M.-C. Liu and K.-M. Tsang
Nagoya Math. J.
Vol. 85 (1982), 241-249
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§1. Introduction

Throughout, ¢ is any small positive number, § any real number, n,
n;, k, N some positive integers and p, p, any primes. By ||#|| we mean the
distance from # to the nearest integer. Write C(e), C(e, k) for positive
constants which may depend on the quantities indicated inside the pa-
rentheses.

Dirichlet’s theorem says that for any 6, IV there exists n such that

1.1) n< N and |6n||<<N'.

Furthermore, as a direct consequence of (1.1), there are infinitely many
n such that

(1.2) lon| < n' .

Improving an estimate of Vinogradov [12], Heilbronn [6] extended (1.1)
by showing that for any 6, ¢, N there are n and C(¢) such that

(1.3) n< N and |[0n*] < CEN*#.,

Later, Davenport [3] extended (1.3) by proving that if g is a polynomial
of degree k > 2 with real coefficients and without constant term then for
any ¢, N there are n and C(e, k) such that

(1.4 n< N and |g(n)|| < Ce, RN /e-Dre

The results of Heilbronn [6] and Davenport [3] sparked off a series
of investigations (see [9]). In particular, recently Schmidt has made
remarkable progress in [9, 10]. However all these developments con-
cerning (1.1) have no parallel results for prime. This can be seen from
the following example. Let ¢ be any positive integer having at least two
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distinct prime factors and {a,;};* a sequence of irrationals which converges
to the rational a/g with (a, ¢) = 1. Obviously

(1.5) Ip*alqll = 1/q

for any prime p. Suppose that when ¢ is irrational, (1.4) has a parallel
result for prime, i.e. for any «a,, ¢, N there are p and C(e, k) such that

(1.6) P< N and |ap*| < C(, R)N**,

where ¢ < 0 and § depends on k only. Now if N°=* > q(C(, k) + 1) and
a; satisfies |a; — a/q] < N-*-% then by (1.6),

Ip*algll < lla;p"|| + p* llay — alql| < N7**(Cle, k) + 1) < 1/q .

This contradicts (1.5).

On the contrary, concerning (1.2) there is indeed a parallel result for
prime. It was mentioned in [5] that by a result of Vinogradov [14,
Chapter 9] for any ¢ and irrational «, there are infinitely many primes p
such that |ap|| < p~'**.. Recently this inequality was improved by
Vaughan [11] to ||ap|| < p~'* (log p)’. The object of our present paper is
to extend Dirichlet’s theorem (1.2) to polynomials of a prime variable as
that (1.3) and (1.4) extend Dirichlet’s theorem (1.1). We shall prove

TuEOREM. If f is any polynomial of degree k > 2 with real coefficients
and irrational leading coefficient then for any ¢ > 0 there are infinitely many
primes p such that

()| < p~2®e,
where A(k) = (38(k + 1)4*+1)~.

By (1.5) we see that the irrationality in our theorem is essential. In
our proof, unlike most previous work in this field, we make no use of the
Heilbronn argument [6] presented by Davenport in [3] but we modify an
earlier method due to Davenport and Heilbronn [1]. Also in §4 we are
able to use the full-strength of a result of Vinogradov [13] which deter-
mines the exponent, A(k) in our Theorem.

§2. Notation

Let 6 be a small positive number (<1) and x a real variable. Write
e(x) = exp (i2rx) and denote the integral part of x by [x]. Let « be the
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leading coefficient of the given polynomial f. Since « is irrational, by
Theorem 183 [4] there are infinitely many convergents a/q such that

2.1 la — alg| < (2¢°)7" .
For sufficiently large ¢, put

X=guem,  L=logX,

2.2 2X
e 1@ = [ e-mdy (=12,
Si(x) = XO%X e((=xn*) (=12,
(2.3) Sy(x) = SX%J_;M e(xf(p)) , S(x) = 6X<§M e(xp®) ,
S](x) = ax Z?ﬁX e(xnk) (] = 5’ 6’ ) S) ’
where
(2.4) s=2"+4 2.
Trivially,
(2.5) S <XG=1-9 and [[[(M<X(G=12).
Furthermore we put
26) Ve =[] 8@, W) = L@L [T 84,
2.7 A(k) = (3(k + 1)4"*)~",
2.9 = XA®e
7 fx=0,
Blx) = {(Siﬂw{y otherwise.
X
Obviously,
(2.9 K(x) <.

We partition the real line into

E1 — {x: lxl < X—k+1/3} ,
(2.10) E, = {x: X7F18 < x| < XM@Y
E, = {x: X*® < |«f} .
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HY>0weuse Z< Y (or Y>> Z) to denote |Z| < CY where C is
some positive constant. The constants implied by O, <, > may depend
on the given constants, k,¢, 6 and the coefficients of f only.

§3. Integration over E,
LEMMA 1. For any real y we have

|" etespK@dx = max @, — 15D -
Proof. See Lemma 2 in [8].
LemMma 2. We have

r WK (x)dx > =X+~ L2 .

Proof. Let B denote the cartesian product of the intervals, X* < y;

< 2X) (j=1,2) and let the set B* of (y, y,) be defined by the following
(38.1), (3.2), (3.3) and (3.4).

