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Complementary Series
for Hermitian Quaternionic Groups

Goran Mui¢ and Gordan Savin

Abstract. Let G be a hermitian quaternionic group. We determine complementary series for representations
of G induced from super-cuspidal representations of a Levi factor of the Siegel maximal parabolic subgroup
of G.

Introduction

Let F be a non-archimedean field of characteristic zero. Let F’ be a finite dimensional
division algebra over F with an anti-involution 7, such that the set of fixed points of 7 is F.
We have three cases:

(I) F' = Fandr is the identity map on F.

(Il) F' is a quadratic extension of F and T is the non-trivial element of the Galois group
Gal(F'/F).

(IlT) F' = D is the unique (up to an isomorphism) quaternion algebra, central over F and T
is the usual involution, fixing the center of D.

Every such algebra F’ defines a reductive group G over F as follows. Let
Vi=eF @ ©eF @ewnF @ el

be a right vector space over F'. If we fix e € {£1}, then (e;,e24—j1) = &;j defines an
e-hermitian form on V,;:

{(V,V’) =ec-7((nv)), wv' eV,

(vx,v'x") = 7(x)(v,v")x', x,x" € F'.

Let G = G,(F’, €) be the group of isometries of the form (, ), and let P be the parabolic
subgroup of G, which stabilizes the isotropic space

Vn' =eF' @ - -@e,F.

The group P has a Levi decomposition P = MN, where M 2 Autp/(V,)). We fix an
isomorphism M = GL(#n, F’) using the above fixed basis of V..

Let p € Irr(M) be a unitary representation and let s be a real number. Define a general-
ized principal series representation by

I(p,s) = Ind$(|dets |* ® p),
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where dety: is the reduced norm of the simple algebra M(n, F’) of all n X n matrices with
coefficients in F/, and | | is the normalized absolute value of F in the cases (I) and (IIT) and
the normalized absolute value of F’ in the case (IT). Let P = MN be the opposite parabolic
subgroup. Analogously, we define the induced representation I(p, s) for P. For f € I(p, s),
let

Als, p,N, K f(g) = / flag)di (g € G)
N

be the the standard intertwining operator from I(p, s) to I(p, s) (meromorphicaly contin-
ued from the domain of convergence of the integral). Let u(s, p) be the Plancherel measure
defined by

A(s, p, N,N)A(s, p, N,N) = p(s, p)~".

It follows from the work of Harish-Chandra [Si] that the Plancherel measure u(s, p) deter-
mines points of reducibility and complementary series of I(p, s) if p is supercuspidal.

In the cases (I) and (II) the group G is quasi-split. Thus, if p is supercuspidal, the re-
ducibilities and complementary series of I(p, s) are part of a general theory of Shahidi [Sh2]
for generic representations. For more details and for a nice interpretation in terms of con-
jectural twisted endoscopy theory, see [Sh1] (case (I)) and [G] (case (II)). In this paper we
study the remaining case (III). Then G is no longer quasi-split and our induced represen-
tations do not have Whittaker models.

Let us describe the main results of this paper in more details. First, note that G is an
inner form of the group

Sp(4n,F) ife =+1

G' = Gy, (F,—¢) =
2n(F, ~¢) {SO(4n,F) ife=—1.

Let P’ = M’N’ be the Siegel maximal parabolic subgroup of G’ as above. Note that M’ =
GL(2n, F). Furthermore, there is a natural 1 — 1 correspondence between regular elliptic
conjugacy classes of GL(n, D) and GL(2n, F). For each m € Irr(G), we write ch; for its
character, which is, by a well-known result of Harish-Chandra, a locally integrable function,
locally constant on the set of all regular conjugacy classes. By [DKV], there exists a 1 —
1 correspondence p <> p’ between the sets of all classes irreducible essentially square-
integrable representations of GL(n, D) and GL(2n, F) characterized by

(=1)"ch, = ch,
on the set of the regular elliptic classes. In Section 2 we prove (Proposition 2.1)

uis, p) = pu(s, p'),

under certain normalizations of Haar measures on N and N'; for more details see Section 2.
Combining this with the results of [Sh1], we compute reducibility and complementary
series of I(p, s) if p is supercuspidal. This can be found in Section 3.

https://doi.org/10.4153/CMB-2000-014-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2000-014-5

92 Goran Mui¢ and Gordan Savin

1 Results of DKV

In this section we describe the correspondence p <> p’, between essentially square inte-
grable representations of GL(n, D) and GL(2n, F), in more details.

