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Abstract

We give a new proof that a finitely generated congruence-distributive variety has finitely determined
syntactic congruences (or, equivalently, term finite principal congruences), and show that the same does
not hold for finitely generated congruence-permutable varieties, even under the additional assumption
that the variety is residually very finite.
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1. Introduction

The notion of term finite principal congruences (TFPC) was introduced by Clark
et al. [6] and is a natural generalisation of definable principal congruences: instead
of bounding the number of different principal-congruence formulae, we bound only
the set of possible terms appearing in such formulae. This property is very closely
related to several other congruence conditions. For example, a variety of algebras
of finite signature has TFPC if and only if it has finite Mal′cev depth, also known
as finite principal length, as studied by Wang [17]. These properties have been used
by Baker et al. [2] and by Baker and Wang [3] to establish finite basis theorems for
the equations of finite algebras. More locally, an individual algebra has TFPC if and
only if it has finitely determined syntactic congruences (FDSC), a property that arises
naturally in the study of compact topological algebras [6]. For example, a Boolean
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60 B. A. Davey et al. [2]

topological algebra with FDSC is topologically residually finite (see [10], [13, Lemma
VI.2.7] or [6, Lemma 4.2]). Moreover, FDSC is the most general known structural
property guaranteeing topological residual finiteness (algebraic residual finiteness is
not sufficient in general; see Jackson [12]). The notion of FDSC arises naturally in the
study of the axiomatisability of classes of Boolean topological algebras [8].

Wang [17] showed that every finitely generated congruence-distributive variety of
finite signature has finite Mal′cev depth and consequently also has TFPC and FDSC.
(An updated version of Wang’s proof, in English, appears in Baker and Wang [3].)
Thus, every finitely generated variety of lattices has TFPC and FDSC. On the other
hand, Clinkenbeard [9] gave an example of a Boolean topological modular lattice that
is not topologically residually finite. So the variety of modular lattices (and any larger
variety) has neither TFPC nor FDSC.

We present a new proof of Wang’s result that avoids any assumption on the
signature. To contrast this result, we construct a four-element nonassociative algebra
over GF(2) that generates a variety that is congruence permutable and residually very
finite (that is, has a finite bound on the size of its subdirectly irreducible algebras) but
fails to have FDSC.

2. Preliminaries

Let V be a variety of algebras. Let A ∈V be an algebra and c, d ∈ A. We write
cgA(c, d) to denote the smallest congruence of A containing the pair (c, d). For
m ∈ ω, let T (m)x denote the set of all (m+1)-variable terms t (x, z1, . . . , zm) in the
signature of V , and let Tx denote the union of the sets T (m)x , for m ∈ ω.

Mal′cev’s lemma (see Burris and Sankappanavar [4, V.3.1], for example) states that
(a, b) ∈ cgA(c, d) if and only if there exist:

(1) nonnegative integers k and m;
(2) elements a = a1, . . . , ak+1 = b in A;
(3) terms t1(x, z1, . . . , zm), . . . , tk(x, z1, . . . , zm) in Tx ; and
(4) elements e1,1, . . . , e1,m, . . . , ek,1, . . . , ek,m in A;

such that, for all i ∈ {1, . . . , k},

{tA
i (c, ei,1, . . . , ei,m), tA

i (d, ei,1, . . . , ei,m)} = {ai , ai+1}.

Let F ⊆ Tx . Given an algebra A and c, d ∈ A, we say that F determines the principal
congruence cgA(c, d) if, for all (a, b) ∈ cgA(c, d), the terms ti (x, z1, . . . , zm) in (3)
above can all be chosen from F . Likewise, F determines the principal congruences
on A if it determines each principal congruence of A, and F determines principal
congruences in a class K if F determines the principal congruences on each member
of K .

Clearly Tx determines principal congruences in any class of algebras of the
appropriate signature; however, it is common that some subset of Tx suffices. The
singleton {z1xz2} is sufficient to determine principal congruences in the variety of
groups for example; see [6] for many other examples.
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[3] Principal and syntactic congruences 61

We say that a class K of algebras has TFPC if there is a finite subset of Tx that
determines principal congruences in K .

The congruence condition TFPC is a natural generalisation of definable principal
congruences: a variety V has first-order definable principal congruences if and only
if we can fix a finite bound on the length m of the chain in item (2) of Mal′cev’s
lemma, as well as fixing a finite set F ⊆ Tx for the possible choices of terms in item
(3) (see [4, Exercise V.3.5] for example). There are many interesting results that
can be proved in the presence of definable principal congruences; however, it is a
rather special property. For example, a finite lattice generates a variety with definable
principal congruences if and only if it is a distributive lattice [15]. On the other hand,
we show that every finitely generated congruence-distributive variety has TFPC.

