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ABSOLUTE CONTINUITY OF MARKOV
PROCESSES AND GENERATORS
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Introduction.

Let (x,,&,%;,P,) be a (standard) Markov process with state space S
defined on the abstract space 2. Here, z, is the sample path, { is the
terminal time and B, is the smallest ¢-field of £ in which z,, s<¢ are
measurable, Let P;, xS be another family of Markovian measures
defined on (¥,,2). It is a known fact that (B,[t <&], P;) is absolutely
continuous with respect to (B,[t <{], P,) for any ¢t >0 and z< S, if and
only if there exists a positive right continuous multiplicative functional
(MF) M, with P,(M,)<1, xS, t=0, such that it is the Radon-Nikodym
derivative of (B,[¢ <], P;) with respect to (Bt <{), P,), where %B,[t <{]
is the o¢-field in [t <{¢] formed by all BNn[t<{¢l, B€B,. Then there
arises naturally the following problem; How can we characterize the class
of all the Markov process which is absolutely continuous with respect to a
given Markov process or, equivalently, the class of all the Markov process
which is transformed through MF of a given Markov process? In particular
can we characterize this class in terms of the generator of Markov process?

In case of Brownian motion, this problem is solved through the
works of Maruyama [6], Motoo [8], Dynkin [1] and Wentzell [15]. It is
roughly the following; the conservative Markov process which is absolutely
continuous with respect to Brownian motion has the generator expressed as

—é—A + 2f; a?c : Hence the transformation by MF is so-called that of
k3

?drift”. On the other hand the same problem has been solved in case of

Markov chain by Kunita-Watanabe [4]; two (minimal) Markov chains z,

and 2, with the same state space S are mutually absolutely continuous if

and only if ¢,,, =0 implies ¢;, =0 and vice versa, where qx,y=1imM
£10

and P,(x,y) is the transition function of z, (g3, is defined similarly from =).
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From these two special cases, it is expected that the transformation of
continuous Markov process through MF would be that by drift and that
the transformation of purely discontinuous process would be that of Lévy
measure. Further the transformation would be, in general, a suitable com-
bination of the above two. To prove this conjecture, the author had to
extend the generator of the Markov process in a specific way. The relation
between the two Markov processes is then stated as that of the correspond-
ing generators in the extended sense.

§1 and §2 are rather introductory parts. We will state several results
on additive functional and stochastic integral by additive martingale. These
are the reformulation and the extension of the works by Motoo-Watanabe
[9] and Watanabe [16].

We will extends in §3 the domain of the generator in a specific way
and then express the extended generator in the form

Au = 336;;By;Br,u + 20 Byu + S[u(y) —u(+) — ZBau(+) (9i(y) — 7:(+ )+, dy),

where {a;;} is positive definite and symmetric, By, is an operator of deriva-
tion and n(x, -) is a o-finite measure (Theorem 3. 1).

In §4, we shall show how the extended generator A may be changed
through the transformation by MF. Roughly, the extended generator A’
of the transformed process becomes A’ = A + B, where

Bu = 2f 'Brau + { (u(y) — u(+)) (/00 — Ll -, dy),

We will further obtain the conditions (stated (B) in Theorem 4. 1) con-
cerning f* and f, under which A + B becomes conversely the extended
generator of the transformed process. These conditions are complicated but
it depends on the ellipticity of {a;;}. For instance, it turns out that if
{a;;} are uniformly elliptic, any bounded functions {f'} satisfy the condition
(B). Conversely, if {4;;} degenerate on a neighborhood of a point, we can
not choose {f’} to be linearly independent on the neighborhood.

As an application of §4, we shall discuss, in §5, how the boundary
condition of diffusion process can be changed through the transformation by
MF. The possibility of changing the boundary condition depends also on the
ellipticity of the boundary operator. Suppose we are given a diffusion

1 Similar expression of the extended generator has been obtained by Skorohod [13].
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process on a compact C*-manifold with the boundary condition Lux =0,
where L is of the form

Lu = 20{” 0%u + g 3;

e 2 [u)—u ()DL D] ).

The possibility of changing the boundary condition depends on the ellipti-
city of {&"} and follows a similar rule as that of the extended generator.

§1. Stochastic integral.