By a result of Bernstein [Ze], there exists a positive integer k and a supercuspidal repre-
sentation py of GL(2n/k, F) such that p’ is the unique irreducible subrepresentation of

pk=D/250 s kD20

(Here, as usual [Ze], v = |det|r.) We will write p’ = §(po, k). Now, by [DKV, B.2.b] p
is supercuspidal if and only if the lowest common multiple of 2 and 2n/k is 2n. Thus, if n
is even, p is supercuspidal if and only if p’ is. If n is odd, p is supercuspidal if and only if
either p’ is supercuspidal, or p’ = d(po, 2).

Assume now that p is a supercuspidal representation. Define, as in [T, p. 53], the char-
acter v, of GL(n, D) by

|detp |p if p’ is supercuspidal
vV, =
P detp 2 if p’ = 8(po, 2).

Let d(p, k) be the unique irreducible subrepresentation of

k—1)/2 —(k—1)/2
e R S Pl

By [DKYV, B.2] and [T, Proposition 2.7] this representation is essentially square integrable.
Furthermore, its lift to GL(2n, F) is given by [DKV, B.2.b]

(LD) {5(p, k) =6(p’, k) if p'is supercuspidal

3(p, k)" = d(po, 2k) if p’ = d(po, 2)-

We will end this section by introducing the natural involution on the set of irreducible
representations of GL(n, D). First, for g = (g;;) € GL(n, D) define 7(g) = (T(g,‘j)) €
GL(n, D). If ¢' denote the transpose matrix (with respect to the main diagonal), we put
¢" = 7(g"). The map g — (g") ! is a continuous involution on GL(n, D), for any n. Thus,
it acts on representations by 77 (g) = 7 ((gT)_1 ) Now, we will prove

Lemma 1.1 Let  be an irreducible representation of GL(n, D). Let 7 be the contragredient
representation of m. Then ™ = 7.

Proof We will prove this result under our assumption that the characteristic of F is zero.
This assumption enable us to consider the characters x, and x,- as locally integrable func-
tions, locally constant on the set of all regular semisimple conjugacy classes. Hence, to
prove the lemma, it is enough to check

wa(g) = Xfr(g)a

for all regular semisimple elements g € GL(#, D). This is equivalent to

X»(&") = X=(g)-
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Hence, it is enough to check that ¢" and g are conjugate for all regular semisimple g.
Note that ¢" and g have the same characteristic polynomial. In particular, they are con-
jugate over the algebraic closure F of F. Let A be the centralizer of g in M(n, D). Then

A=EPF,
j

where for any j, F; is an extension of F (of degree [F; : F]), and }_,[F; : F] = n. Thus, the
centralizer of g in GL(n, D) is

By the Hilbert Theorem 90, the first Galois cohomology group H'(Gal(F/F), GL(A)) is
trivial. In particular, g and g are conjugated over F. ]

2 Plancherel Measures

In this section we will prove the equality of Plancherel measures. Abusing our notation,
let G = G,(F',¢€) and let P = MN be the Siegel maximal parabolic subgroup as in the
Introduction. First, we need to normalize Haar measures on N and N. We shall fix a non-
trivial additive character ¢ of F. Let M(n, F') be the vector space over F of n X n-matrices
with coefficients in F’. Then

M(n,F') = M(n,F')* & M(n, F')~,

where M(n, F')* and M(n,F')~ are the sets of 7-hermitian symmetric and 7-hermitian
skew-symmetric matrices. Then, using the basis ey, . . ., €4, €411, - - . , €2, 0f V,, we can iden-
tify both N and N with

M(n, F)* ife=—1
M(n,F')~ ife=+1.

Let p,(F') be the Haar measure on M(n, F') self-dual with respect to 1r and the bilinear
form Trg: (xy), where Trg/ is the reduced trace on M(n, F'). Let pF (F’) be the self-dual
Haar measure on M(n, F)* such that

pin(F") = i (F') -y (F").

Specifying F’ = D and F’ = F we obtain normalizations of the Haar measures for
G = G,(D,€) and G’ = G,,(F, —¢), respectively.

Proposition 2.1 Assume that p is a square integrable representation of GL(n, D), and p’ its
lift to GL(2n, F). Then, under above normalization of Haar measures on N and N', we have

s, p) = pls, p').