Finite Mal′cev depth is defined by specifying the subset of Tx that should determine
principal congruences in V : a variety V has finite Mal′cev depth k if principal
congruences on algebras in V are determined by the subset of Tx consisting of terms
of nesting depth (in terms of fundamental operations) at most k.

Finally, we wish to review the notion of finitely determined syntactic congruences.
Let A be an algebra and θ an equivalence relation on A. The largest congruence
contained in θ is called the syntactic congruence of θ and is denoted by syn(θ). For
any subset F ⊆ Tx we write θF to denote the relation given by (a, b) ∈ θF if and only
if

(∀t ∈ F)(∀e0, e1, . . . ∈ A)(tA(a, e1, e2, . . .), tA(b, e1, e2, . . .)) ∈ θ.

The relation θF is an equivalence relation and satisfies syn(θ)⊆ θF . Moreover,
syn(θ)= θTx . We say that F determines syn(θ) if θF = syn(θ). The set F determines
syntactic congruences on A if θF = syn(θ) for every equivalence relation θ on A, and
we say that F determines syntactic congruences in a class K if F determines syntactic
congruences on each member of K . If there is a finite set F ⊆ Tx that determines
syntactic congruences in K , then we say that K has finitely determined syntactic
congruences (FDSC).

The name syntactic congruence has its roots in the theory of formal languages (see
the discussion at the start of [6, Section 2]), and the property FDSC has quite a lengthy
history in relation to topological residual finiteness: see [1, 5, 6, 10, 13], for example.

The following lemma is obvious but useful.

LEMMA 2.1. Let F ⊆ Tx and let t (x, z1, . . . , zk) and s(x, z1, . . . , zk) be terms in
Tx . If the set F ∪ {t (x, z1, . . . , zk)} determines principal congruences in a class K
that satisfies t (x, z1, . . . , zk)≈ s(x, z1, . . . , zk), then the set F ∪ {s(x, z1, . . . , zk)}

also determines principal congruences in K .

The definition of FDSC is certainly reminiscent of that of TFPC, but much more
is true.

LEMMA 2.2 [6, Lemma 2.3]. A subset F of Tx determines syntactic congruences on
an algebra A if and only if it determines principal congruences on A.
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In particular, a class K of algebras has FDSC if and only if it has TFPC. The proof
of Lemma 2.2 is based on the following lemma, which is useful in its own right.

LEMMA 2.3 [6, Lemma 2.2]. Let A be an algebra and θ be an equivalence relation
on A. For all a, b ∈ A, we have (a, b) ∈ syn(θ) if and only if cgA(a, b)⊆ θ .

We require the following equational characterisation of when a subset F of Tx
determines syntactic congruences in a variety.

LEMMA 2.4 [6, Section 3]. Let K be a class of algebras and assume that Wω is an
ω-generated K-free algebra. The following are equivalent for a subset F of Tx :

(1) F determines syntactic congruences in K;
(2) F determines syntactic congruences on Wω;
(3) for every term t (x, z1, . . . , zn) in Tx , there exists ` ∈ ω, there exist terms

s1(x, z1, . . . , zm), . . . , s`(x, z1, . . . , zm) in F and there exist m` terms
wi, j (x, y, z1, . . . , zm), for 1≤ i ≤ ` and 1≤ j ≤ m, such that K satisfies the
following equations:

t (x, z1, . . . , zn)≈ s1(v1, w1,1, . . . , w1,m),

...

si (v
′

i , wi,1, . . . , wi,m)≈ si+1(vi+1, wi+1,1, . . . , wi+1,m),

...

s`(v
′

`, w`,1, . . . , w`,m)≈ t (y, z1, . . . , zn),

where {vi , v
′

i } = {x, y}, for 1≤ i ≤ `.

Following [6], when a subset F of Tx and a term t (x, z1, . . . , zn) ∈ Tx satisfy the
conditions of this lemma, we say that F shadows t (x, z1, . . . , zn). We close this
section with two corollaries of Lemma 2.4.

COROLLARY 2.5. Let K be a class of algebras containing an ω-generated free
algebra. Assume that F and G are subsets of Tx that determine syntactic congruences
in K . If G is finite, then there is a finite subset of F that determines syntactic
congruences in K .