Suppose we are given a standard Markov process M = (x,, {,§,, P,) with
the state space S defined on the basic space 2. Here, #, = 2,(0), 0 € 2
is the sample path, ¢ is the terminal time, &;, =0 is the increasing family
of g-fields of 2 and P,, 2 S, is the family of Markovian measures on
(2,%,) starting from x. (We use the same notation as [3]). A stopping
time T is called a quasi-hitting time (QHT) if 7(,)+ ¢ =T for ¢t <T and
yf? T(6,)+ ¢t =T holds a.e. P,, V2 S. We assume, throughout this paper,
that the process M satisfies Meyer’s Hypothesis (L) and that M is conserva-
tive, i.e., P({=oo) =1 for all x € S or locally conservative, i.e., there exists
an increasing sequence of QHT {T,} such that 7, <¢ and lim 7, = ¢ holds
a.e. P, YvxeS. By the latter assumption, each stoppede;rocess M, =
(xt’\T"’ + oo, FiarT, P.) becomes a Hunt process.

A real valued stochastic process X, = X,(w) is called a functional if it
is &,-measurable for each # =0 and, if there exists a set N of § = &. with
P,(N)=0, Vx & S (N is called a null set) such that for o & N, X,(w) is right
continuous and has left hand limits for ¢+ <¢ and X,(0) = X;(0) holds. Here
X: = 13111(1) X.... A functional X, is p-th integrable (integrable if p =1) if
E(X,”) <oo(or P,-ess sup |[X,| <oo if p =o0) for each z € S and 0<¢ <eo.
Further, if the p-th integrable functional X, is a martingale (&, P,) for all
z €S, X, is called p-th integrable martingale. A functional X, is called
locally p-th integrable if there exists an increasing sequence of stopping
times {7T,} with the limit { such that each X;,r,, <1 is p-th integrable.
Further, if each X;,7, is a martingale (F\1,, P,) for all x € S, X, is called
a locally p-th integrable martingale. In particular, if we can choose such
{T.} as a sequence of QHT, X, is called locally p-th integrable (martingale)
relative to QHT. Such {T,} are called the associated stopping times (or
QHT) of X,. It should be noted that any local martingale X, is quasi-
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left continuous, i.e., for any increasing sequence of stopping times {T,}
with the limit 7, lim X7, = X, holds on the set [T <cc], a.e. P,, Vx € S.

A functional )Zois called an AF (additive functional) if, except for o
of a null set, X, + X,(6,) = X,+, holds for all 0<¢, s<o. We denote by
M? (or MP1oc) the set of all AF which are (locally) p-th integrable mar-
tingale. When p =2, we write J? or IM2loc as M or Mlec respectively. We
also denote by A* or At+lec the set of all integrable (or locally integrable)
increasing AF. We put % (or Alc) = {4 = A' — A2; A'eA*} (or A'eUtlec),

The following Tanaka’s lemma plays a fundamental role in our later
discussion (private communication).

LemMa 1. 1. Let X, be an AF whose absolute values of jumps are dominated
by a positive constant (independent of w), then X, is locally p-th integrable relative
fo QHT for every 1<p <oo,

ProrosiTION 1. 1. If X, is of IMiloe, X, is a locally integrable martingale
relative to QHT.

Progf. We assume first that X, has bounded jumps. Then X, is locally
square integrable relative to QHT by Lemma 1.1. Let {Q,} be the as-
sociated QHT of X;» and {T,} be the associated stopping times of the local
martingale X;. Then X;,q,rs, is a martingale by optional sampling theo-

rem. Since
E(Xiro.aT,) = E(Xipg,) < oo,

{Xir@uaT,; P =1,2, -+ +} is P,-uniformly integrable for each # and ». Then
Xina, = lim Xipq.a7, 1S a square integrable martingale.

Wep—:}olall next consider the general case. Let {T,} be the associated
stopping times of the local martingale X,. For a fixed ¢>0, we define
R, by induction as follows; T, = 0,

R,=T, Ninf{t > R,-,; | X, — Xk, .| > ¢}
Then, clearly X;\g, is integrable and |Xi\z, — X,,\Rﬂll< ¢ holds a.e. for each

fixed t. Hence 4Xingr, = Xipr, — Xiar, is integrable. Put Af =:§1 4Xg,

2) In case of locally conservative process, we may and do assume, through the later discus-
sions, that each associated QHT T, of a local martingale is strictly less than {, a.e. P, Vz€ES.
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I(4Xp, >0 and R,<t) and A= ﬁ.:leXRnI(AXR”<O and R,=<¢®. Then,
clearly A} and A7 are locally integrable and the absolute values of jumps
of X, — (At + A7) are dominated by 2c. This fact shows that

Yi=24X , Yi=-—-X24X,

4XxX,>2¢ 4X,<-2c
st st

are locally integrable, purely discontinuous increasing AF. Then, Lemma
1. 2 described below concludes that there exists a continuous and increasing
AF Yt and V7 such that Yi —¥{ and Y7 — Y7 are locally integrable martin-
gale relative to QHT. Put Z,=X,— (Y —Y?)+(Y;—¥;). Then Z, has
bounded jumps and hence it is a local martingale relative to QHT. It is
now clear that X, is a local martingale relative to QHT.