Proof We will prove the proposition using global means. Let k be an algebraic number
field. For each place v of k let k, denote its completion at v. Let A be the ring of adeles of k.
We may assume that k has two places v; and v,, such that

k, = F
k, = F.
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Let D be a quaternion algebra over k, ramified at v; and v, only. Let G = G,(D, ¢). It is
a form of G defined over k. Note that

G(k,) = G(k,) =G
G(k,) issplitif v ¢ {v;,n}.

Let P = MN be the Siegel parabolic subgroup of G. Note that M = GL(n, D). Take
a nontrivial additive character ¢ = ), 1, on A, trivial on k, such that ¢, = r and
t,, = tr. For each place v, we fix the Haar measures on N(k,), and N(k,) self-dual with
respect to 1), as above. In this way we have fixed Tamagawa measures (see [We, p. 113]) on
N(A) and N(A). This means that

@2.1) vol (N(k) \ N(A)) =1
' vol (N(k) \ N(A)) = 1.

Let G' = Gyu(k, —e). It is a split form of G. Let P’ = M’'N’ be the Siegel parabolic
subgroup of G’. Note that M’ = GL(2n, k). As in the case of G, we fix Tamagawa measures
onN’(A) and N’(A) using ¥ = ), ¥.

Now, we will fix a unitary character w of A%, trivial on k*, such that w,, and w,, are
equal to the central character of p.

Lemma 2.1 Fix a finite place u, different from v, and v,, and choose any supercuspidal uni-
tary representation ¢ of GL(2n, k,,), whose central character is w,. Then there exists an auto-
morphic cuspidal representation 7' = @, m, of GL(2n, A) = M’(A), whose central character
is w, such that

~J

m, =, =2p' and w6
Proof This lemma is an application of the trace formula. For example, the proof of [F,
Proposition II1.3] can be adapted to this situation. We leave details to the reader. ]

The automorphic cuspidal representation, described in Lemma 2.1, can be lifted [FK,
Theorem 3] to the automorphic cuspidal representation 7 = @), 7, of M(A), defined as
follows:

7TV1 = 7TVz = P

m, 2w, foranyv,v ¢ {v;,n}.

Let S be a finite set of places of k containing {v;,v,} and all places of residual charac-
teristic 2, such that if v ¢ S then ¢, and 7, are unramified. For every v ¢ S, we denote by
12 (resp. fj) the unique unramified vector in I(7,, s) (resp. I(,, s)) normalized as in [Sh1,
p. 6]. Since for v ¢ S our choice of Haar measures coincides with the usual one (where on
each root subgroup one takes a self dual measure measure with respect to v,), we can apply
a result of Langlands (see for example [Sh1, p. 6]):

(2.2) A(s,m,, N(k,),N(k,)) f5(8) = ¢(s,m,) f;(g)
' A(s, m,, N(k,), N(k,)) f5(8) = e,(=s,7,) f5(8),
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where ¢, (s, m,) is a quotient of certain L-functions. The explicit formula for ¢, (s, ) can be
found in [Sh1, p. 6]. For our purpose, it is important that the Euler product

es(s,m) = [ [ euts, m)
vES
converges for Re(s) >> 0, and it continues to a meromorphic function on C.
Take f* = @), f; in I(m,s) such that f; is the unramified vector as above, forall v ¢ S.
In view of (2.1) we can apply [MW, Theorem IV.1.10] and obtain

(2.3) A(s,m,N(A),N(A))A(s,m,N(A),N(A)) f* = f°.
Now, using (2.2), it follows from (2.3) that
(2.4) [T utsm) - ests,m) - es(—s,7) = 1.

veS

Analogously, we can prove
(2.5) [T et 7)) - es(s,x') - es(—=s,7") = 1.
ves
Next, if v ¢ {v,v,}, then D, = M(2, k,). This induces an isomorphism of G(k,) and

G'(k,) restricting to isomorphisms

{N(k» ~ N'(k,)

26 N(ky) = N'(F,).

It is easy to check that these isomorphisms preserve the self-dual measures. In particular it
follows that

(2.7) (s, my) = pls, )
ifv ¢ {vi,v,}. Now, (2.4), (2.5) and (2.7) imply

(u(s. ) = (u(s, )"

Since both Plancherel measures are non-negative along the imaginary axis Re(s) = 0 [Si,
Chapter 5], we obtain the proposition. ]

3 Applications

Let p be a unitarizable supercuspidal representation of GL(#n, D). In this section we de-
termine the reducibility points of I(p, s), where s is a real number. First, let us write wy
for the non-trivial element of the group Ng(M)/M. Clearly, wy acts on representations of
M = GL(n, D). More precisely, the action is given by wy(p)(g) = p((gT)*l). Hence, by
Lemma 1.1 we have

