearances of the jacobian varieties in this
family of abelian varieties. For this purpose we consider the question whether
there exists a holomorphic mapping of the generalized Teichmiiller space A
into the symmetric domain H. The answer is affirmative, as shown in Theorem
4.13, which is one of our main theorems in the present paper.

In §5, we shall discuss the holomorphy of parameters in the above equation
of Riemann surfaces with respect to the complex structure of the generalized
Teichmiiller space 4. For that purpose we consider the moduli-variety § for
the family of abelian varieties introduced in [18], which is the quotient of H
by a discontinuous group I. LetS={(x,...,x)€C’; xixx, if i%xj}. Then
we can let (Ry, o) correspond to each (#,...,%)<S. Let 2 be a point of
A corresponding to (R:, ¢x). Then we obtain a rational mapping ¢ : S—» B
which relates, roughly speaking, the parameters xi, . . ., ¥ holomorphically to
X.  The precise statement of this fact is given in Theorem 5.9, which is our
second main theorem.

In §6, we consider, as an example, a special case of the family 2 (0, 7, {1,
1, 1, 2}) and apply the theory developed in the above sections to it. In this
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case, we see that both 4 and H are one dimensional manifolds and the mapping
of 4 into H is a ratio of the periods of the differentials of the first kind of
the Riemann surfaces (cf. 6.2). As for the holomorphy of parameters we can
construct an invariant which is holomorphic in the whole space A (cf. Theorem
6.7).

The author should like to express his hearty thanks to Prof. G. Shimura
who has led him to this investigation and has given many valuable advices
and constant encouragements. And the author also expresses his sincere thanks
to Prof. S. Koizumi and Prof. M. Kuga for their kind advices and hearty

encouragements.

§ 1. Preliminary consideration

1.1. Let Rbe a compact Riemann surface of genus g; we can express an
arbitrary meromorphic differential on R in the form w = fdg, where f, g are
meromorphic functions on R. Let ¢ be a holomorphic mapping. of another
Riemann surface R’ onto R. If we set fi(2) = f(a(2)), g1(2) = g(s(2)), then
fi1(2), g(z) are meromorphic functions on R, and w; = fidg: is a meromorphic
differential on R'. We denote this differential by w; = we. Particularly if R = &/,
and if ¢ is an automorphism of R, then w; is a meromorphic differential on R.
Moreover if v is a differential of the first kind, then w; is also of the first
kind, and (o + w2)o = w10+ w20, (Aw)o = A(ws) where 2 is a complex number.
We shall denote by V(R), or simply by V, the complex vector space of all
differentials of the first kind on R. Let G be a subgroup of the group of all
automorphisms of R. Every element ¢ of G induces a linear mapping of V
onto V as we have seen above and moreover we see that w(er) = (we)r for
arbitrary o, r€G. Therefore fixing a basis of V, we obtain a matrix repre-
sentation p of G. It is known that this representation is faithful if the genus

of R is greater than one, for a proof see [9, p. 4161.

1.2. LemMmA. The notation being as above, let 5 be the complex conjugate of p.

Then the representation
0
(6 5)

of G is equivalent to a rational representation of G. Moreover, tr p(a) + tr p(a)is

D S

a rational integer for every ¢ < G.
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The first assertion is classical and well-known. For a proof, see for
example [7; pp 270-272]. The second assertion follows easily from the first

assertion.

1.3. Let R and G be as above in 1.1. Let R' be the quotient of R by G.
Then R' has a structure of compact Riemann surface, and R can be regarded
as a Galois covering of R’ whose Galois group is G.

Let K (resp. K') be the field of meromorphic functions on R (resp. R').
Then K is a Galois extension of K', whose Galois group can be identified with
G in a natural manner.

If G is a cyclic group of order #, then o can be determined by p(s) for a

generator ¢ of G. Furthermore we can transform p into a diagonal form, ie,

we can find a basis {w;, ..., wg} of V so that
lwldl ‘al 0”(01]
wgo 0 ag )| wg
with #-th roots of unity aj, ..., ag, which may not be primitive. Let p be

the number of indices % for which ar=1. It is well-known that p is equal to

the genus of R'. We shall denote sometimes the above matrix by [a;, . . . , agl.

1.4. As explained in the Introduction, our subject of study is a family of
Riemann surfaces with non-trivial automorphisms. In this paper we shall con-
sider exclusively the case where the group of automorphisms is a cyclic group
of prime order, though one can certainly investigate a more general case.

Now we shall give some examples.
1.5. ExampLE. Let R be a Riemann surface defined by the equation
y=(x—a)x-a)(x—a) (aixa; if ix7).

We see easily that R is of genus 6, and { j)_sdx, v %xdx, y’dx, y xdx, y~idx, y°dx)
provides a basis of V. A map ¢: (x.y)~(xCy) is an automorphi§m of R,
where ¢ is a primitive 7-th root of unity. This ¢ generates a cyclic group G
of order 7. If we write the above basis {w;, . .., ws} in order, then we have
o =Cwy, wo=Cws, wzo=C04, wio=Cws, wsa=Cws, wso=Cws;. Therefore we

can express these relation as follows:
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mo ¢ 0 wy
. ¢ .
R 2 .
. ‘ ¢ .
weo c ws
0 ¢t

1.6. ExampLE. Let R be the Riemann surface defined by the equation:
¥ =(x—a)(x+a)(x—a)(x+ a) (x— a3) (x+ as) (@i~ aj, if ix7p).

It can be seen that R is of genus 2, and {y 'dx, y"'xdx} is a basis of V. A
map o : (x, y)>(—x —y) is an automorphism of R. This ¢ generates a cyclic
group G of order 2. If we set wi=y"'dx, ws =y 'xdx, then wio = 01, wo= — ws.
Therefore we have

ww) (1 0 [on
()= (o D)
Let us now recall the following well-known lemma from Galois theory.

1.7. LemMma. Let K be a Galois extension of a field k. Suppose that the Galois
group is cyclic and of order n, and k contains a primitive n-th root of unity €.
Then for every generator o of the Galois group, there exists an element y of K
such that o(y) =Cy, K=Fk(y) and y"<k.

1.8. We shall apply this lemma to the fields of algebraic functions, which
are considered in the above. Let R, G, R', o, p, K, K' be as in 1.3. Suppose
that G is a cyclic group whose order is a prime number #. Let ¢ be a generator
of the Galois group and let ¢ = ¢*™/",

(Case 1: p=0). Then R' is a Riemann sphere, and K' = C(x), where C(x)
is a rational function field. So we have

(1.8.1) K=C(x 9, y" = f(2), o(x, y) = (%, Cy)

where f(x) is a polynomial in x. Therefore in general we can write the
equation of the Riemann surface in the form

(1.8.2) y'=(x—a)™(x—a)™+ - (x-a;)™

with distinct complex numbers a,, a., . . ., as, and positive integers m, m., . . ., ms

less than ». Without loss of generality, we may assume that

(1.8.3) ntm+me+ - - « + ms.
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In fact, assume that #; + mz + + - + + ms = ngwith aninteger ¢. Letx' = (x—a)) 7},
bi=(agi—a)™, (=2, ...,s) and ¥ ={(@1—a)™+ + (a1 — as)™} " (x—a))™%.
Then we have K =C(x', 5'), a(x', y") = (', ¢3') and 3" = (2! — ;)™ + + + (x' = bs)™
ntme+my+ ¢ ¢ +ms.

Now coming back to the original notation of (1'8'1). and (1.8.2) with the

assumption (1.8.3), we obtain, by means of Riemann-Hurwitz formula,
(1.8.4) 2g=(n—1)(s—1).

We can further normalize the equation (1.8.2) in the form

(1.8.5) y*=a™(x—1)™(x—c)™ + + (x—cs-2)™

with distinct complex numbers ¢;, . . ., ¢s-2 which are different from 0 and 1.
(Case 2: p=1). Then K' is an elliptic function field. Hence K' = C(«, v)

where #* =40 — 10— 13, 73— 277ri%0. So we have
(1.8.6) K=C(u,v,9), y"=aw)+bo@u, o(u,v,y) = (u, v, &y)

where a(v), 8(v) are rational functions in .
(Case 3: p=2). Then K' is a hyperelliptic function field, and so K' = C(x, v)
L

where #*=I1 (v — @;) with distinct @;. So we have

i=1
(1.8.7) K=C(u,v,9), y"=a@) +b(0)u, o(u, v,y)= (u, v,Cy)

where a(v), 5(v) are rational functions in v.
Here we should notice that in each case, G is generated by an automorphism
o which transforms y to ¢y and leaves all elements of K' invariant, where

C = eZﬂ:i/n

1.9. ExampLE. Let G be a cyclic group of order 7, and ¢ a generator of
G. We wish to determine a Riemann surface of genus 3 on which ¢ operates
as an automorphism so that, for a suitable basis i, ., ws of differentials of
the first kind of it, one has

w0 ¢ 0 w; ¢ 0
e |=| & o ) p=0¢ &)= & >
w3d 0 ¢ /\ ws 0¢

2 wilT

where {=¢e From the result of 1.8, we see that such a Riemann surface

must be defined by an equation of the form

Y =M (x—1)™,
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and the automorphism is given by o(x, y) = (x, ¢y). Furthermore we see later
that m; =1, me =1, (or, m; =1, my, =5), (cf. 2.13).

1.10. ExampLe. Let G be a group of order 2, and ¢ the generator of G.
We wish to determine a Riemann surface R of genus g on which ¢ operates as

an automorphism so that, for a suitable basis wi, ..., wg of V(R), one has

w0 "‘1 0 w1 "'1 0
. = . b op= . =[_1,...,—'1].
wgo 0 -1 wg 0 -1

By the result of 1.8, such a Riemann surface should be determined by an

equation :
P=xlx-1)(x—a): > (x—azg-1)
where a, . . ., a2g-1 are different from each other and are not equal to 0, 1.

1.11. In general one can ask the question of finding Riemann surfaces with
an automorphism whose representation by differentials of the first kind is
equivalent to a given matrix p, as described in the above examples. With an
arbitrary p, there may be no such Riemann surfaces. But for a suitable p there
may exist Riemann surfaces of prescribed type with several parameters as we
see in Example 1.10. It may also happen that there is no continuous parameter
for such Riemann surfaces, as in Example 1.9.

Our first problem is to investigate these phenomena in detail for compact
Riemann surfaces of genus 2 and 3. This will be treated in the next section.

Our second problem is to construct a complex manifold 4 which parametrizes
compact Riemann surfaces of genus g (g=2) with a given type of automor-
phism. Such a manifold may be regarded as a generalization of Teichmiiller
space.

Our third problem is to clarify the relation between the following three

kinds of parameters:

(1) the point on 4 corresponding to a Riemann surface R.
(2) the periods of the integrals of the first kind on R.