PROOF. By Lemma 2.4, the set F shadows every t (x, z1, . . . , zn) ∈ G. As each
‘shadowing’ of a term t in G involves only a finite subset Ft of F (the number `
in Lemma 2.4), the subset

⋃
t∈G Ft is a finite subset of F that determines syntactic

congruences in K . 2

COROLLARY 2.6. Let V be a variety and let F be a subset of Tx . If F determines
syntactic congruences on the finitely generated V-free algebras, then F determines
syntactic congruences in V .
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PROOF. It follows from Mal′cev’s description of principal congruences that, for
any algebra A and elements a, b, c, d ∈ A, we have (a, b) ∈ cgA(c, d) if and only
if (a, b) ∈ cgB(c, d), for some finitely generated subalgebra B of A that contains
{a, b, c, d}. Hence, the class of algebras on which F determines principal congruences
is closed under directed unions. As the countably generated V-free algebra in V
is a union of a chain of finitely generated V-free algebras, the result follows from
Lemmas 2.2 and 2.4. 2

3. Congruence distributive varieties

Recall that a variety V is congruence distributive if and only if there are terms
D0(x, y, z), . . . , Dm(x, y, z), for some m ≥ 2, such that V satisfies the following
Jónsson equations [14]:

D0(x, y, z)≈ x; (J1)

Dm(x, y, z)≈ z; (J2)

Di (x, y, x)≈ x; (J3i)

Di (x, x, y)≈ Di+1(x, x, y) for i even;

Di (x, y, y)≈ Di+1(x, y, y) for i odd. (J4i)

Three-variable polynomials d0(x, y, z), . . . , dm(x, y, z) on an algebra B, for which
the Jónsson equations hold, will be called Jónsson polynomials. Of course if B lies in
a congruence-distributive variety, then Jónsson terms will be Jónsson polynomials in
B. However, it is possible to have Jónsson polynomials on algebras that do not have
Jónsson terms. This fact plays an important role in McKenzie’s decidability results for
finite algebras [16], which is one of the motivating reasons for presenting these ideas
in this more general setting.

For an algebra B and subset F ⊆ Tx , we use the notation PolF
1 (B) to denote

the unary polynomials p(x) on B that arise as tB(x, e1, . . . , em), for some
t (x, z1, . . . , zm) ∈ F and e1, . . . , em ∈ B. To simplify the notation, we denote finite
sequences of elements or variables, of unspecified length n ∈ ω, by Ec. Note that, while
ci stands for the i th element of the sequence Ec, the notation Eci is an abbreviation for a
finite sequence ci,1, ci,2, . . . .

LEMMA 3.1. Let K be a class of algebras and assume that F ⊆ Tx determines
syntactic congruences in K . Assume that B is a subdirect product of finitely many
algebras from K and that B has Jónsson polynomials d0(x, y, z), . . . , dm(x, y, z)
built from terms D0(x, y, z, Ew), . . . , Dm(x, y, z, Ew), for some m ≥ 2. The subset

F+ := {D j (y1, t (x, Ez), y2, Ew) | 0≤ j ≤ m and t (x, Ez) ∈ F}

of Tx determines syntactic congruences on B.
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PROOF. Assume that for some ` > 0, the algebra B is a subdirect product of
M1, . . . ,M`, with Mi ∈K for all i . Suppose, by way of contradiction, that θ is
an equivalence relation on B and that F+ does not determine the congruence syn(θ).
Thus, there exists (e, f ) ∈ θF+ \ syn(θ). By the definition of θF+ and Lemma 2.3, we
have (p(e), p( f )) ∈ θ , for all p ∈ PolF+

1 (B), but cgB(e, f )* θ . For u ∈ B, we denote
the i th coordinate on u by u[i] and, for u, v ∈ B, we define

[[u = v]] := {i ∈ {1, . . . , `} | u[i] = v[i]}.

Assume that (a, b) ∈ cgB(e, f ) \ θ and the size of E := [[a = b]] is maximal over all
such pairs. Without losing generality, we may assume that a[1] 6= b[1], whence 1 /∈ E .
We shall derive the contradiction (a, b) ∈ θ .

We have (a[1], b[1]) ∈ cgM1
(e[1], f [1]). Since, by Lemma 2.2, the set

F determines principal congruences on M1, there is a chain of elements
in M1, say a[1] = a1, . . . , ak+1 = b[1], such that, for all i ∈ {1, . . . , k}, we have
{qi (e[1]), qi ( f [1])} = {ai , ai+1}, where qi (x)= tM1

i (x, Eci ), for some term ti (x, Ez) ∈
F and finite sequence Eci of elements of M1. As the projection from B to M1 is
surjective, for each i ∈ {1, . . . , k}, there is a finite sequence Egi of elements of B with
gi, j [1] = ci, j , for all j = 1, 2, . . . .