(3.1) 2X* < v, < 3X*,

(3:2) yz=y1+¢—f(p3)—pf—5§<sn§f,
where

3.3 0X < Psy Puy s, -+, By < 20X

and ¢ is a real variable satisfying
(3.4) lp| < z/2.
By (3.1), (3.2), (3.3) and (3.4) we see that
¥, < 3XF + /2 + 2] (20X)F + (26X)* 4 (s — 4)(26X)" < 4X* .
Similarly y, > X*. So
(3.5) B*C B.
By (2.6), (2.2) and (2.3) we have

J :a W(x)K(x)dx = >, j: < ]11 J:m
xe(x{f(ps) +pi+ 3 n';}) K ()dx

5<y<s

By e((~ D'y )dy,
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where >, is a summation taken over all p,, n; satisfying (3.3). Then by
Lemma 1, (3.5), (3.2), (3.4) and (3.1) we have

|- wwr@ar > x5, [ max (07 ==y + .+ £) + pi

+ .3 ni)dvdy,

5<j<s

> X0 5, — @f2) | dvdys)

> Xra-o Zl T(TXIC)
> X X4 X/L) .

The last inequality follows from (8.3) and the prime number theorem.
This proves Lemma 2.

Lemma 3. If |x| € X %' then for j = 1,2
8,(®) = I(x) + 0(1) .
Proof. This is essentially the Corollary in [2, p. 85].

Lemma 4. We have
, V@K@dx > XL
Proof. By (2.6), Lemma 3 and (2.5) we have, when x ¢ E,
V) = W) = 8,8, — 1) + LS, = DI [] 18,
= 0(X) [T IS,(x)] = OX*™).
So in view of (2.9) and (2.10)
(3.6) UE V(D)K. (x)dx — L W(x)K,(x)dx[l < X L dx & PXH

On the other hand, by integration by parts and (2.2) if x = 0 we have
(3.7 I(x) = O(jx[""X~*") .
It follows from (2.9), (3.7), (2.5) and (2.10) that

(3.9) j WK (x)dx < fzxs-zxw-kvj %]t dx X E
2@ Ey xeEq

Lemma 4 follows from Lemma 2, (3.6) and (3.8).
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§4. Integration over E,

LEmMmA 5. Let 2, = « (the leading coefficient of f) and A, = 1. Suppose
that for j = 3 or 4 there are integers a;, q; with (a;,,q;) =1, 1< q, and

2 — a;/q;l < q;°.

I

4.1) @ = min (g,, [20X]*/q;) , U = min (Q, [26X]"?)
and

(4.2) Q > (klog [20X ]+

then

8,(x) « XU,
where A(k) is defined in (2.7).
Proof. This is the Theorem in [13].
LEMMmaA 6. We have
sup min (|Sy(x)], [S(x)]) € X'~4® .
Proof. Let 2, = @, which is the leading coefficient of the polynomial

[, and 2, = 1. By Dirichlet’s theorem [4, p. 30] for each x¢ E, there are
integers a;, q; with (a;, q;) = 1 and

(4.3) 1< q; <o XEs
such that
(2,0 — a,lq;| < 6X ' /q;? (G=349.

By the same argument as that in Lemma 13 of [8] we can prove that
max (q,, q.) = X2, In the proof we need (2.1), that is the irrationality of
«. Then Lemma 6 follows from Lemma 5.

LemMma 7. For j + 38,4 we have
r 19,(0) PR (x)dx < cX**Le

where ¢ is some positive constant depending on k only.

Proof. This is a consequence of Hua’s Lemma [Theorem 4, 7]. See
Lemma 21 in [8].
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Lemma 8. We have
[ V@I K@dx < exeLe
Proof. By Lemma 6 we have
[ V@) K@dx < sup min (S, 1)
(44 x{],. 1@ + 18D 1 S() Kx)dx|

L XML, + Jy}, say.

Note that by (2.4) there are 2* factors in the above product [];..S;(x).
We denote the products taken over the first 2¢-! and last 2¢-! factors by
[1: and []. respectively. By (2.5) and Hélder’s inequality we have

J< X[ |1 S0 K@d

S 00 " 21—ky 172 o0 - 21—k 1/2
<X{I ([ _1srreas) | L[ s@rrwax) |
The same argument holds for J,, then by Lemma 7 we have
J, and J, € tX¥EHLe

This, together with (4.4), (2.4) and (2.8), proves Lemma 8.

§5. Completion of the proof

Lemma 9. Let 2(x) = >, e(xa(y,, - -+, ¥,n), Where w is any real-valued
function and the summation is over any finite set of values y,, ---,y,. Then
for any R > 4/t we have

J 1900 Ky < (R [ 10691 K

Proof. This follows from Lemma 2 in [2]. See Lemma 16 in [8].

Lemma 10. We have
j V)| K.()dx € X L .
L3

Proof. By (2.5), Lemma 9 with R = X*® and a similar argument
as in the proof of Lemma 8, we have
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[, VeI K@ar < xoen {11, ([ s @rKwar) |
ol s
& X FLY

This proves Lemma 10.
We come now to the proof of our Theorem. By Lemma 1 we have

).

J = j " V@K(x)dx = Y. max (o, . —

nf —nf + f(py) +pi+ > nk

5<j<s

where the summation >, is taken over all s-tuples (n,, n, p;, p,, n;, - -+, 1)
lying in

(.1) X<n,n<2X; 0X K< Py, Puy Mgy - -+, N, < 20X .

Then

(5.2) J <N,

where N is the number of (n,, n, p;, p,, 15, - - -+, 1,) satisfying (5.1) and

(5.3) nt —nf + f(p) + P+ 3 k<= X0

<SS

Now, by Lemmas 4, 8 and 10 we have

J=3{ VK@®dx> XL .

v=1dJ Ey

So by (56.2)
(5.4) N> X L —> as X —> oo .

Since nf — nf + pf + > <;<, 0¥ is an integer and 6X < p, < 20X, by (5.3),
(5.4) we see that

(o)l < ps#e

has infinitely many solutions in primes p,. This proves our Theorem.
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