(3) the parameters aj, . . . , @ in the equation (1.8.2).
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§2. A family of Riemann surfaces: 2(n, p)

2.1. Let » be a prime number, g a positive integer >1, and p a complex
matrix of degree g such that p”=1. Let us consider a couple (R, ¢) formed
by a compact Riemann surface R and an automorphism ¢ of R of order z such
that the representation of ¢ in the vector space V(R) of differentials of the
first kind on R is equivalent to p. We say that (R, s) and (R, ¢') are iso-
morphic if there exists a holomorphic bijection f: R- R’ such that fs=d'f.
We denote by <R. ¢ the isomorphism class of (R, s) with given » and p, and
we denote by 2(n, o) the set of all classes <R, &.

As an example if G= {1}, p=1, then 2 consists of all Riemann surfaces
of genus g; that is, 2 is nothing but the so-called space of moduli of Riemann

surfaces of genus g.

2.2. PROPOSITION.

(1) 2, po) =9 if 0o=L1, ...,1], n=2. ’
2) 2, p)=¢ if 2=0[1,1,¢"], n=3, ¢=e*™" 1<i<n-—1.

Proof. The assertion (1) is well-known (cf. [9; p. 416]). But here we
give a proof for both (1) and (2) by means of the formula of Riemann-Hurwitz:

2g-2=[G:112g" -2)+ e~ 1),
iz1

where g is the genus of R and g’ the genus of R'= R/G, and ¢ the ramifica-
tion degrees.

(1) Since g=g’, we must have » =1, which shows that 2(x, p)) =¢ for
n=2.

(2) Since g=3, g' =2, [G : 11=3, the left hand side of fhe equation is
equal to 4, but the right hand side =2#, which is a contradiction when #=3

(If =2, R must be an unramified covering of R').

2.3. Now we notice that every automorphism of R can be represented also
in the space V* = V*(R) of regular quadratic differentials of R. It is well-
known that the dimension of V* is 3¢ -3. Let o* be a matrix of size 3 g—3
such that p*" =1.

We denote by 2(n, o, p™) the set of all isomorphism classes <R, s> which
satisfies the following conditions:

(1) <R, o> represents a member of 2(n, p).
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(2) The representation of ¢ in the space V*(R) is equivalent to p*.

2.4..  Remark. If we put g=2, n=2, p=0[—-1, —1], o*=[1, 1, 1], then
2(2, o, p™) is the set of all <R, s>, where R is a Riemann surface defined by
the equation:

P =x(x—D(x—a)x—a)(x—ay)

and ¢ is an automorphism of R which maps x to x, and y to —y.
In order to study the properties of p, p*, we may use the trace formulas of
Eichler [7, 81.

2.5. LEMMA. Let o be an automorphism of R of order n and let ¢=e*™'",
We denote by tr p(s) the trace of the representation of o in the space V(R). Let
t be a local parameter at a point P which is fixed by o. Then o can be represented
as t-»Ct+ 8+ <« -, Here v is an integer such that 1<v<n - 1, and does not
depend on the choice of local parameters. Then we have the formula:

P~ N
tr p(o) = 1+i}=—_.‘l e

where r is the number of fixed points. If we denote by tr p* (o) the trace of the
representation of o in the space V*, then we have the formula:

" ) r C2\ci
o (g =§—~—1_C“-

2.6. Now we shall apply this lemma to our case. Let us suppose that ¢*
appears A times in the matrix p(¢), while in the matrix p*(¢), ¢¥ appears u
times, where 2=0, ... ,n—1. We may evaluate these multiplicities g, s by
the above lemma. But in order to determine u, we may use the following
lemma owing to Lewittes [12, 13].

2.7. Lemma. Let G be a subgroup of the group of automorphisms of R, o a
generator of G, v the number of ramified points on R over R', and g' the genus
of R'. Suppose that 2g'—2+r>0. Then

(2.7.1) pno=3(g'-1) +7r.

In fact, if we fix a function f; on R’, any quadratic differential is given by
g(df,)?, where g is an arbitrary meromorphic function on R. Then we have

only to evaluate the number of g(df,)* which are everywhere finite in the local
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parameter on R. Then we get easily the lemma by the theorem of Riemann-

Roch and the fonﬁula of Riemann-Hurwitz.

2.8. Let us now consider a Riemann surface R defined by the equation:
Y =T (x=ad®, niki+ -+« +ks,
i=1

where # is prime, 1=<k;<n (=1, ...,s), and the a; are distinct. Let ¢ be
an automorphism of R such that ¢ (x,y) = (x, &), C=e?™" There are s+1
fixed points, i.e., a1, ..., as and the point at infinity. At the finite point a;,
if we take the least positive /; such that k;/; =1 (mod ») and put k;l; = 1 + ngq;,
then »%/(x - a)% is a local parameter # which is transformed to #¢* by o.
Therefore »; is equal to ;.  As for the point at infinity, if we take the least
[/ such that /- g_.:ki+ 1=0 (mod ) and put [« 3 k; +1 = ngq, then y'/x? is a local
parameter ¢ which is transformed to #¢' by o. Therefore I is equal to vs:1.

We shall give a list which will be necessary in the following.

R vi v2 v3 va w5 A As Az Ad fo a2 p3 s
(D Y=xx—D(x—a)(x—~b) 11111 3210 21543

2 Y=gar—Dx-a)x—8°* 11124 2211 22 44 3
B P =xr—Dx—a)(x=5* 11223 2211 23334

Remark. In the above table w=3g’'—3+7r=2 is common to all these and
the number 2 coincides with the number of parameters.

(2) and (3) are contained in the same Q2(#, p), but are not in the same
2(n, o, oM.

2.9. We are going to classify compact Riemann surfaces of genus 2 with
non trivial automorphisms by investigating thoroughly all the possible 2(#, p).
We shall use the same notations as in 1.8.

(Case 1: p=0). As shown in 1.8, R can be expressed in the form
8
R:y'=(x-a)™(x—as)™, nt 2om;, 1=m;<n, 1<i<s,
i=1

and ¢ is a map which maps x to x, y to ¢y, where ¢ =¢*™/",
Since g =2, the formula (1.8.4) now gives 4= (%~ 1)(s—1) with a prime
n. Therefore only following three cases (i), (ii), (iii) may occur.

(Y =2, s=5: R12, p) is a family of <R, ¢>, where R is defined by the
equation
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YV=xx—D(x—a)(x—a)(x— as)

and ¢ is a map which maps x to x, y to —y.
(ii) »=3,s=3: 2(3, p) is a family of <R, s>, where R are defined by the

equations

R Vi V2 V3 V4 A Qe <R, d)

D y=x(x - D(x-a)? 1122 11
y3 x(x ’x 2 1 ), &
(2) Y¥=xx-1D*x—a) 1221 1 1)

and ¢ is a map which maps x to x, y to ¢y, where ¢ = e’ ™ We can see easily

that a Riemann surface of (1) is conformal to a Riemann surface of (2) in a

usual sense. We can see easily that 2(3, p) =¢ if p =[¢, ¢] or p=[¢?, ¢2.
(iii) n =5, s=2: 2.5, p) is a family of <R, s>, where R are defined by

the equations

R v v D3 A de 23 M {R, &
(1) Y¥=xx-1) 112 1100
TR bk, o
(2) P*=xx—1) 121 1100
(3) y¥=x(x—-1"* 344 0011
5o } {63), o
(4) =z (x—1) 4 4 3 0011
(5) y¥=x(x-1)° 133 1010
ys_ 20112 } <(5>, 0‘>
(6) y¥=x*(x—1) 331 1010
(7 yP=x@-1° 2 2 4 0101
e boan, o
(8) »¥=x(x—1) 2 2 4 0101

2 =if5

and ¢ is a map which maps x to x, and y to {y, where { =¢ We can see
easily that all of these Riemann surfaces are conformal to each other from (1)
to (4), and all of these are conformal to each other from (5) to (8). However

we can show that (1) and (6) are conformal to each other. In fact, if we

put
Y=3%(x-1),
X=z,
then we have
YP=X(X-1).
And we have also
y=Y?
x=X.
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Here ¥° = x*(x—1)%

Therefore we conclude that all of these are conformal to each other from
(1) to (8) in a usual sense.

(Case 2; p=1). Let » be the number of fixed points of . We see by
the formula of Hurwitz that 2= (z—1)». Only two cases (1) and (2) may
occur.

(1) =3, r=1: By Lemma 2.5 we see easily that this case does not occur.

(2) =2, r=2: We see that p=[1, —1]. We shall prove later that 2(2,

p) is not empty as a special case of a general theorem.

2.10. Remark. In the compact Riemann surfaces of genus 2, we see that
any of them cannot have a group of order 84 as a group of automorphisms (cf.
84=84(g—-1), g=2). Because any of them cannot have an automorphism of
order 7 as we see in 2.9, and so we obtain the assertion by a theorem of Sylow.
Of course, any compact Riemann surface of genus 2 is found at least in one

of these families in 2.9.

2.11. Remark. We know that any compact Riemann surface of genus g
cannot have an automorphism of order more than 10 g —10. Therefore in case
of compact Riemann surfaces of genus 3 we have only to study 2(z, p) for
n=2, 3,5, 7, 11, 13, 17, 19.

2.12. Remark. Q(n, p)=¢ if =7, 11, 13, 17, 19 and if p=[1, ¢, ¢*1 14,
pusn—1, C=¢*™"  In fact, by the lemma 1.2 it is sufficient to prove that
trp+trp is not equal to any rational number. But we see this fact by a

simple application of the theory of the Galois group.

2.13. Now we are going to classify compact Riemann surfaces of genus 3
with non-trivial automorphisms in the same way as 2.9.

(Case 1 : p=0). Since g =3, the formula (1.8.4) now gives 6= (% —1)-
(s—1) with a prime #, and so only the following three cases (i), (ii), and (iii)
may occur.

(i) n=2, s=7: 2(2, p) is a family of <R, ¢, where R is defined by the

equation
YV=xx—1(x-a)(x-a)x—-a)(x—a)(x—a;)

and ¢ is a map which maps x to x, y to —y.
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(ii) #=3, s=4 : 2(3, p) is a family of <R, s>, where R are defined by

the following equations

R
(1) P¥=a(x—1D(x—a)(x—a)
(2)
3)

4

P =2(x~1)(x-a) (x— a)*
P =xx-1)x-a)(x—a)

f=x(x- DU x— a)(x — ap)?

and ¢ is a map which maps x to x and y to ¢y, where ¢ = e? ™"

vy
1
1
2
2

V2 V3

1
1
2
2

1

1
2
2

vs Vs A1 A (R, »
1 2 21

} (1), o
21
1 2 1 2

} L(3), &
21 1 2

We can see

easily that all of these Riemann surfaces are conformal to each other from (1)

to (4) in a usual sense.

(ili) =7, s=2: 2(7, o) is a family of <R, s>, where R are defined by the

following equations
R
Group (a):

1) ¥ =x(x—1)

(2) y=x(x-1)°

3) Y=+ (x—1)"

(4) ¥y =x(x-1)°

Group (b):

(5) ¥y =2*(x—1)?