Let pi (x) denote the polynomial of B given by tB
i (x, Egi ), and fix j ≤ m. For all

i ∈ {1, . . . , k}, we have d j (a, tB
i (x, Egi ), b) ∈ PolF+

1 (B), whence

d j (a, tB
i (e, Egi ), b) θ d j (a, tB

i ( f, Egi ), b) for all i ∈ {1, . . . , k}. (∗)

We now establish two claims.

CLAIM 1. For all c, d ∈ B with c[1] = d[1], we have d j (a, c, b) θ d j (a, d, b).

As (a, b) ∈ cgB(e, f ), the Jónsson equation (J3 j) shows that

(d j (a, c, b), d j (a, d, b)) ∈ cgB(e, f ).

Now E ⊆ [[d j (a, c, b)= d j (a, d, b)]], using Equation (J3 j) again, while

1 ∈ [[d j (a, c, b)= d j (a, d, b)]]

by assumption. As 1 /∈ E , the maximality assumption on the choice of a, b ∈ B now
shows that d j (a, c, b) θ d j (a, d, b).

CLAIM 2. We claim that d j (a, b, b) θ d j (a, a, b).

For notational convenience, we define elements ui , vi ∈ B, for i ∈ {1, . . . , k}, by

ui :=

{
e if qi (e[1])= ai

f if qi ( f [1])= ai
and vi :=

{
f if qi ( f [1])= ai+1,

e if qi (e[1])= ai+1.

Note that, pi (ui )[1] = qi (ui [1])= ai and pi (vi )[1] = qi (vi [1])= ai+1, for each i ∈
{1, . . . , k}. Hence, the horizontal relations in the following chain follow from Claim 1.
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The vertical relations follow from (∗). We show the case in which k is even, but the
case where k is odd is similar and ends on the left instead of the right.

d j (a, a, b) θ d j (a, p1(u1), b)

θ

d j (a, p2(u2), b) θ d j (a, p1(v1), b)

θ

d j (a, p2(v2), b) θ d j (a, p3(u3), b)

θ

...
...

θ

d j (a, pk(uk), b) θ d j (a, pk−1(vk−1), b)

θ

d j (a, pk(vk), b) θ d j (a, b, b).

By transitivity, we obtain d j (a, a, b) θ d j (a, b, b).
Now to complete the proof of the lemma. The following chain demonstrates how

Claim 2 (vertically) and the Jónsson equations (J1), (J2) and (J4i) (horizontally) give
the desired contradiction, namely (a, b) ∈ θ . Here m is odd, but again the case in
which m is even is similar:

a = d0(a, a, b)= d1(a, a, b)

θ

d2(a, b, b)= d1(a, b, b)

θ

d2(a, a, b)= d3(a, a, b)

θ

...
...

θ

dm−1(a, b, b)= dm−2(a, b, b)

θ

dm−1(a, a, b)= dm(a, a, b)= b.

This completes the proof. 2

Appropriate finiteness conditions on the class K in Lemma 3.1 guarantee that the
set F can be chosen to be finite, in which case the set F+ will also be finite.
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LEMMA 3.2. Assume that K consists of algebras of bounded finite cardinality n ≥ 1.

(i) The set F = T (n)x determines syntactic congruences in K .
(ii) Assume that K is a subset of a locally finite variety. Then there is a finite subset

F of T (n)x that determines syntactic congruences in K .

PROOF. When Mal′cev’s lemma is applied in an algebra of cardinality at most n ∈ ω,
each tuple ei,0, ei,1, . . . , ei,m in item (4) involves at most n distinct elements, and
hence it suffices to choose terms in item (3) with at most n + 1 variables. This
proves (i). If K lies in a locally finite variety V , then by Lemma 2.1 we need only
choose one term from each equivalence class of the (n+1)-generated V-free algebra,
whence (ii) follows. 2

Our main result now follows easily.

THEOREM 3.3. Let A be a finite algebra and assume that the variety Var(A)
generated by A is congruence distributive. Then Var(A) has FDSC and TFPC.

PROOF. As A is finite, by Corollary 2.6 it suffices to show that the class of finitely
generated Var(A)-free algebras has FDSC. Let Wk denote the k-generated Var(A)-free
algebra.

