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ON THE DISTRIBUTION (MOD 1) OF POLYNOMIALS

OF A PRIME VARIABLE

MING-CHIT LIU AND KAI-MAN TSANG

§ 1. Introduction

Throughout, ε is any small positive number, Θ any real number, n,

Πj, k, N some positive integers and p,pό any primes. By [|0|| we mean the

distance from θ to the nearest integer. Write C(ε), C(ε, k) for positive

constants which may depend on the quantities indicated inside the pa-

rentheses.

Dirichlet's theorem says that for any θ, N there exists n such that

(1.1) n^N and \\θn\\ < N~` .

Furthermore, as a direct consequence of (1.1), there are infinitely many

n such that

(1.2) ||0τι|| < n~l .

Improving an estimate of Vinogradov [12], Heilbronn [6] extended (1.1)

by showing that for any θ, ε, N there are n and C(ε) such that

(1.3) n < N and ||0n2|| < C(ε)N-1/2+ε .

Later, Davenport [3] extended (1.3) by proving that if g is a polynomial

of degree k > 2 with real coefficients and without constant term then for

any ε, N there are n and C(ε, k) such that

(1.4) ntζN and \\g(ή)\\ < C(e, &)iV-1/(2*-1)+£ .

The results of Heilbronn [6] and Davenport [3] sparked off a series

of investigations (see [9]). In particular, recently Schmidt has made

remarkable progress in [9, 10]. However all these developments con-

cerning (1.1) have no parallel results for prime. This can be seen from

the following example. Let q be any positive integer having at least two
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distinct prime factors and {a^T a sequence of irrationals which converges

to the rational a\q with (α, q) = 1. Obviously

(1.5) \\pkalq\\ > \\q

for any prime p. Suppose that when Θ is irrational, (1.4) has a parallel

result for prime, i.e. for any aJf ε, N there are p and C(ε, k) such that

(1.6) p < N and | |^p f c | | < C(ε, k)N~δ+e ,

where ε < δ and δ depends on k only. Now if Nδ~ε > q(C(ε, k) + 1) and

cίj satisfies \aά — ajq\ < N~k~δ, then by (1.6),

||p*α/9 | | < K p f c | | + pk \\a3 - a\q\\ < i\Γ"^(C(ε, k) + 1 ) < 1/g .

This contradicts (1.5).

On the contrary, concerning (1.2) there is indeed a parallel result for

prime. It was mentioned in [5] that by a result of Vinogradov [14,

Chapter 9] for any ε and irrational a, there are infinitely many primes p

such that | |αφ|| < p~1/5+£. Recently this inequality was improved by

Vaughan [11] to \\ap\\ < p~iμ (logpf. The object of our present paper is

to extend Dirichlet's theorem (1.2) to polynomials of a prime variable as

that (1.3) and (1.4) extend Dirichlet's theorem (1.1). We shall prove

THEOREM. If f is any polynomial of degree k > 2 with real coefficients

and irrational leading coefficient then for any ε > 0 there are infinitely many

primes p such that

\\f(p)\\<p-Mt)+` ,

where A(k) = (S(k + 1)4*+1)"1.

By (1.5) we see that the irrationality in our theorem is essential. In

our proof, unlike most previous work in this field, we make no use of the

Heilbronn argument [6] presented by Davenport in [3] but we modify an

earlier method due to Davenport and Heilbronn [1], Also in § 4 we are

able to use the full-strength of a result of Vinogradov [13] which deter-

mines the exponent, A(k) in our Theorem.

§ 2. Notation

Let δ be a small positive number « 1 ) and x a real variable. Write

e(χ) = exp (ί2πx) and denote the integral part of x by [x]. Let a be the
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leading coefficient of the given polynomial /. Since a is irrational, by

Theorem 183 [4] there are infinitely many convergents ajq such that

\Δ.L) \Oί — d/Q I \ \^Q )

For sufficiently large q, put

~l/(fc-2/3) 7" ΛrΛne V

(2.2) f2-r

I,(x) = j ^ e((-l)^)dy ( = 1, 2) ,

= Σ
A'<<2

e(xf(p)), St(x)= Σ <*P`),(2.3)

where

(2.4) s = 2fc + 2 .

