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The Resultant of Chebyshev Polynomials

David P. Jacobs, Mohamed O. Rayes, and Vilmar Trevisan

Abstract. Let Tn denote the n-th Chebyshev polynomial of the first kind, and let Un denote the n-th

Chebyshev polynomial of the second kind. We give an explicit formula for the resultant res(Tm, Tn).

Similarly, we give a formula for res(Um,Un).

1 Introduction

The resultant of two polynomials is, in general, a complicated formula involving its

coefficients, and there exist few polynomial families for which simple closed formulas

for their resultants are known. The best example of such a formula is due to Apostol

[1] who obtained the elegant formula

res(Φm,Φn) =

{

pϕ(m) if m
n

is a power of a prime p,

1 otherwise,

where Φn is the cyclotomic polynomial

Φn =

n
∏

k=1
(k,n)=1

(x − e2πik/n).

In a similar vein, we wish to study the resultants res(Tm, Tn) and res(Um,Un),

where Tn and Un denote, respectively, the n-th Chebyshev polynomials of the first

and second kind. Assume that m and n are natural numbers, not both zero. We show

that if m = gm1, n = gn1, and g = gcd(m, n), then

(1.1) res(Tm, Tn) =

{

0 if n1m1 is odd,

(−1)
mn
2 2(m−1)(n−1)+g−1 otherwise.

We also show that

(1.2) res(Um,Un) =

{

0 if gcd(m + 1, n + 1) 6= 1,

(−1)
mn
2 2mn otherwise.
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The proofs of equations (1.1) and (1.2) are given in Sections 4 and 5, respectively. In

Section 2 we recall the properties of Chebyshev polynomials needed for our proofs,

while in Section 3 the properties of resultants are recalled.

Although our arguments use elementary properties of resultants and Chebyshev

polynomials, we are not aware of any result that explicitly computes the resultant of

arbitrary Chebyshev polynomials. Related results include the recent paper by Dilcher

and Stolarsky [3], where parameters are introduced into cyclotomic polynomials to

obtain formulas for the resultant and discriminant of certain linear forms of Cheby-

shev polynomials of the second kind. Some of the results in [3] were generalized and

also extended to polynomials of the first kind by Gishe and Ismail in [5]. In the larger

setting of ultraspherical polynomials, these linear combinations play a role studying

spherical arrangements, as in the paper by Cohn and Kumar [2]. Some of the most

advanced work done on discriminants and resultants of special families of polynomi-

als was done by Roberts [7]. For simply computing the discriminants of Chebyshev

polynomials, we refer the reader to Rivlin [8].

2 Properties of Chebyshev Polynomials

The Chebyshev polynomials of the first kind Tn(x) may be defined by the following

recurrence relation. Set T0(x) = 1 and T1(x) = x, then

Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, . . . .

The polynomial Tn has degree n, and for n ≥ 1, its leading coefficient is 2n−1. Alter-

natively, they may be defined as

Tn(x) = cos(n · arccos x),

where 0 ≤ arccos x ≤ π. The roots of Tn(x) are real, distinct, and lie within the

interval [−1, 1], and are given by the closed formula

ξk = cos
( π

2

2k − 1

n

)

k = 1, . . . , n.

Using well-known decomposition formulas, one can easily prove [6] that for two

nonnegative integers m ≥ n, we have

(2.1) Tm(x) = 2Tm−n(x)Tn(x) − T|m−2n|(x).

The Chebyshev polynomials of the second kind are defined by setting U0(x) = 1,

U1(x) = 2x and using the recurrence relation

Un(x) = 2xUn−1(x) −Un−2(x), n = 2, 3, . . . .

The polynomial Un has degree n and leading coefficient 2n. It can also be defined by

Un(x) =
1

n + 1
T ′

n+1(x) =
sin

(

(n + 1) arccos x
)

sin(arccos x)
.
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Its roots are also real, distinct, lie in [−1, 1], and are given by

ηk = cos
(

π
k

n + 1

)

k = 1, . . . , n.