6) ¥y =x4(x—1)°

(7) ¥ =x"(x—-1)°

(8) ¥y =4°(x—1)"

Group (¢):

9 ¥y =x*(x-1)°
(10) ¥ =2 (x—1)°
(1) ¥y =2'(x—1D*
(12) ¥y =x*(x—1)°

Group (d):
(13) y' =x (x—1)°
(14) y"=2*(x— D"
(15) " =x (x—-1)*
(16) y" = x*(x - 1)°
(17) ¥ = 2% (x—1)"
(18) ¥y =x*(x—1)°

vy D2

D D -
Y O W

W N
w W Ul

NN = O,
D N o

G W U1 =
DD W NN
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Wi <R, o
1000
bk, o
1000
0111
b3, o
0111
I R G
0110 $e
1001
b, o
1001
1010
b, o
1010
0101
11,
0101 -
0100
0100( <13,
0100
1011
101 1} {(16), o>
1011
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We can see easily that any two curves of the same group are conformal
to each other. Furthermore we can prove that (1) is conformal to (5). In

fact, if we put
Y=y'/xx-1), X=1,
then we have
Y'=X(X-1.
And we have also
y=Y% x=X.

Here y" = 2*(x—1)%. Furthermore we can prove that (8) is conformal to (9).

For the proof we have only to put
Y=y/x(x-1), X==x

Here y" = £*(x~ 1)

Thus we can conclude that all of these are conformal to each other from
(1) to (12) in a usual sense.

(Case 2: p=1). Let r be the number of fixed points of . We see that
6—2=(n—1)7r by the formula of Riemann-Hurwitz. Therefore only the
following three cases may occur.

(1) =5, r=1: By Lemma 2.5 we see easily that this case does not occur.

(2) =3, r=2: By Lemma 2.5 we see that the possible p is as follows:

1 0
P4 = ¢ )
0o ¢

(3) n=2, r=4: By the same Lemma as above, we see that the possible

1 0
Pp = -1 )
0 -1

The general equation of R is given in 1.8 (Case 2: p=1). We shall
prove later that both 2(3, p.) and 2(2, pz) are not empty (cf. Theorem 3.2).

o is as follows:

(Case 3: p =2). By proposition 2.2 (2) the possible p is as follows:

1 0
Pc = 1 )
0 -1
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The general equation of R is given in 1.8 (Case 3: p =2). We shall prove
later that @(2, pc) is not empty.

2.14. Remark. In (Case 2) (1) of 2.13, we have only to check following
pio=[1¢ ¢ ,m=101,¢2¢] p=[1 ¢, ¢'], and ps=[1, ¢ ¢'] by Lemma 1.2.

2.15. Remark. In compact Riemann surfaces of genus 3, we see that only
two types: 3y =x(x-1), ¥ =x2(x—1)® have an automorphism of order 7.
Moreover we see that the former cannot attain the maximum of automorphisms
of genus 3. Since it is hyperelliptic, we get the assertion by a theorem of
R. Tuji [20].

2.16. Remark. It is known by Klein that the Riemann surface defined by
the equation: xy°+9y+ x*=0 has the group of automorphisms of order 168
(=84(p—1); p=3). Now we can see the Riemann surface defined by the
equation y" = x(x— 1)® is birationally equivalent to the Riemann surface of Klein.
In fact, if we put

x=Y/X, y=Y'/X,
then we have
Y+ X'+ XY=0.
If we rewrite this equation by »°+ £*+ xy =0, and put
xr=Y/X, y=Y¥X,
then we have
Y+ X+ X*=0,

and so we see that this equation is birationally equivalent to »" = x(x—1)%

2.17. TueoreM. There exists one and only one Riemann surface up to conformal
equivalence which has a group of automorphisms of order 168 among compact

Riemann surfaces of genus 3.

This theorem follows easily from Remark 2.15 and Remark 2.16.

2.18. It would be interesting to study automorphisms of compact Riemann
surfaces of higher genera from the view-point of us.

In our study the decision of the surfaces for the cases of p=1 is left to
future, since it is beside the main purpose of this paper.
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§3. A family of Riemann surfaces: 2(g', n, {v1,...,v,})

3.1. In view of the results of §2, it is natural to define certain subfamilies

of 2(n, p) with respect to the exponents {»i, ..., »,}. Let n be as before a
prime number, and {»i, ..., »,} be a set of positive integers such that 1<v; <#.
Let ¢=¢®™/", We denote by 2(g’, n, {», ..., v,}) the set of all isomorphism

classes of (R, o) satisfying the following conditions.

(1) ¢ is an automorphism of R of order » with » fixed points.

(2) R/G is of genus g', where G is the cyclic group generated by o.

(3) Let # be a local parameter at a point P; of R which is fixed by o.
Then s can be represented as #; »C*¢; +C'ti+ - - +.  Here the coefficient ¢* is
an z-th root of unity and does not depend on the choice of local parameters.

In this case we shall say that ¢ has the exponents {1, ..., v/}.

3.2. A necessary and sufficient condition for Q(g', n, {v1, ..., vs}) not to be
empty. Let S be a compact Riemann surface of genus g’ and let (R, o) be a
cyclic covering of prime order z. Let the ramification pointson Rbe Py, ..., P,
and the projections of them to S be Q, ..., @, respectively. Let t; be a
suitable local parameter at P;, then we may assume that

o(t)) =C¥t;, C= ezm'/n,

and let Kr and Ks be the algebraic function fields of R and S respectively.
Then there exists an element y of K such that ¢(y) =y, Kz = Ks(y) and y" € K.
Let the expansion of y at the point P; be

y=cithi+ e,

then we have ¢ =¢"%, Therefore we have viki=1 (mod #). On the other
hand if we consider the divisor of " on S we have

gki Q,' +nD
as the divisor. Here D is a divisor on S. Now the degree of >,k Q; + #D is
i=1
Siki+ndeg (D) =0.
i=1

Therefore we have > k=0 (mod #). This is a necessary condition.
i=1

Conversely we shall show that this condition is Suﬁ’icient. By the assump-
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tion we can put >,k; = »nl, where / is an integer. The degree of the divisor
i=1

Sk Qi — #lQy is equal to zero. Here @, is an arbitrary point on S. Now the
i=1

divisor class group of degree 0 of the algebraic function field K, is isomorphic
to a jacobian variety. Since the jacobian variety is a complex torus, there
exists the point of order » for an arbitrary point on the variety. Therefore
we have an element z of K, and a divisor E of S such that

ikiQi ~nlQo=nE + (2).

i=1
—_
Then Ks('V z) is an algebraic function field of our desired Riemann surface.
3.3. Remark. We are now in a position to prove the existence of Riemann

surfaces which are left in 2.9 and 2.14.

The non-empty of 2(2, p) for p=[1, — 1] is proved as follows. From» =2,
r=2 and p=[1, — 1] we can derive that »;=1 and »»=1. Therefore by the
condition p;k; =1 (mod 2) we see that k,+£,=0 (mod 2).

As for the non-empty of 2(2, p) for p=1[1, —1, —1] we can derive »; =1,
vp=1, v3=1, and vs=1 from =2, r =4 and p=[1, —1, —1]. Therefore we
see that i‘kizo (mod 2).

The ;dstence of 2(3, p) for p=1I1,¢, ¢*]is shown as follows. We see that
vi=1, and »»=2. Therefore 2/y=1+31/;, and 2k, =1+ 3, where [/, is an odd
number. Then we see that &, +4 =3(1+54)/2=0 (mod 3).

As for the existence of 2(2, p) for p=1[1,1, — 1] we must recall that » = 0.

Therefore the condition z_]lk,- =0 (mod 2) is always satisfied.

3.4. 20, n, {vi,...,v}) is a family of <R, o>, where R is defined by the
equation :

Yi=(x—a)™: - (x—a)™, ntm+ -+ +ms, r=s+1,

and o is an automorphism of R such that (x, y)-(x, C¥), C=e"™/". Here

mi(i=1, ...,s) are the numbers which are completely determined by {v:, . . . , vr}.
Proof. By 1.8, we see that R is defined by
Y= (x—a)fe o (x—a))®, ntki+ - +ks; 1<ki<n, i=1,...,s

and ¢ is defined by (x, y) - (x, Cy),_C:ez"""‘. Then as is seen in 2.8, the k;
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are determined by kivi=1 (mod #) for i=1, ...,s and p,(Ek,’)-HEO (mod
i=1

n).

3.5. Remark. 82(g', n, {v1, ... ,vs}) is a subfamily of 2(n, p), where pis a

matrix of size g which is determined by the trace formula of Eichler:

_ r C\ti
tr (p) =1+ g;wl_w

. where ¢ =¢?™/"

and g is determined by the formula of Riemann-Hurwitz:
2g—2=n2g'-2)+(n-1r.

3.6. Now we notice here that the number of parameters roughly spoken
is equal to
§s—2=3g"-3+r.
But this number is equal to u, i.e., the number of linearly independent quadratic
G-invariant differentials (See Lemma 2.7). Therefore it will be natural to

construct the theory of Teichmiiller space for 2(g’, %, {vi}).

3.7. For that purpose we begin our study by recalling the definition of
Teichmiiller space [1]. Let R, be a compact Riemann surface of genus g=2.
We consider all pairs (R, a) consisting of compact Riemann surfaces R of
genus g and homotopy classes « of topological mappings of Ry onto R. Two
such pairs (R, «) and (R, a’) will be called equivalent if there exists a con-
formal mapping of R onto R’ which belongs to the homotopy class a’a™'. The
equivalence class which contains (R, a) will be denoted by <R, a). The set
of all classes <R, a) will be denoted by T, and is called Teichmiiller space
of genus g.

There is another definition of Teichmiiller space Tg. Let us choose a
point p= R and let =(R, p) be the fundamental group formed by the homotopy
classes of closed curves from p. The group m (R, p) can be generated by 2 g
generators A, By, ..., Ay, Bg which satisfy the single relation

g
IMA;B:AT'B " = 1.

=1

Any such ordered system of generators is called a canonical system. If ¢ is
another point on R we can associate a unique isomorphism of m (R, p) to

m(R, ¢) with every arc y from p to ¢, which is denoted by T".
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Let %, and ¥, be canonical systems for = (R, p) and =.(R, q¢) respectively.
We shall say that 5, is equivalent to 5, if and only if 5, = T 3, for some r;
the not.ation means that each generator in 5, is transformed by 7' into the
corresponding generator in .

Suppose that f is a topological mapping of R onto another surface R'.
Then any canonical system 3 on R is transformed into a canonical system f(J3)
on R' formed by the images of the generators. We shall say that f maps
(R, 2) onto (R', 2") if and only if f(X) is quivalent to 3. Moreover if f is a
conformal mapping we say that f maps (R, &) conformally onto (R', 2') and
the two pairs are said to be conformally equivalent. The equivalence class
which contains (R, 3) will be denoted by <R, ).

The set of all classes <R, 3> defines also a Teichmiiller space.

We remark that our two definitions are equivalent. In fact, we know that
if (R, 3) and (R', ') are two members of the same genus, then there exists
a homeomorphism f : R- R’ such that f maps (R, 3) onto (R', 3') (cf. [4],
[141). And we know that if f maps (R, 2) onto (R, 2') and % maps (R, ~)
onto (R’, 2') then the mappings f and / are homotopic. Conversely, if #2: R—R'
is a homeomorphism homotopic to f, then %2 maps (R, J) onto (R, 3') (cf.
[4D.