The free algebra Wk is a subdirect product of a finite set K of algebras of cardinality
at most |A|. (Indeed, Wk is a subdirect product of subdirectly irreducible algebras in
Var(A), which by Jónsson’s lemma [14] lie in the class HS(A). It is also a subalgebra
of A|A|

|X |
, and so is a subdirect product of algebras in S(A).) By Lemma 3.2(ii),

there is a finite subset F of T (|A|)x that determines syntactic congruences in K .
Hence, by Lemma 3.1 there is a finite subset F+ of T (|A|+2)

x that determines syntactic
congruences on Wk . As the choice of F+ depends only on A, we conclude that
F+ determines syntactic congruences on every finitely generated Var(A)-free algebra.
Thus, Var(A) has FDSC by Corollary 2.6, and so has TFPC by Lemma 2.2. 2

To get a bound on the number of terms required to determine syntactic congruences
in Var(A), let Wk denote the k-generated Var(A)-free algebra and let |A| = n. Note
that |Wk | ≤ nnk

. When forming the subset F of T (n)x used in the proof of Theorem 3.3,
we need only pick one term t (x, z1, . . . , zn) for each element of Wn+1. Since the
terms in F should depend on x , an upper bound for the number of terms required is
|Wn+1| − |Wn| ≤ nnn+1

. Thus, if there are m + 1 Jónsson terms D0, . . . , Dm , then

|F+| = (m − 1)|F | ≤ (m − 1)nnn+1
.

If we do not know the number of Jónsson terms, then working in Wn+3 gives |F+| ≤
nnn+3

. One can also obtain an upper bound for the nesting depth of the terms required.
Easy observations show that every term in F+ is equivalent to one of nesting depth at
most nnn+3

. (Essentially, if t is represented in shortest fashion then no subterms of t
can be equivalent in Var(A) to a term of smaller depth. So the depth of t is bounded
by the size of Wn+3.) All of these bounds are probably excessive.
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+ 0 a b a + b
0 0 a b a + b
a a 0 a + b b
b b a + b 0 a

a + b a + b b a 0

· 0 a b a + b
0 0 0 0 0
a 0 0 a a
b 0 0 0 0

a + b 0 0 a a

FIGURE 1.

4. Congruence permutable varieties

The variety of lattices is congruence distributive and, as we pointed out earlier,
fails to have FDSC. However, the varieties of groups and of rings are congruence
permutable and do have FDSC. This suggests some possible variants of Theorem 3.3.
The proof of Theorem 3.3 does not make it clear precisely what role is played by the
finite residual bound of a finitely generated congruence-distributive variety. (Having
a finite residual bound is not a property shared by finitely generated congruence-
permutable varieties.)

In this section we show that one obvious variant of Theorem 3.3 does not extend
to congruence-permutable varieties. We find a four-element algebra A generating a
residually very finite congruence-permutable variety that fails to have FDSC.

Define A= 〈{0, a, b, a + b}; +, ·, 0〉, where + and · are given in Figure 1. The
additive reduct of A is isomorphic to the group Z2 × Z2 and it is easy to check that
the left and right distributive law holds. Hence we may view A as a nonassociative
algebra over GF(2), where the word algebra is used in the more classical sense.

We shall use Lemma 2.4 to prove that Var(A) does not have FDSC. For this we need
to develop a detailed understanding of the equational properties of A. Let 6 denote
the set consisting of the following three equations:

(a) x(yz)≈ 0;
(b) (xy)y ≈ xy;
(c) (xy)z ≈ (xz)y.

We write xi0 xi1 . . . xin−1 xin to abbreviate the left-bracketed multiplicative term
((. . . (xi0 · xi1) · . . .) · xin−1) · xin . We also refer to xi0 as the first variable in such
a term. More generally, if u1, . . . , un are terms, then u1 · u2 · · · · · un is assumed to
be left bracketed and so stands for (. . . ((u1 · u2) · . . . ) · un .

LEMMA 4.1. Every multiplicative term t (x0, . . . , xn) in which each of the variables
x0, . . . , xn occurs is equivalent modulo6 and the usual multiplicative properties of 0
to either 0 or a term xi0 xi1 . . . xim−1 xim , with m ∈ {n, n + 1}, such that i1 < i2 < · · ·<

im , and {i0, . . . , im} = {0, . . . , n}.

https://doi.org/10.1017/S144678870800061X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870800061X


68 B. A. Davey et al. [10]

PROOF. Certainly law (a) ensures that if t contains a right bracketing then we can
derive t (x0, . . . , xn)≈ 0. Otherwise, t (x0, . . . , xn) contains only left bracketing, and
laws (b) and (c) can be used to rearrange and remove repetitions amongst the variables
appearing to the right of the first variable. 2

We refer to a term of the form xi0 xi1 . . . xim−1 xim , with i1 < i2 < · · ·< im , as a
reduced multiplicative term. It is clear that we are able to rewrite every nonzero term as
a sum w1 + · · · + wn of multiplicative terms. Lemma 4.1 shows that we may further
assume that each multiplicative term in such a sum is in reduced form.