Given two natural numbers m and n, n ≤ m, a useful decomposition property for

the U polynomials is the following ([6]):

(2.2) Um(x) =











2Tm−n(x)Un(x) −U2n−m(x), n ≤ m < 2n + 1,

2Tm−n(x)Un(x), m = 2n + 1,

2Tm−n(x)Un(x) + Um−2n−2(x), m > 2n + 1.

3 Properties of the Resultant

The resultant of two polynomials

f (x) = amxm + am−1xm−1 + · · · + a0(3.1)

g(x) = bnxn + bn−1xn−1 + · · · + b0

with coefficients in Euclidean domain D is defined by the Sylvester determinant

res( f , g) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

am am−1 · · · a0

am am−1 · · · a0

...

am am−1 · · · a0

bn bn−1 · · · b0

bn bn−1 · · · b0

...

bn bn−1 · · · b0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

in which there are n rows of f coefficients and m rows of g coefficients and the re-

maining entries are zero. Clearly, res( f , g) is an element of D. If f and g are expressed

in terms of their zeros

f (x) = am

m
∏

k=1

(x − αk) and g(x) = bn

n
∏

j=1

(x − β j),

then the resultant can be expressed by the products

res( f , g) = an
m

m
∏

i=1

g(αi) = bm
n

n
∏

j=1

f (β j)(3.2)

res( f , g) = an
mbm

n

m
∏

i=1

n
∏

j=1

(αi − β j).(3.3)
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Other well-known properties of the resultants are

res( f , g) = (−1)mn res(g, f ),(3.4)

res( f , qg) = res( f , q) res( f , g),(3.5)

and if a 6= 0 is a constant, then

(3.6) res( f , a) = res(a, f ) = am.

The fundamental property of the resultants is the following.

Theorem 3.1 Let f and g be polynomials over a Euclidean domain. Then res( f , g) =

0 if and only if f and g have a common divisor of positive degree.

These properties are well known and may be found, for example, in [9]. A more

complete treatment may be found in [4]. The following lemma, with no bound on

the degree of r, is a result of [3].

Lemma 3.2 Let f and g be polynomials as in (3.1).

(i) If we can write f (x) = q(x)g(x) + r(x), with polynomials q, r and δ = deg r, then

res(g, f ) = bm−δ
n res(g, r).

(ii) If deg(q f + g) = deg g for a polynomial q, then res( f , q f + g) = res( f , g).

4 Resultant of Chebyshev Polynomials of the First Kind

With a slight change in notation, [6, Theorem 2] may be stated as follows.

Theorem 4.1 For positive integers m and n, where g = gcd(m, n), m = gm1, and

n = gn1,

gcd(Tm, Tn) =

{

1 if m1 or n1 is even,

Tg(x) otherwise.

Theorem 3.1 and Theorem 4.1 imply the following.

Corollary 4.2 For positive integers m and n, res(Tm, Tn) 6= 0 if and only if m1 or n1

is even, where g = gcd(m, n), m = gm1, and n = gn1.

Corollary 4.3 If m and n are odd, then res(Tm, Tn) = 0.

Lemma 4.4 Let m, n be natural numbers. Then

(i) res(Tm, Tn) = res(Tn, Tm).
(ii) res(Tm,−Tn) = (−1)m res(Tm, Tn).

Proof If both m and n are odd, then it follows by Corollary 4.3 that res(Tm, Tn) =

0 = res(Tn, Tm). If either m or n is even, then res(Tm, Tn) = (−1)mn res(Tn, Tm) =

res(Tn, Tm). For item (ii), we observe that from equations (3.5) and (3.6) we have

res(Tm,−Tn) = res(Tm,−1) res(Tm, Tn) = (−1)m res(Tm, Tn).
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Theorem 4.5 Let n ≥ 1. Then

res(T1, Tn) =











0 if n is odd,

1 if n = 4k,

−1 otherwise.

Proof If we write Tn(x) =
∑n

i=0 akxk, then an = 2n−1. By observing that T1(x) = x,

and Tn(x) = 2n−1
∏n

i=1(x − ξi), where ξi = cos (2i−1)π
2n

and by applying property

(3.3), we obtain

res(T1, Tn) = 2n−1

n
∏

i=1

(0 − ξi) = Tn(0) = cos(n
π

2
),

and the result follows.