Now we denote by <R) the class of Riemann surfaces which are conformally
equivalent to R and the set of all classes <R> will be called the space of moduli

and will be denoted by R,. Here g means the genus of Riemann surfaces.

38.8. Let 2(g',n,{vi, ..., )) the set of all isomorphism classes of (R, ¢)
which is defined in 3.1. Let (R, o) and (R, ¢') be two couples such that {R, &
and <R', ¢’> belong to 2(g’, n, {»;}). We say that (R, ¢) and (R', ¢') are
topologically equivalent if there exists a topological mapping f of (R, ¢) onto
(R’, 6'). Here a topological mapping f of (R, #) onto (R’, s') means a topological
mapping f : R— R' such that fo = ¢'f. We shall also say that <R, ¢> and <R/, ¢>
are topologically equivalent in this case.

38.9. We fix a couple (R, g0) such that <R, s> belongs to 2(g’, #, {zi})
and denote by I'(R,, o) the set of all the elements <R, o> of 2(g’, n, {vi}) such
that (R, s) is topologically equivalent to (R, vo).

Let us consider a triple (R, ¢, «) formed by a couple (R, ¢) such that

{R, o € T'(Ry, o)), and a homotopy class a of sense preserving topological
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mappings of (Rs, a0) onto (R, ¢). Here topological mappings f and g of (R, o)
into (R, ¢') are homotopic means that there exists a continuous mapping
h(z, t) of the product Rx[0, 1] into R’ such that f(2) = h(z, 0), g(2) = h(z, 1).
It should be noticed that we do not necessarily require the bridge mapping 2
to satisfy the relation 4o = d'h. Obviously our definition is well defined. @ We
say that (R, ¢, «) and (R', o', a') are isomorphic if there exists an isomorphing
of (R, o) onto (R', s') which belongs to the homotopy class a'a”’. We denote
by <R, s, «> the isomorphism class of (R, s, ) and the set of all classes
{R, ¢, @> is denoted by A(g’, n, {vi}; Ry, a5) or briefly A(Ry, a0), or A.

The space I'(R,, 00) corresponds to the space of moduli R, and A(R,, go)
corresponds to the Teichmiiller space Tyg.

Now we shall make A(Ry, o) into a topological space and furthermore a
complex analytic manifold. For that purpose we shall make use of a result of
Teichmiiller [19]. -

3.10. Lemma. Let <R, a> and <R', a’> be arbitrary two distinct points of Tg
and choose (R, a) €{R, a>, (R', a"Ye{R', a'y. Then there exists a quasi conformal
mapping f of R onto R' which belongs to the homotopy class a'a™ . Moreover
among such mappings there exists one and only one mapping fo for which the
minimum of the maximal dilatations is attained.

The dilatation of fo is a constant K and if fo is not conformal, then the
characteristic n= (fo)z/ (fo)z is given by a regular quadratic differential ¢dz’ on
R as

u=kp/lel, k= (K-1/(K+1)  (0<k<1).

Here ¢ is determined uniquely up to a positive factor.

Conversely, if we fix an (R, a) and give a regular quadratic differential ¢dz’
on R and a constant k (0<k<1), then we can determine uniquely an <R', a')
and an extremal quasi-conformal mapping fo: (R, «) - (R, a'), such that the
characteristic u of fy is equal to kp/|¢|.

Now we have an analogous proposition to the above in our case.

3.11. DeriniTION. By a quasi-conformal mapping of (R, g, a) to(R’, o, a'),
we understand a quasi-conformal mapping f of R to R’ which belongs to the
homotopy class a’a”' and such that fs = ¢'f. We shall also say that the mapping

f is a quasi-conformal mapping of <R, g, a)> to <R', ¢, a’> in this case.
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3.12. Prorosition. Let <R, o, a) and <R', o', a'> be topologically equivalent.
Then there exists a quasi-conformal mapping of <R, o, a> to <R', o', a’> and
moreover among such mappings there exists one and only one mapping fo for which
the minimum of the maximal dilatations is attained.

The dilatation of fo is a constant K and if fo is not conformal then the
characteristic p= (fo)z/(fo)z is given by a o-invariant quadratic differential ¢dz*

on R as
u=ko/lel, k= (K-1/(K+1) (0<k<1).

Here ¢ is determined uniquely up to a positive factor.

Conversely, if we fix a R, o, a> and give a regular quadratic o-invariant dif-
ferential ¢dz* on R and a constant k (0<k<1), then we can determine uniquely
an {R', d', «'> and an extremal quasi-conformal mapping f, such that the characteristic
u of fo is equal to k0/|¢].

Proof. We see generally the following fact. Namely, let <R, 4, a> and
R, o', «’> belong to A(Ry, os) and choose (B, ) €<R, o> and (X', ') € <R, o>.
By virtue of our definition of A(R,, ), there exists a topological mapping f
of (R, s) onto (R', ¢') belonging to the homotopy class a’a”’, then for all
topological mappings %2 which map (R, a«) onto (R', a’) we must have

ho=dh.

In fact, we have ho=fo, fo=d'f and o'f=d'h. Therefore we get the assertion.
Here the notation f= g means that f is homotopic to g.

Now let f; be the extremal quasi-conformal mapping of (R, «) onto (R, a').
The existence of f; is guaranteed by Lemma 3.10. Since f; is one of the #,
which we have considered in the above, so we have

Joa=dfo.

Therefore we have
ez fy.

On the other hand the maximal dilatation of ¢'“'fys is equal to the maximal
dilatation of fo. Therefore by the uniqueness of the extremal quasi-conformal

mapping we must have

' Yoo =fo O foo =d'fo.
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Therefore we have

do(2)).
do(2)

= u(z) (dz).

#(o(2)) dz

for the corresponding characteristic n. From these facts we conclude that
there exists an extremal quasi-conformal mapping f, and that the corresponding
quadratic differential is ¢-invariant. ‘

Now we prove the converse. By Lemma 3.10, under our assumptions we
can determine uniquely an <R', a'> and an extremal quasi-conformal mapping
fo: (R, @) > (R', a') such that the characteristic ¢ of f; is equal to k¥/|¢]|.
Then we see that x4 is ¢-invariant and so fiofs ' is conformal. In fact, we can
see easily that if u is s-invariant, then the characteristic of fos is ¢ and so
foafs' is conformal. Therefore if we denote foof;' by o, then 4 is an auto-
morphism of R' sﬁch that ¢/"=1. Moreover (R, ¢, a’) can be considered as
a representative of an element of A(R., o). Because the genus of R’ is equal
to g and the number of fixed points is equal to the number of fixed points of
o. Since n is prime, it is easy to see that the genus of R'/{s'} is equal to g'.
Moreover we see that »; = v}, 2=1, . . ., 7. Infact, f; is an orientation preserving
topological mapping such that +'f; = foo with conformal mappings o, J'.

We denote the above <R', ¢, a”> by <R, s, a>* following Bers's notation in
the classical theory.

3.13. Teichmiiller defines a distance between <R, «> and <R', a’> by log
K, where K is the constant dilatation of the extremal quasi-conformal mapping

of R to R’ in the homotopy class a’a™.

Now we can also define a similar
distance between two arbitrary points <R, g, a0, <R, o', a’> of A(Ry, ) by the
same method of Teichmiiller. Indeed, we see that there exists one and only
one quasi-conformal mapping f of <R, s, a> onto <R, ¢, a'> for which the

minimum K of the maximal dilatations is attained. Therefore if we put
dis (KR, g, a>, <R/, o', a’>) =log K
then A(R,, 0,) becomes a metric space.

3.14. TuroreM. The metric space A(Ry, o) is homeomorphictoans=3g' —3+r

dimensional ball B.

Proof. Let ¢, ..., ¢s be a basis of the vector space of s-invariant regular
quadratic differentials on R. Let ¢=({, ..., ¢s) be an arbitrary point of B.
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2

If we put [¢]= (LIC, ) , and consider a mapping:

B=2¢(-<R, g, 0%,

s

where u is equal to !CI(ZC, ,)/l ZCN’ ' Then we are able to see that this
mapping is topological. ngn fact, by the classical method we see that it is
continuous and by Proposition 3.12, we see that it is a one to one and onto
mapping. And as ¢ tends to a boundary point of B, <R, s, a>* does not tend
to any interior points. Therefore our mapping is topological and the assertion

is proved.

3.15. We observe that the correspondence <R, 4, ap - <R, a> defines a
mapping of 4 into T, which we denote by .. This correspondence is well-
defined, that is, if (R, s, «) is isomorphic to (R, ¢', ') then obviously (R, «)
is equivalent to (R, a’). If <R, a> and <K', a’> are corresponding points to
<R, s, a> and <R', o', a'> respectively, then we have ks=s'h for every topological
mapping % : (R, a) - (R', a'). Conversely let <R, a> and <R', a’> belong to T
and choose (R, a) € <R, a) and (R, a') <R, «’>. Let ¢ and ¢' be automorphisms
of R and R’ respectively and we assume that there exists a topological mapping
fof (R, @) onto (R, «') such that fo=s'f. Furthermore we assume that <R, ¢, «>
is an element of A(Ry, o). By 3.12 we see that under our assumption the
extremal quasi-conformal mapping fy of <R, > onto {R', a’> is a mapping of
(R, o) onto (R, ¢'). Therefore we can conclude that {R!, ¢, a’> belongs to
A(Ry, o) by 3.12.

3.16. Let <R, a> be an element of Ty and assume that 4, is an automor-
phism of R; such that {R,, s> belongs to a family 2(g’, », {vi}). Then we
denote by T\ Ry, ao) all the elements <R, a)> of Ty which satisfy the relation:

Jao=df,

with ¢ and f such that ¢ is an automorphism of R and f is a topological

mapping of (R, as) onto (R, a).
Now let TRy, o) be naturally topologized.

3.17. The mapping ¢ in 3.15 of A(R, a) to T(Ry, ) is bijection and
moreover topological. In fact, let <R, > be an arbitrary element of T(Ry, oo).

Then <R, a> has an automorphism ¢ such that fyso = ofy, where fo is the extremal

https://doi.org/10.1017/50027763000023990 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023990

142 AKIKAZU KURIBAYASHI

mapping of (R, ay to <R, «>. That is, we can correspond uniquely an element
(R, 5, 0> of A(Rs, a) to <R, «>. Therefore ¢ is a one-to-one and moreover onto
mapping. We see easily that it is topological.

We shall summerize above properties in the following proposition.

3.18. ProprosiTiON. Let R, a) be an element of T(Ru, a) C Tg. If the
extremal quasi-conformal mapping 1 of <R, a> onto {R', a'> € Ty corresponds to a
o-invariant regular quadratic differential of R, then <R', a’> belongs to T(Rs, d0).
Conversely, if <R', a'> belongs to T(Rs, oo) then the extremal mapping f of

(R, a> onto {R, a'> corresponds to a o-invariant regular quadratic differential of R.