Trivially,

(2.5) |S,(*)| < Z (j = 1, , s) and |7/x)| < X (j = 1, 2) .

Furthermore we put

(2.6) V(x) = Π Sj(x) , W(x) = /,(*)/,(*) Π S,(x) ,

(2.7)

(2.8) T = X'Am+ ,

fr2 if x = 0 ,

* . < * ) = / ^ i n π r x V o t h e r w i s e _
IV πx /

Obviously,

(2.9) KXx) < r2 .

We partition the real line into

(2.10) \E2 = {x: X-`"il3 < \χ\ < X2Am} ,

, = {*:•
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If Y > 0 we use Z < Y (or 7 > Z) to denote \Z\ < CY where C is

some positive constant. The constants implied by 0, <, > may depend

on the given constants, k, ε, δ and the coefficients of / only.

§ 3. Integration over Eγ

LEMMA 1. For any real y we have

Γ e(xy)Kτ(x)dx = max (0, τ - \y\) .
J — oo

Proof. See Lemma 2 in [8].

LEMMA 2. We have

Γ W(x)Kτ(x)dx
J — oo

Σ

Proof. Let B denote the cartesian product of the intervals, Xk < y}

< (2Z)i: ( = 1, 2) and let the set B* of (yu y2) be denned by the following

(3.1), (3.2), (3.3) and (3.4).

(3.1) 2Xk < y, < 3Zfc ,

(3.2) Λ = 3Ί + 9* - / ( A ) - A* - Σ »5

where

(3.3) δX < A , A, ns, • • •, n. <

and ^ is a real variable satisfying

(3.4) 1551 < r/2 .

By (3.1), (3.2), (3.3) and (3.4) we see that

y2 < SXk + r/2 + 2|α| (2δZ)ft + (2δZ)l: + (s -

Similarly y2 > Z Λ . So

(3.5) B*czB.

By (2.6), (2.2) and (2.3) we have

Γ W(x)κχx)dx = Σi[° (π Γ w T

χe(x{f(p3) + pk
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where 2]i is a summation taken over all pjt Uj satisfying (3.3). Then by

Lemma 1, (3.5), (3.2), (3.4) and (3.1) we have

Γ W(x)Kr(x)dx i ί J, τ -yi + yi + /(p.) + pi

+ Σ n)

~ (W2))

The last inequality follows from (3.3) and the prime number theorem.

This proves Lemma 2.

LEMMA 3. If \x\ < χ-fc+1/3 £/ιOT /or j = 1, 2

S/x) - Ij(x) + 0(1) .

Proof. This is essentially the Corollary in [2, p. 85].

LEMMA 4. We Ziαi e

f V(x)ZΓ(x)dx>r2Xs- fcL-2 .
J Ex

Proof. By (2.6), Lemma 3 and (2.5) we have, when x e Eλ

\V(x) - W(x)\ - \SASt - Id + US, - JQI Π \Sj(x)\

= 0(X)

So in view of (2.9) and (2.10)

(3.6) I f V(x)Kτ(x)dx - [ W(x)Kτ(x)dx < ̂ Z 5 " 1 f <

On the other hand, by integration by parts and (2.2) if x Φ 0 we have

(3.7) I,(x) = O(\xrχ-«+`) .

It follows from (2.9), (3.7), (2.5) and (2.10) that

(3.8) f W(x)Kt(x)dx <C τ2Xs-'X2('-k) [ \x\~2dx < τ

2Xs-k-1/3 .

Lemma 4 follows from Lemma 2, (3.6) and (3.8).
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§4. Integration over E2

LEMMA 5. Let λ3 = a (the leading coefficient of f) and λ± = 1. Suppose

that for j = 3 or 4 there are integers aj9 q5 with (ajy q}) = 1, 1 < q3 and

\λμ - ajlqjl < qj2 .