We now state our general formula for the resultant of two Chebyshev polynomials

of the first kind.

Theorem 4.6 Let m, n be natural numbers, not both zero, and g = gcd(m, n),

m = gm1, and n = gn1. Then

(4.1) res(Tm, Tn) =

{

0 if n1m1 is odd,

(−1)
mn
2 2(m−1)(n−1)+g−1 otherwise.

Proof We first dispense of some simple cases. If m = 0, then m1n1 = 0 is even,

g = n, and from (3.6) we have

res(Tm, Tn) = res(1, Tn) = 1 = (−1)
mn
2 2(m−1)(n−1)+g−1.

Similarly, if n = 0, the formula holds. So we may assume both m and n are positive.

If m = n, then m1n1 = 1, and Theorem 3.1 implies res(Tm, Tm) = 0. Hence we may

assume that n 6= m. Using Lemma 4.4(i), we may also assume that m > n > 0. We

induct on m. The basis case occurs when m = 2 and so n = 1. It can be verified that

res(T2, T1) = −1 = (−1)121(0)+1−1.

Next, assume that for all k < m, where n < k, res(Tk, Tn) is given by (4.1). In

particular, assuming k1 =
k

gcd(k,n)
and n1 =

n
gcd(k,n)

, if k1n1 is even, then

(4.2) res(Tk, Tn) = (−1)
kn
2 2(k−1)(n−1)+g−1.

Now consider res(Tm, Tn), where n < m, g = gcd(m, n), m = gm1 and n = gn1. By

Corollary 4.2, we may assume n1m1 is even, for otherwise res(Tm, Tn) is zero. Now

let k = |m − 2n|. Applying Lemma 3.2(i) to equation (2.1), where f = Tm, g = Tn,

and r = −Tk, and then using Lemma 4.4(ii), we have

(4.3) res(Tn, Tm) = (2n−1)m−k res(Tn,−Tk) = (−1)n2(n−1)(m−k) res(Tn, Tk).
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However, this is also res(Tm, Tn) by Lemma 4.4(i). Next, it is easy to see that k < m.

Note that k 6= n, for otherwise we would have m = n or m = 3n, and so n1m1 would

be odd. We next observe that g = gcd(m, n) = gcd(k, n). In fact, k = k1g, where

(4.4) k1 =
k

g
=

|m − 2n|
g

= |m1 − 2n1|.

From (4.4), it follows that n1k1 is even, since m1n1 is even. Since n and k are distinct

positive integers for which n1k1 is even, we may apply the induction assumption to

obtain (4.2). Replacing res(Tn, Tk) in (4.3) with the right side of (4.2) yields

res(Tm, Tn) = (−1)
mn
2 2(m−1)(n−1)+g−1,

completing the induction.

By observing that gcd(n, n − 1) = 1, we have the following.

Corollary 4.7 For any integer n ≥ 1, we have

res(Tn, Tn−1) = (−1)
n(n−1)

2 2(n−1)(n−2).

Corollary 4.8 For n ≥ 1, we have

res(T2, Tn) =











−2n−1 if n is odd,

2n if n ≡ 0 mod 4,

0 if n ≡ 2 mod 4.

Proof This may be seen directly from Theorem 4.6. An alternative proof may be

obtained by observing that T2(x) = 2x2 − 1 = 2(x − 1/
√

2)(x + 1/
√

2) and by

applying (3.2), so we can write

res(T2, Tn) = 2n
2
∏

i=1

Tn(αi) = 2nTn(
1√
2

)Tn(
−1√

2
) = 2n cos(nπ/4) cos(3nπ/4).

The result now follows by direct computation.

5 Resultant of Chebyshev Polynomials of the Second Kind

The following result can be found in [8] and also in [6].

Theorem 5.1 Let m > n be natural numbers, g = gcd(m + 1, n + 1). Then

gcd(Um,Un) = Ug−1.

Using the interpretation of Theorem 3.1, the Theorem 5.1 immediately implies

the following.
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Corollary 5.2 For any nonnegative integers m, n,

res(Um,Un) 6= 0 if and only if gcd(m + 1, n + 1) = 1.

Corollary 5.3 If both m and n are odd, then res(Um,Un) = 0.