Proof. The assertion follows easily from 3.12, 3.15, and 3.16.

3.19. TurorEM. TRy, o0) is an s (=3 g'— 3 +7) dimensional non-singular
analytic submanifold of Te.

Proof. Let <R, «> be an element of T(R,, ao) and let ¢;dz’ (j=1,...,3g—3)
be a basis of regular quadratic differentials of R. We may sssume that the
first 3g’'— 34 r of the above basis are g-invariant. Now let p|dz|(p>0) be a
s-invariant metric, then by a theorem of Weil [21] for sufficiently small ¢ u; =c®;/p
(j=1,...,3g"'—3)is a Beltrami basis of R. The first 3 g’ —~ 3 4 » of the above

Beltrami basis are s-invariant.
3

39—
It is known by Bers [3] that for p= > zju;
i=

(Zx, .« . ey Zag—a)‘*(R, ar)"

is a C”-homeomorphism of a neighborhood of the origin of the complex number
space C*¢7° onto a neighborhood of <R, «>. ‘We call these z; the coordinates
associated with complex Beltrami basis x4 (j=1,...,3g-3). Then it is
known that the coordinates associated with Beltrami basis are complex analytic
coordinates in Tg.

Now introduce the complex analytic structure in a neighborhood U of any
point <R, a>. Then by Proposition 3.18 we can show that UNT(Ry, o) is

identical with all points (21, ...,20, ...,0). Thus we get the assertion.

3.20. TueoreM. If 3 g'— 3+ 7 is equal to one, then T(Ro, o) is holomorphically
equivalent to the upper-half plane (or the interior of the unit circle).

Proof. By Theorem 3.19, T(R,, g9) is a one dimensional manifold and by *

https://doi.org/10.1017/50027763000023990 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023990

ON ANALYTIC FAMILIES OF COMPACT RIEMANN SURFACES 143

Theorem 3.14 it is simply connected. Therefore it is holomorphically equivalent
to either the unit circle or the punctured complex plane.

However it is known that 7, is holomorphically equivalent to a bounded
domain in complex number space (cf. [5]). Therefore there are non-constant
bounded and holomorphic functions on T(R,, g,) and so we conclude that it is

holomorphically equivalent to the upper-half plane by the theorem of Liouville.
3.21. THEOREM. A(Ry, o) isa 3 g'—3-+r dimensional complex analytic manifold.

Proof. By 3.17 and Theorem 3.19 we can endow A(R,, ) with an analytic
structure such that the natural mapping ¢ is holomorphic. In fact, T(R,, )

is a non-singular analytic submanifold of 7.

§ 4. Embedding of 4 into a bounded symmetric domain
4.1. In 3.9 we fix an element <Ry, s> in 2(g', #, {v;}), and we denote by
I'(Ry, o) all the elements of 2 which are topologically equivalent to <Ry, o).

However if g’ =0, then we have the following lemma.

4.2. LeMMA. Any two elements of 2(0, n, {v1, . . . , vr}) are topologically equi-

valent.

Proof. By 3.4, £2(0, n, {»;}) is a family of <R, s>, where R is defined by

the equation:
YVi=—a)™x~a)™ - (x—as)™, nimi+ oo Fmg, r=s+1,

and ¢ is an automorphism of R such that (x, y) - (x, {y), ¢=¢"'". Then
m; (i=1, ..., r) are completely determined by »i,. . ., .

Now taking a suitable branch, we may assume that
logy = —I—Emk log (x — ag).
n k=1

Let yo(go, %), . .., ¥n-1{gs, x¥) be 7z function elements at an ordinary point
g R/{s}. We may assume that Cyo =31, Pyo=%, ..., ¢ '99=9yn-1. Let K,
be a curve on R from po to ¢'ps such that the projection C, does not pass
through any branch points a;,...,as, . Where p, is a point over g.

Performing continuation along C, we have
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1 & dx
chd log y0(go, ®) = ?%m 5% Fan

= %g kI(ak) Cv)'

where I(ar, C,) is the index of the curve C, with respect to ax. By the con-

tinuation, y.(x) is transformed to y.(x). Then we have

log ¥v(qe, %) —log %(qo, %) = }_,Mkl(ak, C,)  (mod 2x3).

But by the assumption we have »,(x) =¢"y(x). Therefore we have

27‘t2

log¢* = Emkl(ak, Cy) (mod 2ri)

and so we obtain
4.2.1) v= “lmkl(ak, C,)  (mod n).

This relation is fundamental in our argument.

Now we construct a topological mapping f : R— R’ which satisfies fo = ¢'f,
provided that <R, o) and <R', ¢"> belong to 2(0, n, {»;}). We may assume that
R’ is defined by

Y= (x'—a)™e - (= al)™

and o is an automorphism of R’ such that (x', ¥') > (&, &), ¢=€**/". Let S
and S’ be R/{s} and R'/{s'} respectively. Let II and II' be the natural projec-
tions of R to S and of R’ to S’ respectively.

We know that there is a diffeomorphism g of S to S’ which takes a; into

al,i=1,...,s. Then we have a local diffeomorphism:

-1
II'gII : p-p',

such that p, »p;. Let IT(py) be ¢, and g(q) be q;. Let K; be a curve from
o to a point p such that the projection C; does not pass through any branch
points. Let K, be another such curve and C: be the projection. Then we
denote by C the projection of the closed curve K;'K; from p, to po on B. By

the above formula (4.2.1) we have

(4.2.2) imkl(ak, C) =0 (mod #)
k=1
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for the closed curve C.

Now put Ci=g(C), C;= g(Cy), and C'=g(C). Then we have by the
formula (4.2.2)

(4.2.3) Svmal(dh, C) =0  (mod ).
k=1

If we lift C} to a curve from p; to p' and C; to a curve from p, to p" then
by (4.2.3) we see that p’ must coincide with p". Therefore we can define a
mapping f of R to R'.

Now let K be a curve on R from p, to opo. The projection of K is a

closed curve C from ¢, to ¢, and so we obtain by the formula (4.2.1)
1=S mrI(ar, C) (mod 7).
k=1

Therefore we obtain also

8

1= k‘lmkl(ai, cn (mod 7).

From this we can assert that f commute with given automorphisms.

4.3. By Lemma 4.2, using the whole members of 2(0, #, {vi,. .., v,}) we
are able to construct the generalized Teichmiiller space A(Ry, a0).

Now we may say that one of our main problems is to investigate the

holomorphy of parameters ai, ..., as of Riemann surfaces:
(4.3.1) YVi=(x—a)™x—a)™- - - (x—a)™, n+Sime, r=s+1,
k=1

with respect to the complex structure of the generalized Teichmiiller space 4.

For that purpose we begin by studying the periods of the integrals of the
first kind on R.

4.4. Now let <R, o> be an element of 2(0,#, {»;,...,r,}). By Lemma

2.5, we have a matrix representation of ¢ in the form:

g 0
s =|
0 ‘C“ﬂ'
We must notice here that ¢™,...,¢% are primitive n-th roots of unity and
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any of them is not equal to 1. Now we denote by A a point <R, ¢, ae> and
we shall find a suitable system of basis (1), . . ., wg(2) of differentials of the
first kind such that we get the same representation ¢(¢) for all 4 in a neighbor-
hood V(4) with wi(4), . .., weg(d) in the following 4.5-4.8.

4.5. Lemma (Bers [61). Let Ty be the Teichmiiller space. One can associate
to every v & Tg a bounded Jordan domain B(r) and 2 g Mobius transformations
z2-Aj(z, ©), z-Bj(z, %), j=1, ..., g such that the following conditions are
satisfied.

(1) The Aj and B; depend holomorphically on v and satisfy the relation :

9
(4.5.1) _HIA,-B,-A}‘B}‘ =1
o

For every fixed v & Ty they generate, with single defining relation (4.5.1), a fixed
point free discrete group G(r) of conformal self-mappings of B(r), so that
R(7) = B(t)/G(x) is a compact Riemann surface of genus g. Rit,) is the surface
R.

(2) Denote by Z(t) the basis of the fundamental group of R(t) defined by
Ai,...,Bgand by f-= a quasi-conformal mapping of R. onto R(7) which takes
S(ro) into Z(tv).  Then the point t corvesponds to the couple <R(t), (f-,:)>, here
(f) means the homotopy class of f.

(3) If zbe denote by W(r) fhe complex vector space of holomorphic functions
©(2), z€ B\t) for which ¢(2)dz is invariant under G(c) there exist in Wir), &

distinguished: elements, pr(z, v) determined by the conditions
A45(2, 1)

(4.5.2) g (2, ©)d2 = bik;
z

these correspond to the normalized Abelian differentials of the first kind on R(r)
belonging to the “‘ canonical” homology basis 3(t) determined by 3(t). The period
matrix of R(t) belonging to 3(t) will be denoted by (mij(t)). It has the elements

Ri(z,7T)

(4.5.3) mii(r) = SZ P2, ©)dz

and is a point in the Siegel space of symmetric matrices with positz:ve definite

imaginary part.

(4) If we denote by M the domain in a complex number space of 3 g—2

dimensions which consists of points (z, t) with z< B(t) and t< Te, then the
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Sfunctions pe(z, t), k=1, . .., g are holomorphic in M, and the mapping © - (m;j(<))
of the Teichmiiller space into the Siegel space is holomorphic.

Now let us apply the above lemma to our case.

4.6. Let (R™ o) define an element A* of 4, and let (R, o) define an element
Aof A. As seen in Theorem 3.21 there exists an holomorphic injection ¢ : A - T%.
Put «(2*) =<* and ¢(1) =r. Then we can take R(r*) for R* and take R(r)
for R. Let Hi(R(r), Z) be one dimensional homology group of R(r) with
integral coefficients. Let ¢4(o; 1) denote the endomofphism of Hi(R(7), Q)
induced naturally by the automorphism ¢ of R(r), where Q is the rational
number field.

By Lemma 4.5, r =¢(1) corresponds to {Rit), (f:+:)> and every member of
(f«+) takes X(c*) into 3(r). And the extremal quasi-conformal mapping f of
R(z*) onto R(r) which belongs to (f:«) takes not only I(<*) into 3(r) but
also commute with the automorphisms; that is, we have

fo* = qf.
This f induces an isomorphism fy:
Hi(R(<*), @)~ H,(R(7), Q).
Furthermore we can see that the following commutative diagram:
(R, @ Z5H(R(), @)

[estor 2 l#ata
H(R(z*), Q) —>HL(R(T) Q)

hold. In fact, from fo* = of we can easily obtain fi¢s(s* ; 2%) = @u(o ; Dfs.
Let A;(z, r) be the homology class which is defined by A;(z, ), and Bi(z, )
be the homology class which is defined by Bi(z, v). Now put

b (2, T)ag * bi(z, ©)
au(T) .9

pg(z, T)d pg(z, T)

or simply P(z, 7)o = A(z)P(z, t), then we have

aij(r) = S,( T)(p,-(z, t)dz)o = S . pilz, t)dz.