If

(4.1) Q = min (qJf [2δX]klqj) , U = min (Q,

and

(4.2) Q u

Sj(x)

where A(k) is defined in (2.7).

Proof This is the Theorem in [13].

LEMMA 6. We have

supmin(|S,(«)|,|S4(x)|) « Z 1 " ^ .
xeE2

Proof Let ^3 = a, which is the leading coefficient of the polynomial

/, and λA = 1. By Dirichlet's theorem [4, p. 30] for each xe E2 there are

integers α;, q5 with (α;, q3) = 1 and

(4.3) 1 < g, < r T ' 1 / 3

such that

μ,x - α,/g,| < δX-k+1'*qj` (j - 3, 4) .

By the same argument as that in Lemma 13 of [8] we can prove that

max (g3, g4) > X1/3. In the proof we need (2.1), that is the irrationality of

a. Then Lemma 6 follows from Lemma 5.

L E M M A 7. For jφ3,4 we have

Γ
J - c

where c is some positive constant depending on k only.

Proof. This is a consequence of Hua's Lemma [Theorem 4, 7]. See

Lemma 21 in [8].
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LEMMA 8. We have

f \V(x)\Kτ(x)dx<τ*Xs-«L-* .

Proof. By Lemma 6 we have

j ^ I V(x)\ Kτ{x)dx < sup min (|S,(*)|, |S4(*)|)

Π Sj(x)\κχx)dx(4.4) X iJ^/ 1 ^ 3 ^ 1 +

< X1~Am{Jι + J 2̀} , say,

Note that by (2.4) there are 2* factors in the above product l\jΦ3ιi S/x).

We denote the products taken over the first 2"'1 and last 2!c~1 factors by

f]i and Π2 respectively. By (2.5) and Holder's inequality we have

π
3

Kτ(x)dx

The same argument holds for J29 then by Lemma 7 we have

J, and J2 < τX2fc-fc + 1Lc .

This, together with (4.4), (2.4) and (2.8), proves Lemma 8.

§ 5. Completion of the proof

LEMMA 9. Let Ω(x) = 2] e(x<*>(yu * > Jn))> where ω is any real-valued

function and the summation is over any finite set of values yly -,yn. Then

for any R > 4/r we have

{ \Ω(x)\2 Kτ{x)dx « {Rτ)~ι Γ |β(x)|2 K(x)dx .
J \X\>R J -oo

Proof. This follows from Lemma 2 in [2]. See Lemma 16 in [8].

LEMMA 10. We have

[ \V(x)\KXx)dx^τ2Xs-kL~* .
J Ez

Proof. By (2.5), Lemma 9 with R = X2A{k) and a similar argument

as in the proof of Lemma 8, we have
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I V(x)\ Kt(x)dx « X\XΐΛ(k)τ)-`{l\1 ( Γ \Sj(x)fKτ(x)dxY "}

_ _ )V2

X

This proves Lemma 10.

We come now to the proof of our Theorem. By Lemma 1 we have

J = Γ V(x)Kr(x)dx = Σ 2 max (o, τ- n\ - n\ + f{pz) + p\ + Σ n?) ,

where the summation Σ2 is taken over all s-tuples (nu n2,p3ίρA, nb, , ns)

lying in

(5.1) X < nu n2 < 2X <5X < p s, p4, τι5, , ns < 2δX .

Then

(5.2) J^τN,

where N is the number of (nu n2,pz,p^ nb, , τzs) satisfying (5.1) and

(5.3) nΐ - n\ + /(p8) + pf +

Now, by Lemmas 4, 8 and 10 we have

J = Σ ί ^(*)#/*)d* > r2Xs-fcL"2 .
v = l J E v

So by (5.2)

(5.4) N > rZ s- f cL' 2 > oo as X • oo .

Since n\ — n\ + p\ + Σs<JO ^ ^ s a n integer and δX < p 3 < 2<5X, by (5.3),

(5.4) we see that

has infinitely many solutions in primes pz. This proves our Theorem.
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