Lemma 5.4 Let m, n be natural numbers. Then

(i) res(Um,Un) = res(Un,Um);

(ii) res(Um,−Un) = (−1)m res(Um,Un).

Proof If both m and n are odd, then it follows by Corollary 5.3 that res(Um,Un) =

0 = res(Un,Um). If either m or n is even, then from (3.4) we have res(Um,Un) =

(−1)mn res(Un,Um) = res(Un,Um). The proof of (ii) is similar to that of Lemma

4.4(ii).

Theorem 5.5 Let n ≥ 1. Then

res(U1,Un) =

{

0 if n is odd,

(−1)
n
2 2n if n is even.

Proof If we write Un(x) =
∑n

i=0 akxk, then an = 2n. By observing that U1(x) = 2x,

that Un(x) = 2n
∏n

i=1(x − ηi), where ηk = cos kπ
n+1

, and by applying property (3.3),

we obtain

res(U1,Un) = 2n2n
n
∏

i=1

(0 − ηi) = 2nUn(0) = 2n sin((n + 1)
π

2
),

and the result follows.

We now state the general formula for the resultant of two Chebyshev polynomials

of the second kind.

Theorem 5.6 Let m, n be natural numbers, not both zero, Then

res(Um,Un) =

{

0 if gcd(m + 1, n + 1) 6= 1,

(−1)
mn
2 2mn otherwise.

Proof If either n = 0 or m = 0, it is easy to see that (1.2) holds. Thus we may assume

that both m and n are positive. Since res(Um,Un) = res(Un,Um), we may assume that

m ≥ n. Note that if m = n > 0, then both res(Um,Un) = 0 and gcd(m+1, n+1) 6= 1.

We induct on m. The basis case occurs when m = n = 1, which has already been

established. So let us assume that for each value of k < m, the resultant res(Uk,Ut ),

is given by formula (1.2), for all t < k. Now consider res(Um,Un), where 0 < n < m.

We consider three cases.

Case i: n < m < 2n + 1. Using equation (2.2), Lemma 3.2(i) and Lemma 5.4, we

have

res(Um,Un) = (2n)m−(2n−m) res(Un,−U2n−m) = (−1)n2n(2m−2n) res(Un,U2n−m).
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Since 0 ≤ 2n − m < n < m, we may apply the induction hypothesis. Note also that

gcd(m + 1, n + 1) = gcd(n + 1, 2n − m + 1),

so that res(Um,Un) = 0 if and only if res(Un,U2n−m) = 0. When res(Um,Un) 6= 0,

we obtain

res(Um,Un) = (−1)n+ n(2n−m)
2 2n(2m−2n)+n(2n−m)

= (−1)n+ n(2n−m)
2 2nm.

Noticing that the parity of nm/2 equals the parity of n + n(2n−m)
2

, the result follows.

Case ii: m = 2n+1. Using equation (2.2), Um is a multiple of Un and by Corollary 5.2,

it follows that res(Um,Un) = 0, in accordance with the fact that gcd(m + 1, n + 1) =

gcd(2n + 2, n + 1) = n + 1 6= 1.

Case iii: m > 2n + 1. Using equation (2.2) and Lemma 3.2(i) we have

res(Um,Un) = (2n)m−(m−2n−2) res(Un,Um−2n−2).

We notice that again gcd(m + 1, n + 1) = gcd(m− 2n− 2 + 1, n + 1), so that we need

to consider only when res(Um,Un) 6= 0. Since 0 ≤ m − 2n − 2 < m, we apply the

induction hypothesis to obtain

res(Um,Un) = (−1)
n(m−2n−2)

2 2n(2n+2)2n(m−2n−2)
= (−1)

mn
2 2mn

Hence the result follows by induction.

The following result also appears in [3, p. 379].

Corollary 5.7 (Dilcher and Stolarsky) For integer n ≥ 1,

res(Un,Un−1) = (−1)
n(n−1)

2 2n(n−1).
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Instituto de Matemática, UFRGS, Porto Alegre, Brazil
e-mail: trevisan@mat.ufrgs.br

https://doi.org/10.4153/CMB-2011-013-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-013-1