(3.1) wo(p) = p.
Now, we have

Proposition 3.1 If p % p, then I(p, s) is irreducible for all real numbers s. Moreover, I(p, s)
is unitarizable only for s = 0.
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Proof It follows from [Be, Theorem 28] and (3.1) (and also from Harish-Chandra [Si])
that p 2 p is a necessary condition for reducibility of I(p, s). Hence I(p,s) is irreducible,
for real numbers s. Since, this representation is not Hermitian for s # 0, the lemma follows.

|

In what follows we shall assume that p = p. Then, by a result of Silberger, there exists
the unique sy > 0 such that I(p, +sp) reduces, and I(p, s) is irreducible for |s| # sy [Sil,
Lemma 1.2]. Moreover, by the general theory of Harish-Chandra [Si, Chapter 5], we have

(3.2) {so =0 ifand onlyif u(sy, p) # 0

so >0 ifand onlyif (s, p) = 0o

In the remainder of this section we will calculate sy, using Proposition 2.1 and (3.2). Thus,
let p’ be the corresponding square integrable representation of GL(2#, F). Note that p’ is
also self-contragredient.

First, we shall assume that p’ is supercuspidal. Then, the work of Shahidi [Sh1] implies
that there is s; € {0, 1/2}, such that I(p’, £s{) is reducible and I(p’,s) is irreducible for
|s| # s;. Asin [Sh1], we call p’ a representation of symplectic type if I(p’, 1/2) is reducible,
and a representation of orthogonal type if I(p’, 0) is reducible. Also, [Sh1, Lemma 3.6]
implies that every self-contragredient supercuspidal representation of GL(2n, F) is exactly
of one of the above types. Moreover, these definitions do not depend on the choice of the
group G’ (that is, G’ can be either SO (4n, F) or Sp(4n, F)).

Furthermore, the dual group of GL(2n) is GL(2n,C). Let p,, be the standard repre-
sentation of GL(2n,C). Let A%p,, and Sym2 pan be the exterior square and symmetric
square representation of GL(2n, C), respectively. Shahidi has defined local L-functions
L(s, p", A2pan) and L(s, p’, Sym? p,,,) [Sh1], [Sh2], and has proved that a self-contragredient
representation p’ has symplectic (resp. orthogonal) type if and only if L(s, p’, A%p,,) (resp.
L(s, p', Sym? p,,)) has a pole at s = 0.

Example 3.1 Let p’ be a self-contragredient supercuspidal representation of GL(2, F), and
let w’ be its central character. If w’ = 1 then p’ is of symplectic type, and if w’ # 1 then p’
is of orthogonal type.

Our first result is

Theorem 3.1 Assume that p is a self-contragredient unitarizable supercuspidal representation
of GL(n, D), being the lift of a supercuspidal representation p’ of GL(2n, F). Then we have

(i) If p’ has symplectic type, then I(p, +1/2) is reducible, and I(p, s) is irreducible for |s| #
1/2. Moreover, I(p, s) is in the complementary series if and only if |s| < 1/2.

(ii) If p’ has orthogonal type, then I(p,0) is reducible, and I1(p,s) is an irreducible non-
unitarizable representation for s # 0.

Proof As explained before, to find the point of reducibility sy, we need to study the poles
and zeroes of u(s, p). Proposition 2.1 implies u(s, p) = u(s, p’), and the theorem follows.
|
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In other words, Theorem 3.1 says that I(p, s) reduces if and only if I(p’, s) reduces. On
the other hand, reducibility of I(p’, 1/2) can be checked as follows. Let w be a non-singular
skew-symmetric matrix in GL(2#, F). Put

Sp(zny F) = {g S GL(ZH,F),gth = W}

We have the following result of Shahidi [Sh1, Theorem 5.3].

Proposition 3.2 Assume that w' is the central character of p’. For each function [ €
Cx (GL(Zn, F)), such that

fr(g) = / flzg)o () dz

defines a non-trivial matrix coefficient of p’, we put

I(f)=/ f(g"-wgw ') dg.
Sp(2n,F)\GL(2n,F)

Then, I(p’,1/2) is reducible if and only if there exists [ as above, such that I(f) # 0.

Finally, we note that Murnaghan and Repka [MR] have computed this integral for a
large family of tamely ramified supercuspidal representations.