LEMMA 4.2. Let n ≥ 1 and let w1, . . . , wn be pairwise distinct reduced
multiplicative terms. Then the equation w1 + · · · + wn ≈ 0 fails in A.

PROOF. Assume without loss of generality that w1 = xi0 xi1 . . . xim and that m is
minimal amongst the wi . Let Wω denote the Var(A)-free algebra with free generating
set {xi | i ∈ ω}.

CASE 1. We have i0 6= i j , for all j ∈ {1, . . . , m}.

Define ϕ :Wω→ A by ϕ(xi0)= a, ϕ(xi j )= b for 1≤ j ≤ m, and ϕ(xi )= 0 for
all other generators. Now ϕ(w1)= a, but by minimality and the fact that the wi
are pairwise distinct, we have ϕ(wi )= 0, for i 6= 1. Hence,

∑m
i=1 ϕ(wi )= a 6= ϕ(0),

showing that w1 + · · · + wn ≈ 0 fails in A.

CASE 2. We have i0 = i j , for some j ∈ {1, . . . , m}.

The idea is the same, but we define ϕ by ϕ(xi0)= a + b, ϕ(xi )= b for 1≤ j ≤ m,
and ϕ(xi )= 0 for all other generators. 2

Lemmas 4.1 and 4.2 show that 6 is a basis for the equational theory of A within
the variety of all algebras over GF(2), as the following argument shows. Lemma 4.1
and the axioms for an algebra over GF(2) imply that every term reduces to either 0 or
one of the form w1 + · · · + wn , for some reduced multiplicative terms w1, . . . , wn .
However, Lemma 4.2 implies that no two distinct terms of this form, with their
multiplicative terms in lexicographic order, induce the same term function on A.
Indeed, if the equation w1 + · · · + wn ≈ v1 + · · · + vm holds, then w1 + · · · + wn +

v1 + · · · + vm ≈ 0 also holds. After removing repeats (using x + x ≈ 0), Lemma 4.2
implies that the left-hand side must reduce to 0, showing that {w1, . . . , wn} =

{v1, . . . , vm}. (Lemma 4.2 also shows that the reduced multiplicative terms over an
alphabet X form a vector basis for the Var(A)-free algebra freely generated by X .) Let
us say that a sum of distinct reduced multiplicative terms appearing lexicographically
in the sum is a normal form. We have just argued that every term reduces to a unique
normal form.

For n ∈ ω, define terms fn and gn by

fn(x, z1, . . . , zn) := xz1z2 . . . zn−1 + zn,

gn(x, z1, . . . , zn) := z1xz2 . . . zn−1 + zn,

and note that f0 = g0 = x .
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LEMMA 4.3. The set F := { fn(x, Ez) | n ∈ ω} ∪ {gn(x, Ez) | n ∈ ω} determines syntac-
tic congruences in Var(A).

PROOF. Let t (x, z1, . . . , zn) be a term. We shall prove that F shadows t . If the
variable x does not appear in t , there is nothing to do (choose `= 0 in the definition
of shadowing: see Lemma 2.4). We can assume that t is written in the form
w1 + · · · + wm with each multiplicative subterm wi in reduced form, and that these
subterms have been arranged so that x appears inw1. Sow1 can be written in one of the
forms xy1 . . . yk or y0 . . . y j−1xy j+1 . . . yk , where {y0, . . . , yk} ⊆ {x, z1, z2, . . .}. If
w1 can be written in the form xy1 . . . yk , then

w1 + · · · + wm ≈ xy1 . . . yk + w2 + · · · + wm

≈ fk+1(x, y1, . . . , yk, w2 + · · · + wm)

and

fk+1(y, y1, . . . , yk, w2 + · · · + wm)≈ yy1 . . . yk + w2 + · · · + wm .

If w1 is of the form y0 . . . y j−1xy j+1 . . . yk , then

w1 + · · · + wm ≈ y0 . . . y j−1xy j+1 . . . yk + w2 + · · · + wm

≈ gk− j+1(x, y0 . . . y j−1, y j+1, . . . , yk, w2 + · · · + wm)

and

gk− j+1(y, y0 . . . y j−1, y j+1, . . . , yk, w2 + · · · + wm)

≈ y0 . . . y j−1 yy j+1 . . . yk + w2 + · · · + wm .