Ay(z, ?2(0;0)45(2, %)
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Since ¢4(a, M)Az, ) € Hi(R(r), Q) we may write
g _ [ .
0o, VAi(z, 1) = Zlaji(T)Ai(Z, )+ Zlﬁﬁ( t)Bilz, o).
It is easy to see that a;i(r) and Bji(r) are constants. In fact, we have
<P*(o‘, l)f*A](Z, T*) = ¢*(0‘, Z)Aj(z, T)
g -~ g -
=Maji(v)Ai(z, t) + 21 Bji(z) Bi(z, ©)
=1 i=
and on the other hand we have
~ g - q ~ w
Ja (™, 1) Aj(z, ©%) =f*(2 aji(+*) Ailz, o) + Elﬁji(f*)Bi(Z, o) )
=1 =
g a -
= Zlcxﬁ(r*)]l,‘(z, 7))+ gﬁji(f*) Bi(z, 7).
Therefore we obtain
aji(t) = aji(<*) and Bji(r) = Bi(<™).
Then by Lemma 4.5, we see that
aij(t) = S . (pilg, D)dD e
djz, 1)

=f pilede+| e, Ode

Sk dr(z, T) 2851 P2, %)

= Ekajk(r*)aki + ;Bj}e(f*) mri( )

and so all a;;(r) are holomorphic in T(Ry, ¢o). By Theorem 3.21 r=:(1), is
holomorphic. Therefore A(¢()) is a holomorphic matrix in A(R,, a0). We
denote this- matrix by A*(1) and the vector P(z, ¢(2)) by P*(z, ).

By our assumption we may assume that A*(1) is equivalent to ¢(¢) for
all 2 A(Ry, o). Then we have the following proposition.

4.7. Proposition. Notations being as above, for an arbitrary point 1™ € A,
there exists a non-singular and holomorphic matrix X(X) in a sufficiently small
neighborhood V(A*) such that

X DA DX = ¢(8).

Proof. Let f(x) be the characteristic polynomial of ¢(¢), and put

flx) = IT_I1 (x—¢O™,
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where the ¢; runs over all the distinct elements of the diagonal of ¢(¢) in 4.4.
If we put

filx) =TI (x~¢;)7,
3%i
then there are 7 polynomials Pi(x), ..., P(x) such that

Px)filx) + -+ - + Pr(x)fr(x) = 1.

Therefore we have
P(ATONAAT D)+ + + - + PL(AT (A D) = L

Put Pi(A*ONSf(A%(A) = Si(A*(1)). By the simple application of the theory
of linear algebra we can choose g vectors i, . . . , Ig such that

S;(A*(l*))& s ey Sx(A*(l*))En,,
Sz(A*(X*))En.ﬂ, e ey Sz(A*(l*))gnﬁnzy

e o o
.

SrCAX A N Eayt e anpmgtty -+« 5 SHAT ) e,

are linearly independent. Now if we put
X(l) = (SI(A*(X))&; « e ey Sf(A*(Z) )gg)

then X(2) is not only a holomorphic matrix in 2 but also a non-singular matrix
in a sufficiently small neighborhood V(1*).

Thus we see that

A*(DOXD) = (A*Q)SUAT ANy, .« . ., ATDS(AT())Le)
= (S ANz, . . ., CSHAMD)LL)
=X(ep(4).

4.8. Now we are in a position to prove the assertion stated in 4.4. Put
XMAPHz, ) =wlz,2) = oz, D), . .., wglz, D)),
then for all 1€ V(1*) we have the desired system w(z, A). Namely we have

w(z, Do = (XD P*(z, e
=X"UNAMRP*(z, 1)
=¢(OX Q) P*(z, 2),
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therefore we see that
w(z, Vo =9l wlz 1)
for all A& V(3*).

4.9. Every element a of Q(¢) is of a form: a=ao+al+ * * * 4 an-2C""7,

where aq, a4, . .., an-2€ Q. If we define ¢,(a ; 1) by
(4.9.1) Sa*(a H l) =qo+ 01‘/7*(0 M A) + oo +61n_2‘,0*(d s A)"ﬂz»

then naturally we have

0 (&5 DN =0.(0; 2.
Now ¢.(a ; 2%, ae K= Q(¢) operates on H(R(<*), @), and so we can
find « = g/h vectors Z;(2*), . .., Zu(3*) such that
(4.9.2) H(R(%), Q) =0 (K ; 3NZ,GD - - - €B<P*(K 5 ANZ.00%),

where [K: Ql=n~1=2h, and ® meané the direct sum.
If we denote by Z;(4) the images of Z;(4*) by the mapping fi, then we

have

(4.9.3) Hl(R(T), Q) =SD*(K ’ A)Zl(A)GB s @So*(K; A)Zu(l)

Now if we put

(4.9.4) () =j

Zy(

oz, ), ..., =S wlz, ),
A)

Zul(A)

then £:(4), ..., %(1) are holomorphic vectors of 4 in V(4*). In fact, we can

put

9 . _ 9 .
(4.9.5) Zi(2*) =2102Ak(2, ,r*)+§b%Bk(z, ™) (1Zi<u)

k= =
with rational coefficients. Since the mapping fi is a Q-isomorphism, and so
we have

) g . i
(4.9.6) Zi(A) = 2 akAr(z, v) + D00%Bk(z, o).
k=1 k=1

Therefore we have

(4.9.7) 5 = Sz WX TDP@, D az

=x7 (2 aif. P, 7)de + kE:b'},j: P(, 7} d2')

k=1 Aglz, T Br(z,7)
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In view of Lemma 4.5 and Theorem 3.21, this proves the holomorphy of r;().

4.10. Now we recall some results of Shimura [16, 17]. Let @ be the
rational number field and let K=Q(¢), [K: Ql=2% as in 4.9. We denote
by p the complex conjugation. Let ¢ be a representation of K by complex
matrices of size g. We say that a trii)lét P =(A, %, 80 is a polarized abelian
variety of type {K, ¢, p} if the following conditions are satisfied :

(i) A is an abelian variety of dimension g, defined over C.

(ii) 6 is an isomorphism of K into Endy(A), and the representation of 6(x)
for x K by an analytic coordinate system of A is equivalent to ¢.

(iii) ¥ is an polarization of A; and the involution of Endy(A) determined
by % coincides with 6(x) »0(x") on 6(K).

Let o1,....045 aip, . . ., onp be all the isomorphisms of K into C and let
7, (resp. s,) be the multiplicity of o, (resp. o.p) in ¢ In order to insure the

existence of % of type {K, ¢, o}, the following relation should be satisfied :
(4.10.1) &g&=hin+s) (A=v=<h).

Put u =g/h. ‘

Let .# = (A, €, 6) be of type {K, ¢, p}. Take a complex torus C4/D isomor-
phic to A, Where D is a lattice in C%. We may choose the coordinate system
of C# so that 8(a) is repres'entéd by the matrix ¢(a) on C for‘every'aeK.

Then we find # vectors 1;, . . ., &z in C® such that
(4.10.2) QD = 3%, ¢( Kt

For every a= (ai, . ... , @) in K*; put (@) = >} 4(a))%. - Then the mapping
a-x(a) is an isomorphism of K* onto @D. Let M be the inverse image of D
by this mapping. ‘

Let E(x, 1) be a non-degenerate Riemann form on Cg/D correspdnding to
a basic polar divisor in %. For each i and j, the mapping’a—»E(q&(d');!f,“xj)"i;s
a @-linear mapping of K into Q. Hence there exists an _element t;; of K such
that

(4.10.3) E(¢(a)ti, 1)) = tr (atij)

where tr denotes the reduced trace of K to Q. Put T = (¢;;).
It is known by Shimura [16] that zi, . . . , tx, M and T satisfy the following

conditions :
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(4.10.4) C8 =3 19(K® oR)1i,

(4.10.5) TH® is p-symmetric and p-positive, where H = (%;;) is a matrix, with
entries in K® (R determined by v—11;= % ¢(k)t;  (1Si<u).

(4.10.6) tr (MTM*)C Z.

Conversely the data {t1,...,% ; M ; T} determine a polarized abelian
variety of type {K, ¢, p} if the above conditions are satisfied.
The above conditions (4.10.4, 5) can be expressed in a more explicit form.

First we write each vector ; in the form
(4.10.7) =L LD
with rye C* Define a matrix X, for each » as follows. Put ¥ = (‘u};, v}1)

with u}'l S C’v’ 7);"1 e Csv and

(4.10.8) X, =t

S T
Un*® * " Um

Then the matrices X, for 1=<»<# determine the vectors 1y, . . . , Iz and conversely.

We see that the condition (4.10.4) is equivalent to

(4.10.9) det (X,) %0 (1=Swp=h)
and putting 7\ = (a,(#;)) the condition (4.10.5) is equivalent to the following
condition :
R -1t . Q[v 0 -
(4.10.10) VXTI = g )

- where %, and B, are positive hermitian matrices such that
(4. 10. 11) QI»EM"\,(C), \B\,EMSV(C),
where M(C) denotes the ring of matrices of degree m with entries in C.

Therefore our T must satisfy the condition

(4.10.12) v—1T7' has the same signature as [16“ _OI ]
Sy

for every », where I, denotes the identity matrix of degree 7.
Assuming (4.10.12) to be true, take, for each », a matrix W, in M.(C)
such that

:__- -1\ {757 — If\; 0 ’
(4.10.13) W =1 T = ~ISVJ.
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Put

(4- 10. 14) XVW:1 - [ uv %\,

wB, D
Then (4.10.10) is equivalent to

.98, — B, =0, WU, - PV, =0; and

(4.10.15) o P . -
iy, — BB, DY, — W, W, are positive hermitian.

1t follows that I,, ¥, are invertible, and U1;'B., = '(_‘lfr@:). Therefore, putting
z,=W1,'B, =“(9;'%W,), we observe that (4.10.15) is equivalent to

(4.10.16) I— 2.z, is positive hermitian.

Let &, be the space of all complex matrices z with 7, rows and s, columns
such that I-2'z, is positive hermitian, and let

(4.10.17) HP) = 1% X =S
and let
(4.10.18) 2=1(21,...,2h.

If we fix T and M, then we get an analytic family of polarized abelian
varieties of type {K, ¢, p} parametrized by the points of .&"(¢). We denote
by Z(T, M) this family and by %, the member of 3(T, M) determined by z,
T, M. Summerizing, we write

(4.10.19) 2=3(T, M) ={P:lze &)

Let 2 =(A,%,0) and P = (A, %", 0" be polarized abelian varieties of
type (K, ¢,0). Let I'(T, M) ={Ue Mu(K)|UTU* =T, MU=M}. Then it is
known that two members #. and %, of the same analytic family X(7, M)
are isomorphic if and only if z= U(2") for an element U of I (T, M). For a
proof, see Shimura [16]. Therefore the isomorphism classes of the members
of I are one to one correspondence with the points of the quotient space
I T(T, M). Now we denote sometimes I'(T, M) by I.