Now, we will assume that the lift p’ is not supercuspidal. Hence, by (1.1), p’ = §(po, 2),
where py is an irreducible supercuspidal representation of GL(n, F) and 7 is odd. Since p is
self-contragredient, pp must also be self-contragredient. Now, we have

Theorem 3.2 Assume that G' = SO(4n, F) (n is odd). Let p be a self-contragredient uni-
tarizable supercuspidal representation of GL(n, D). Assume that p corresponds to a discrete
series representation p’ = 6(py,2) of GL(2n,F). Let I(p,s) be the induced representation
of G = G,(D,—1). Then I(p,+1/2) is reducible, and I(p,s) is irreducible for |s| # 1/2.
Moreover, I(p, s) is in the complementary series if and only if |s| < 1/2.

Proof As explained before, to find the point of reducibility sy, we need to find the poles
and zeroes of u(s,p) = (s, p’). Let g be the order of the residue field of F. Combining
(3.16) and (7.4) of [Sh2], the Plancherel measure u(s, p’) is, up to a monomial in ¢°, equal
to

L(l + 257 p/y /\2p2n)L(1 - 257 p/a /\szn)
L(—ZS, p/a A2p2n)L(255 pla /\ZPZI’I)

(3.3)

In fact, since both u(s, p’) and the function given by the formula (3.3) are even, they are
equal up to a non-zero constant. Since p’ = §(pq, 2), by [Sh1, Proposition 8.1],

(34) L(Sa ply /\2p2n) = L(5 + 17 Po, /\2pn)L(57 Po, SYm2 Pn)
Since n is odd, we have that L(s, py, Sym? p,) has a pole at s = 0, while L(s, py, A*p,) is

holomorphic there [Sh1, Proposition 3.5]. Since the L-functions of supercuspidal repre-
sentations have all poles on the imaginary axis Re(s) = 0 [Sh2, Proposition 7.3], we see
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that the only real pole of the L-function on the left hand-side of (3.4) is s = 0. Now, since
local L-functions never vanish, (3.3) implies that sy = 1/2. The theorem is proved. ]

Theorem 3.3 Assume that G' = Sp(4n, F) (n is odd). Let p be a self-contragredient uni-
tarizable supercuspidal representation of GL(n, D). Assume that p corresponds to a discrete
series representation p’ = §(po, 2) of GL(2n, F). Let I(p, s) be the induced representation of
G = G,(D, +1). Then:

(i) Ifn = 1and py = lpx, then I(p, £3/2) is reducible, and I(p, s) is irreducible for
|s| # 3/2. Moreover, I(p, s) is in the complementary series if and only if |s| < 3/2 (note
that the unique irreducible subrepresentation of I(3/2, p) is the Steinberg representation
of G).

(i) Ifn=1and p} = 1px, po # lpx, then I(p,0) is reducible, and I(p, s) is an irreducible
non-unitarizable representation for s # 0.

(iii) If n > 1 then I(p, £1/2) is reducible, and 1(p, s) is irreducible for |s| # 1/2. Moreover,
I(p, s) is in the complementary series if and only if |s| < 1/2.

Proof The proof is similar to the proof of Theorem 3.2. This time note that, up to a non-
zero constant, the Plancherel measure u(s, p’) is equal to

L(l + 257 pla /\zp2n)L(1 - 25a p/7 /\2p2n) L(l +s, PI)L(I -5, p/)
L(=2s,p", N2p2,)L(2s, p', A2 pan) L(—s, p")L(s,p") ~

(3.5)

where L(s, p’) is the principal L-function [J]. Since p’ = d(pq, 2), by [J, Proposition 3.1.3]
L(s,p") = L(s + 1/2, po).

Note that L(s, py) has a real pole if and only if n = 1 and py = 1px. Moreover, s = 0 is the
only real pole of L(s, 1px ). The theorem follows from (3.5) and a case by case discussion.
|

Remark 3.1 Note that Theorem 3.1 (combined with Example 3.1) and Theorem 3.3 give
a classification of the non-cuspidal part of the unitary dual of the rank one, non-split form
of Sp(4, F).

Remark 3.2 'We could also calculate the reducibility of I(p, 0), where p is a unitarizable
discrete series representation of GL(n, D) using the theory of R-groups and the results of
Shahidi. Note that Shahidi has determined all of the reducibilities I(p’,0), where p’ is a
discrete series representation of M’ = GL(2n, F) (see Section 9 and Theorem 9.1 in [Sh1]).
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