By moving each multiplicative term wi involving x to the front, in turn, and repeating
this process we can replace each occurrence of x in the term t by y and thereby show
that F shadows t . 2

This lemma and Corollary 2.5 show that in order to prove that Var(A) does not have
FDSC it suffices to prove that, for every n ∈ ω, the set

Fn := { fk(x, Ex) | k ≤ n} ∪ {gk(x, Ex) | k ≤ n}

fails to determine syntactic congruences in Var(A). We shall show that Fn does not
shadow the term

pn(x, z1, . . . , zn) := xz1 . . . zn.

By Lemma 2.4 it will follow that Fn does not determine syntactic congruences
in Var(A).

Let us say that a term t is near pn if pn appears as a multiplicative term when t
is written in normal form. (It does not count if pn appears as a proper subterm of a
multiplicative term in the normal form of t .) Trivially, pn(x, z1, . . . , zn) is near pn
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and pn(y, z1, . . . , zn) is not. Suppose that Fn shadows pn . Then there exists ` ∈ ω,
terms

s1(x, z1, . . . , zm), . . . , s`(x, z1, . . . , zm)

in Fn and m` terms wi, j (x, y, z1, . . . , zm), for 1≤ i ≤ ` and 1≤ j ≤ m, such that K
satisfies the following equations:

pn(x, z1, . . . , zn)≈ s1(v1, w1,1, . . . , w1,m), (A)

si (v
′

i , wi,1, . . . , wi,m)≈ si+1(vi+1, wi+1,1, . . . , wi+1,m) (B)

s`(v
′

`, w`,1, . . . , w`,m)≈ pn(y, z1, . . . , zn), (C)

where {vi , v
′

i } = {x, y}, for 1≤ i ≤ `. We shall prove that, for 1≤ i ≤ `, and for
z ∈ {x, y}, the term si (z, wi,1, . . . , wi,m) is near pn .

LEMMA 4.4. Let 0≤ m ≤ n, let z ∈ {x, y} and let w1, . . . , wm be terms in the
variables {x, y, z1, z2, . . .}. The term fm(z, w1, . . . , wm) is near pn if and only if
wm is near pn .

PROOF. Note that

fm(z, w1, . . . , wm)= zw1w2 . . . wm−1 + wm .

We show that the term zw1w2 . . . wm−1 is not near pn .
If zw1w2 . . . wm−1 has normal form 0, then we are done. Otherwise, the law

x(yz)≈ 0 allows us to assume that, for 1≤ i < m, each term wi is a single variable.
So the normal form of zw1w2 . . . wm−1 cannot be the multiplicative term pn because
it has too few variables. Hence, fm(z, w1, . . . , wm) is near pn if and only if wm is. 2

LEMMA 4.5. Let 0≤ m ≤ n, let z ∈ {x, y} and let w1, . . . , wm be terms in the
variables {x, y, z1, . . .}. The term gm(z, w1, . . . , wm) is near pn if and only if wm is
near pn .

PROOF. Note that gm(z, w1, . . . , wm)= w1zw2 . . . wm−1 + wm . We show that the
term w1zw2 . . . wm−1 is not near pn .

If w1zw2 . . . wm−1 has normal form 0, then we are done. Otherwise, the law
x(yz)≈ 0 allows us to assume that, for 1< i < m, each term wi is a single variable.
Assume that w1 has normal form v1 + · · · + vk . So

w1zw2 . . . wm−1 ≈ v1zw2 . . . wm−1 + · · · + vk zw2 . . . wm−1.

The normal form for such an expression can include the multiplicative term pn if
and only if an odd number of the multiplicative terms vi zw2 . . . wm−1 reduce to pn .
However, each such multiplicative term either contains a y or an x that is not the first
variable, and hence cannot reduce to pn . So w1zw2 . . . wm−1 is not near pn . Hence,
gm(z, w1, . . . , wm) is near pn if and only if wm is. 2
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Lemmas 4.4 and 4.5 allow us to complete the proof. As pn(x, z1, . . . , zn) is
near pn , Equation (A) shows that w1,m is near pn . However, then a trivial induction
shows that, for z ∈ {x, y}, each term si (z, wi,1, . . . , wi,m) is near pn , as required.
Now Equation (C) implies that pn(y, z1, . . . , zn) is near pn , which is a contradiction.
This shows that Var(A) fails to have FDSC (and therefore fails to have TFPC).