4.11. Now take a point A =<R, g, «> in the generalized Teichmiiller space
A(Ry, a0) defined in 4.3. Let J(R(A)) be the jacobian variety of a representative
(R, #) belonging to A. Denote by 6(¢) be the automorphism of J corresponding
to o. We see that {-0(¢) can be extended naturally to an isomorphism 6 of
Q%) into End,(J). Let ¥ be the canonical polarization of J, and p the
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automorphism of Q(¢) such that ¢ =¢™'. The involution of Ende(J) determined
by % gives the automorphism 8(a) »6(a”) on 6(Q(¢)). In this way we get a
polarized abelian variety of type {Q(?), ¢, p} in the sence of 4.10, for a
representation ¢ of degree g defined in 4.4. '

We see that if (R, ¢) and (R, o’) belong to the same element <R, >, then
corresponding polarized abelian varieties .# and %' are isbmorphic and vice
versa. As seen above, to every point 2 in 4(Ry, ) there corresponds a polarized
jacobian variety .#, and furthermore we see that all these varieties belong to
the same type {Q(¢), ¢, o). As we see in 4.4-4.8, for an arbitrary point i* in
A(Ry, o) there exists a neighborhood V(1*) such that we can define a data
{&), ..., 52 ; M) ; T} corresponding to any point 1 in V(1*). That
is, we define the vectors by (4.9.4), and we define M (1) by

M) ={(ay, ..., a) € K*|\¢(ar, VZiQ) + + -
+ @ (au, VZu(D € H(R(z), 2)}.

As for T(2), it is defined by (4.10.3):
E(¢(a)2;,(1) g;(l)) = tr (at; ().

It is easy to see that this data is nothing but the data defined in (4.10).
Now let the data corresponding to a point i*& A(Ry, o) be {&i, ...,
M* ; T*}). Then we obtain the following lemma.

4.12. LemMAa. Let the data corresponding to a point X in a sufficiently small
nezghborhood V(/l*) be{t: (D), . ... 2(d) s M) ; T(X)}. Then wehave M(2) =M,
and TQ}) =

Proof. If
Palar, AVZUA) + + + + + 9ulan, 1Z,0%) € Hi(R(), 2),
then we see easily that
Pular, DZi(A) + =+ +¢4(au, N Zu(A) = H(R(1), Z)
since we have f,¢.(a, Ay) =@ (a, 2 fs. ;I‘herefore we can conclude that
M) = M@*) = M*

for all 21 V(1™).
As for T(1), we see that for all x;, y;€ K,
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tr (itij(Dyj) = E((2)0(2) +  + * +¢®)5(D, p(H @) + + + + +(5:)5(D)
KN ZD + -+ Pl Zu (D), 0D + - -+ Eu(3) Zu 1)
S K@) Zi) + - + a3 Zu(0N), () ZA) + -+ + + Pl 9 ZN)
= E(pGn(®) 4« + + + ¢(m)0(1%), 9306 + -+ + 9l 353"
=tr (tzj‘,x,-t;j(/l*)yj).

Here KI means the Kronecker index. From this we can conclude that

TQ)=TA"=T"
for all 2 V(™).
By the same reason as above we see that M(2), T(X) are constants for all
i< A.
Moreover we see that £;(1), . . ., £(1) are holomorphic in V(1*), by 4.9.
Now we can state an important theorem as follows.

4.13. TuEOREM. Let 2y = <Ry, a¢, ao) be the origin of the géneralized Teichmiiller
space A(Ry, a0) as in 4.3, and let 2 =‘>t\R, g, a> be an ‘arbitmry element of A. We
get from these (R, o) polarized abelian varieties of type {K, ¢, p} for a certain
representation ¢ as in 4.11. Let - be the corresponding symmetric domain defined
by (4.10.17). Then there exists a holomorphic mapping w(i) of A(Ry, a0) into.
% such that the corresponding jacobian variety of Rir), where tv=1:(3), defined

as tn 4.11 is isomorphic to a polarized abelian variety Pu, defined in 4.10.

Proof. As we see in 4.11 and Lemma 4.12 for an arbitrary point i* < 4,
the data corresponding to a point 1 in a sufficiently small neighborhood V(4*)
can be denoted as {1:(2), ... ;1) ; M(&) ; T(X)}. Here we remark that
(1), . . ., tx(2) are holomorphic and we write M(4,),-T(4) by M, T respectively.

We can correspond to this data a point z& .4  as in 4.10. That is, we
have a mapping z(1) of V(4*) into .. If we put

2D = (z:Q2), . .., z(R))

then z,(2) is equal to “9;" (N W) (» =1,..., A4) as in 4.10, which is
holomorphic in V(x*). In fact, 9.(1) and %8.(1) are holomorphic in V(i*) and
det (Y,(1)) is not equal to zero in V(4*). Thus we see that there exists a
holomorphic mapping z(4) in a neighborhood V(1*) for every point 2* € A(R,, o).
In this way we can find an open covering % ={V} of 4 and a holomorphic
mapping zr : V- &, for each V&7, with the above property of V(4*) and
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2(1). We may assume that VNV’ is connected if V and V'’ are members of
7 such that VN V;ﬂi:gb.
Let V, V! be the neighborhoods and let

2: Va2 V-
be holomorphic mappings. Then for every A€ VN V', we have
z(2) = Ux(2'(2))

for an element U, of I'(T, M), since .#;, and P, are isomorphic (see 4.10).

Now as we see in [16] for an arbitrary U< I'(T, M), U(z) is a rational
function in the coordinates of 2. Let %k be an extension field of @ by the
adjunction of the set which consists of all the coefficients of U(z) for all
Uer(T, M).

Since I'(T, M) is a discrete subgroup of G(T) = {U & M KQ RI\UT'U = T},
k; has at most countable elements. Therefore we can take a generic point 1,
of VN V! for {z(4), 2/(1)} over k; in the sense of Shimura. Put U= U,,, then
we have

Z(lx) = U(z'(/h)).

Since A, is generic over k;, we have

z(2) = U(z'(1))

for every A€ VN V!, Putting

2(1) inievV

(1) =
v { Uz'(1)) in2e Vv’

we can prolong the holomorphic mapping z(1) : V- . to a holomorphic
mapping w(1) : VU V!> &

Now starting with the origin A, we continue the above process to all points
in A(R,, o). Since A is simply connected, finally we can obtain a holomorphic
mapping of A info "

w:A-> &

such that w(2) = Ur(2-(1)) in V, with an element Uy of I'(T, M). Here z, denotes
the original holomorphic mapping of V- &

Thus the data {x;{1), . ...,2%.(1) ; M ; T} corresponding to a point 1 in 4
determines a point w(1) in " up to I'equivalence. We see that this point
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w(2) can be represented by w(1) = Ur(2+(1)) in V(1*).
The second assertion of the theorem is an immediate consequence of our

definition.

§ 5. Holomorphy of parameters

5.1. By proposition 4.2 we see that 2(0,#n, {»;,...,»,}) is a family of
{R, &> where R is defined by

8§
yr=(x—a)™: < (x—as)™, nt2mi, r=s+1,

2 niln

as (4.3.1), and ¢ is an automorphism of R such that (x, y) > (x,¢y), C=¢
We shall denote this R by R. and the ¢ by g,. Then (R4, g4) defines a point
re ARy, o).

As in 4.11, we get a polarized jacobian variety (J, &, 6) of type {K, ¢, p}
from (R, o). Let H be the corresponding symmetric domain. Let T, M, I(T, M),
2=3(T, M) ={P;lz= H} be as in 4.10. We shall investigate the holomorphy
of parameters ai, . . . , @ with respect to the complex structure of A(Ro, co).

Suppose that >3 or s>3.

5.2. Lemma [18). Suppose that either dim H>1, or H/I'(T, M) is compact.
Let k be the algebraic number field in [18. Th. 5.11. Then one can define a
variety B and assign, to every P of type {Q(C), ¢, o}, exactly one point v(.P)
of B so that the following conditions are satisfied.

(5.2.1) B is defined over k.

(5.2.2) 9(P) =0(P) if and only if P is isomorphic to .P'.

(5.2.3) Let #=(A, &, 0) be a member of the family X of type {Q(L), ¢, o}
difined over a field K. Suppose that #' is a specialization of P over K, then
(0P, P is a specialization of (9(.P), F) over K.

(5.2.4) R(Y(P)) is the field of moduli of 2.

(5.2.5) There exists a holomorphic mapping ¢ of & onto B, which induces an
isomorphism of S |T\T, M) onto B, and such that 9(.Py) = ¢(w) for every
member Pw of 2.

5.8. As we see in 4.13 there exists’ a holomorphic mapping w of 4 into
. Let ¢ be the natural mapping of H onto B=.¢/I(T, M). Then, of
course, the mapping ¢ *w of 4 into B is holomorphic.

Let S={(x,...,%)eC’x=x if ixj}. Then S is a Zariski open subset
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in C. Let (b, ...,bs) be a generic point of S over the field 22 Q(¢). Let
(Rs, o») be the point corresponding to (&s, ..., bs). Then (Rs, o) is defined
over the field k(dy, . . ., bs). Let A, € 4 be a point corresponding to (b, . . . , &s).

In the equivalence class of £ corresponding to A there exists an element ( Rs, o5)
which is defined over (b, . . . , bs). Therefore we have an element of 3(T, M)
which corresponds to (Rs, ¢5) and which is isomorphic to Puwin, and which
is defined over k(b ..., bs). Then we have

k(‘P(W(Zx)))Ck(bl, ... ,bs).

In fact, by the properties of B we see that k2(5(.Pu.,)) is the field of moduli
of Puny, and 5. Puny) =¢(wl(d)). Hence we can define a rational mapping
¢ : S—»P, defined over %, by

(53. 1) ’ ¢(b1, e e oy bs) = (P(W(ll) ).

Now let A€ 4 be a point corresponding to a point (ai, ..., as) €S, then
obviously (R., sa) is the specialization of (Rs, a5) over the specialization (ay, . . . , as)
of (b, ...,bs) with reference to k.

5.4. Now we shall construct an analytic isomorphism of a Riemann surface
R of genus g into a projective space. ‘

Let D= PE ne P be a divisor sucl} that deg D> 2 g, where the hp are integers
and zeros except for finite numbers of them. Let L(D) be the vector space of
meromorphic functions f of R such that 0p( f )= ~ne for all PER, Where or

is the order of f at P. Then we obtain the following well-known lemma [15].

5.5. Lemma. Let fo, . .., fn be a basis of L(D). For all PR, let F(P)
be the point of the projectivé Space Py of homogeneous coordinates fo{ P), . . ., f‘v(P);
The mapping F is an analytic isomorphism of R onto a non-singular subvariety
of Py and the divisor D is equivalent to a hyper\-plané section of F(R).

5.6. Now again we take a generic' point (&, .. ., bs) of S over the field
k. Let Ds be a divisor defined as in 5. 4, for the Riemann surface corresponding to
(b1, - . ., bs). Let D, be the specialization of Dyof over (b, . . .,bs) = ay, . . ., as)

with reference to £ and let L(D;), L(D,) be the corresponding vecter spaces
defined as in 5.4.

By a theorem of Koizumi-Shimura [11] we can find a basis {fo, ..., fa}
of L(Ds) such that the specialization {fi, . . ., f&} of {fa, ..., fu} Over Rs—> R
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is a basis of L(D,). Then we construct C. by means of the basis {fi, ..., fi}
following Lemma 5.5. Let C’' be a specialization of Cp over (&g, .. ., bs) -
(a1, . . ., as) with reference to . Since the complete system |D| ‘has no fixed

components we have deg (D,) = deg (Cs), deg (Dp) = deg (Cp), and we have

obviously deg (D,) =deg (Ds). On the other hand we see that C'—C, is

positive, i.e.,, C'">C,. However we have deg (C') = deg (Cs) = deg (C,). Therefore
= Cq.

Now let 75 be the isomorphism of the curve Cs induced by g5, and let (Cs, t5)
be the couple corresponding to (Rp, o) and (Cq, ta) be the couple corresponding
to (Rq, 0.). We have seen that C, is the specialization of C» over (4, . . . , bs)
- (ay, ..., as) with reference to .. Furthermore we see that 7, is the specializa-
tion of 7 over (b1, ... ,bs)~> (a1, ...,as) with reference to %.

Thus we obtain the following lemma.

5.7. LeMMA. Notations being as above, (Cq, t4) is the unique specialization of
(Cs, ) over by, ..., bs)>(as,...,as) with reference to k.

Now we have moreover the following lemma.

5.8. LemmA. Let (Js, Gb, 0b) and (Ja, Ca, 02) be the polarized jacobian
varieties of type (K, ¢, o) corresponding to (Ry, o) and (Ra, aa) respectively. Then
(Ja, Ca, 0a) is the unique specialization of ( Js, €s, 05) over (by, . . . b))~ (a1, . . ., as)

with reference to k.

Proof. By Lemma 5.6 we see that if (Rp)—>(R,) over (by,...,bs) ~>

(ai, . ..,as) with reference to &, then
(5.8.1) ((Cs, t5), (Rs, 05)) > ((Ca, ta), (Ra, da))
over (Rs, av) »(Ra, da)

Then by the comp:.:ltibility theorem of Igusa [10]
(5.8.2) (Cs, 63 J5, E6) > (Cay ta 3 Ja, Ca)

over (by,...,bs)~ (a1, ...,as) with reference to k.

Furthermore, we see that 65— 0, over (5.8.2).

5.9. Now we construct a specialization (a;, ..., as; ¢) of (b, ... ,bs;
¢lby, ..., bs)) over k.

By Lemma 5.8 we see that .#,,, is the unique specialization of Py,
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over the specialization (&, ...,bs3 ¢(by, . ..,b0s)) > (ar. . .,as; ¢). Therefore
by Lemma 5.2 (ai,...,as; c¢; Pwn 5 ¢(w(2))) is a specialization of
by, . .., bs; Oy, ..., bs) ; ﬂw(xx) H SD(W().))) Since gb(b;, e ,bs) = S"(W(h)),

we see that ¢ = ¢(w(1)).

In fine, we obtain the following facts.

(I) ¢ is the unique specialization of ¢(by,.. ., bs) over the specialization
(by, ..., bs)>(as,...,as) with reference to k.

(I1) If (ay, ..., as) corresponds to 2, then the unique specialization
c=¢lay, ..., as) is equal to ¢(w(1)).

5.10. TuroreM. Notations being as above, there exists a rational mapping
¢+ S—>B with the following properties.

(5.10.1) ¢ is a morphism, i.e., everywhere defined on S.
(5.10.2) ¢(ay, ..., as) =9(wld)) if A corresponds to (ay, . .., as) in the above

sense.

§ 6. Special case: 2(0, 7, {1, 1, 1, 2})

6.1. Now we give our attention to the case where A(Ry, 0o) is a 1-dimen-
tional manifold and g’ =0 in 2(g’, n, {»;}), over which we construct A(Ro, a).
Then by Theorem 3.21 we see that the space A(Ry, ¢) is holomorphically
equivalent to the upper-half plane. For example, if we put g'=0,7=7,
{wit = {1, 1, 1, 2}, then 2(g’, n, {»:}) is a family of <R, &>, where R is a Riemann
surface defined by the equation:

(6.1.1) Y=x(x-1Dizx—a)

and ¢ is an automorphism such that (x, y) - (%, Cy); ¢ =m0,

In general, by 3.4 we see that the equation of the Riemann surface is
(6.1.2) y”=x’”‘(x¥-1)""(x—a)m’,
where m;v; =1 (mod #) for i=1,2,3. The genus of (6.1.2) is equal to n—1.
In the present paper, we. treated the moduli of 2 only at the special case

(6.1.1). However it would be interesting to study the analogy of the theory of
elliptic functions in our case.

Now we reappear the calculation in 4.10 for our case: £(0, 7, {1, 1, 1, 2}).

6.2. We see that the matrix ¢(¢) is of the form:
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¢(¢) = ¢
CS
0 ¢t
Furthermore we see that g=6, 2=3, and #=2 in (4.10.1), and n=7=2,
s1=5=0, n=5=1.
Put
o= (o, Ut 3 U, War 5 Ust 3 Ue)

(6.2.1) .
Yo = (g, tss 5 Ug, Usn ; Uz ;3 Us).

Then the period matrices X,, »=1, 2, 3 are as follows:

(6.2.2) X1=(uu “w), X2=(“3‘ uaz), X3=(u51 usz)_

U Uz Uy Usp Uer U
We have following relations for the matrices as 7\ in 4.10:

10),

(6.2.3) W= TT' W= (=1 T = -

et (10
(6.2.4) W1 T = (5 _J)-

applying suitable matrices W; to 7.
Now in our case we have only to investigate (6.2.4). Put

(6.2.5) X' = (gsi o) §)= (% 3

Then we have #/v = (w/y), and

Ll ~|v]? 0 )

(6.2.6) Xav—1 T;”Xa=( 0 lwl*— |y

We must notice here that |«|* —|2|*>0, |w|*—|y|*<0. Thus putting z = (#/v),
we observe that 1—2z2>0.
Now we can see that

(6.2.7) z=(w/y)
= (a(ue/ts) + 1)/ (B(usi/us:) + 8)

_ a(Lly"dx / Szzy'“dx> +71
B( gz‘y‘“dx / Lzy’3dx) +34
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Here Z,, Z, are vectors defined as in (4.9), and Sz'_ (#lx- 1D (x—a)) ¥ dx are
hypergeometric functions in a.

It must be interesting that in our case both A and & are the upperhalf
plane and the holomorphic mapping z(4) is exactly a ratio of the periods of
the differentials of the first kind of Riemann surfaces. corresponding to 4.
Moreover we must remark that in our case .2 /I'tT, M) is compact (cf. [17]).

We shall study some elementary properties of the parameter a.
6.3. Let R’ be another Riemann surface defined by the equation:
Y=z =1 &'~ 8 (Bx0,1).

Then we get a polarized abelian variety #' of type {Q(¢), ¢, p} by R' in the
same way as in 6.1.

We recall that .# is isomorphic to .#' if and only if there exists a holo-
morphic bijection f : R' such that fo=o'f(cf. [17]).

We see also that if (R, ¢) and (R, ¢') belong to the same <R, ¢> then

x'=ax+0b, y =cy.
Here a, b, and ¢ are complex numbers such that

a=1,b=0;a=1/a, b=0;a= -1, b0=1;a= —1/a, b=1,
a=—-a/(l-a), b=1/(1-a);a=~-a/(l—a), b=a/(l —a),

and ¢c=1. Therefore (R, ¢) and (R, ¢') are equivalent if and only if 8= a,
B=1la, B=1—a, B=1/(1-a), B=(a—1)/a, B=a/(a—1).

6.4. Let S’ be a Riemann sphere punctured at 0, 1, and infinity o. Let
G be the group of the anharmonic ratié. Then the quotient space S =S'/G
is a Riemann surface and there exists a one-to-one correspondence between the
space of‘rhoduli'.Q and S £ has a complex structure induced from A(R,, ,60),
and S has a natural complex structure. Our problem is to investigaté the

analyticity of the correspondence.

6.5. We consider the above problem in a little more simple form; that is,
we consider the Riemann surface defined by the equation:

(6.5.1) y7=x3+x+p

where p is a complex number different from —2#/3V3, 2i/3y3. Let R be
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another Riemann surface defined by the equation:
(6.5.2) - Y =2+

where p' is also a complex number different from —2i/3v 3, 2/3V3.

Then (R, ¢) is topologically equivalent to (R', ¢'), where ¢, o/ are naturally
defined. In fact, for evefy such p there exists a number a such that
YV =xx—1)(x—a) is conformally equivalent to y'=x’+x4p. We see that
the relation between p and -a is given by

(a+1D*2a -1 a—2)°
27 (a*—a+1)3

(6.5.3) P=-

Nowlet R: ¥y =x*+x+pand R’ : y" = x>+ x+ p' be equivalent for naturally
defined automorphisms. Then we see that p’ is equal to =p. Let S be the
Riemann sphere punctured at —23:/3v3, 2:/3V3, and let G be the group of
automorphisms of the Riemann sphere generated by r : P-» — P. Here Pis the
point of the sphere. Then there exists a one-to-one correspondence between

the space S"”/G and the space 2. Here we see that p= « corresponds to
_ 1+£/3z and « = 1—2\/‘31.

Finally, we shall apply our general theory to this case.

6.6. Let S*={x|lxeC}. Let q be a generic point of S* over the field
EDQ(¢). We see that the field of moduli of Py, Ck(g®) (cf. [17]). Here A4
is a point corresponding to ¢. Then we can define a rational function ¢ such
that

(6.6.1) ¢(@°) = ¢(w(A)).
Therefore in the same way as.5.3-10, we see that
(6:6.2) PP = e(w(R)),

if A corresponds to p in.our sense. Here we notice that p takes all values
except for p®= —4/27, i.e., ¢ is defined over all the points’ of the Riemann
sphere punctured at —4/27 and infinity . Here ¢ is a ratioﬁal function of
one variable, and so we may consider that ¢ is everywhere defined on the
Riemann sphere.

On the other hand ¢: the Riemann sphere - is one-to-one at the generic
points (cf. [17]). Therefore since B can be regarded as the Riemann sphere,

we have
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(6.6.3) o(p") = (ap*+ )/ (cp*+ d)

with constants a, b, ¢, and d.
Thus we have by (6.6.2)

(6.6.4) 2= (p(w(Ad =) /( — ¢(w(2))c+ a).

Therefore p* is a meromorphic function on 4, and it has poles only at the points
corresponding to a = (1+v34)/2.

6.7. TueoreM. Notations being as above,
1/(4+27 5%
is a holomorphic function on the whole space A. And
P’ =FQ)

is a meromorphic function in X on the generalized Teichmiiller space A. Here F is
defined by (6.6.4), and cannot take the value — 4/27, and has poles at A corresponding
to « = (1x£vV39)/2 in the equation (6.1.1).

6.8. Remark. In B, considered as the Riemann sphere, the point —4/27 is
the unique point which does not correspond to any Riemann surfaces. It would
be interesting to study the properties of the abelian variety corresponding to
the point. We shall discuss this problem in another place.
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