Now we show that this variety is residually very finite. As the algebra A has a
group reduct it certainly generates a congruence-permutable variety. Consequently,
we may use commutator theory for congruence modular varieties; see Freese and
McKenzie [11]. In particular [11, Theorem 10.15] shows that Var(A) is residually
very finite if and only if the implication

ν ≤ [µ, µ] ⇒ ν = [µ, ν] (RF)

holds, for every pair of congruences µ, ν on every subalgebra B of A.
Up to isomorphism, there are two proper subalgebras of A: one is the trivial

subalgebra, and the other is the two-element 0-ring Z. On these algebras the
implication (RF) holds trivially, so we concentrate on calculating the commutator
on A.

We first observe that the only congruence of A that is neither the diagonal 1 nor
the universal relation ∇ is the congruence α corresponding to the two-block partition
{0, a | b, a + b}. The quotient A/α is again isomorphic to Z. Let f : A→ Z be the
natural map.

As Z is a 0-ring, it is abelian and so [β, γ ] =1Z, for all β, γ ∈ Con(Z). Now

f −1
[ f (∇ ∨ α), f (∇ ∨ α)] = [∇, ∇] ∨ α, (†)

by properties of the commutator [11, Proposition 4.4]. However, as Z is abelian, the
left-hand side of (†) becomes f −1(1Z) which is α. Hence, (†) yields [∇, ∇] ≤ α.

Now we show that [∇, α] = α. Recall [11, Definition 4.7] that the algebra A(∇, α)
is the subalgebra of A4 (thought of as 2× 2 matrices over A) consisting of all matrices
whose columns belong to ∇ = A2 and rows belong to α. Also, 1∇,α denotes the
congruence on A2 (written as columns) generated by the elements of A(∇, α) of
the form (

u v

u v

)
≡

((
u
u

)
,

(
v

v

))
.

As (
a 0
a 0

)
∈ A(∇, α),

right multiplication by
(

b
0

)
gives (

a 0
0 0

)
∈1∇,α.

By [11, Theorem 4.9], we find that (a, 0) ∈ [∇, α], showing that α ≤ [∇, α].
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Now, using the order-preserving properties of the commutator,

α ≤ [α, ∇] = [∇, α] ≤ [∇, ∇] ≤ α,

giving equality throughout. As 1 is an absorbing element with respect to the
commutator product [ , ], we obtain the following partial table of commutators:

[ , ] 1 α ∇

1 1 1 1

α 1 ? α

∇ 1 α α,

where the question mark is either α or 1. We do not need to calculate [α, α]. In both
of the possible cases, the reader will easily verify that the implication (RF) must hold.

By [11, Theorem 10.15], we have shown that (up to isomorphism) the variety
Var(A) contains only finitely many subdirectly irreducible algebras all of which are
finite (in fact of size at most 4+ 4(447

)!).
Summarising, we have proved the following result.

THEOREM 4.6. The four-element algebra A generates a residually very finite,
congruence-permutable variety that does not have finitely determined syntactic
congruences.

Let {A1, . . . , An} be a transversal of the isomorphism classes of the subdirectly
irreducible algebras in Var(A) and define B := A1 × · · · × An . Then

Var(B)= Var(A)= ISP(B).

Thus, B is a finite algebra such that the quasivariety generated by B is a variety that
fails to have FDSC. The existence of such an example was alluded to in [6, p. 373]. The
original example referred to in [6] is the three-element multiplicative subreduct of A on
the set {0, a, b}. Denote this algebra by C. While C does not generate a congruence-
permutable variety, one can show that Var(C) fails to have FDSC, via a proof similar
to but easier than that we gave for A. We can also prove that Var(C)= ISP(C), via a
proof very different from that which we gave for Var(B). The Equations (a)–(c) given
for A along with the extra law xx ≈ 0 (and other standard multiplicative properties for
0) form an equational basis for Var(C).

Most of the interest in the example C is superseded by Theorem 4.6 above; however,
we observe that every two-element algebra has FDSC: cofinitely many of these are
covered by Theorem 3.3 above, while the remaining are easy exercises. (A graduate
student of the first and second authors, Claire Edwards, has verified this and used it to
prove that all two-element algebras are standard in the sense of [7].)

We also observe that there are finite algebras that generate congruence meet semi-
distributive varieties without FDSC [6, Example 7.7]. So the congruence distributivity
condition in Theorem 3.3 cannot be replaced by congruence meet semi-distributivity.
On the other hand, the examples given in [6] generate varieties that are not residually
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very finite, and there are no known examples of congruence meet semi-distributive
varieties without FDSC that are finitely generated and contain only finitely many
subdirectly irreducibles. As observed in [6, (after Problem 9.3)], if no such example
exists, then the problem of deciding whether FDSC holds for a finitely generated
variety is undecidable.
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