LemMa 1. 2.  Let X, be a purely discontinuous and increasing quasi-left con-
tinuous AF. If X, is locally integrable, there exists a unique continuous increasing
AF X, such that X, — X, is a local martingale relative to QHT.

Proof. By the Meyer decomposition, there exists a unique and con-
tinuous increasing process X, such that X, — X, is a local martingale. We
will show that X, is an AF. It is known that there exists an integrable
sequence of AF X} which is purely discontinuous, quasi-left continuous and
increases to X,. For each X7, there exists a continuous and increasing
AF X7 such that X7 — X7 is a martingale (See [16]). It is now easy to see
that X7 increases to X, and hence X, is an AF.

It remains to prove that X, — X, is a local martingale relative to QHT.
By Lemma 1.1 due to Tanaka, X, is locally integrable relative to QHT.
Let {T.} be the associated QHT. Then X, r, — X;or, i1s a martingale as
is easily seen.

Two local martingales X, and Y, are called orthogonal if X,Y, is a
local martingale. We denote by #ti-lc the set of all X, € Muloc which is
continuous in ¢, Then clearly 9Riloc ¢ IM>loc  gj2lc,  We denote by
Myloc the set of all X, € Mblee which is orthogonal to every elements of
Miloc,  We have

ProposiTION 1. 2. Every X,eMMb1oc has a unique decomposition X,=X{+X?¢,
where X € Miloc and X¢ & MY loc,

3) I(I') is the indicator function of the set I".
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Proof. By the proof of Proposition 1.1, X, has a decomposition X, =
Y.+ Z., where Y, has bounded jumps, Z, is of finite variation, and Y, and
Z, have no common jumps. Then Y, and Z, are orthogonal (See [7]).
Therefore, it suffices to prove the proposition in case X, has bounded jumps.
Let {T,} be the associated QHT of X, M2zlc, Then X, 7, is a square
integrable martingale and is an AF of the stopped process M,=(2:\r,, ©°,
&inTo Po).  Hence there exists a continuous AF Xp¢ and discontinuous
(orthogonal to X7 °) X7'¢, both of which are square integrable martingales.
Uniqueness of such decomposition implies X745, = Xt ¢ and X%, = X7 ¢ for
each m>n. Hence there exists X{e MLl and X¢ e Myloc such that

Xinr, = Xp° and X{r, = X7¢. Uniqueness of the decomposition is clear.

ProrosiTioN 1. 3.  For each X, € Mlec, there exists a umique continuous
increasing AF <X, such that X% —<X), ts a local martingale.

Proof. If X, is square integrable, the proposition is known [9]. The
reduction of the general case to this is made similarly as the preceding
proposition.

Now, let X, be an element of Mrlec and X, = X{ + X¢ be the decom-
position of Proposition 1. 2. We define an increasing AF [X], by

[X) = T, (X% + X

Then X2 —[X], is a local martingale ([7]). We define [X,Y] for X, Yl loc
by —% {fIX+Y]—[X—Y]}. The following form of stochastic integral is due
to Meyer [7].

THEOREM 1. 1. Let X € Mblc and @ be a very well measurable function
t
such that So(D?d[X]s<m Jor each t<oo and YD AX,I (94X, 4X,=1) is

locally integrable. Then there exists a unique local martingale Y, satisfying
t
(1. 1) So@sd[){, 2], =1Y,Z], YZ e il loc,

In particular, if @ is of the form @)= f(,.), where f is a Borel function, then
the above Y is an AF.

DEerINITION. Y of the above theorem is written as S(DdX and is called
the stochastic integral of @ by X.
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Remark. Let X, € Mrloc and Y, € Malec, where ¢ is the conjugate of
p. Then [X,Y], is locally integrable and there exists a unique continuous
AF (X,Y), which is the difference of two increasing AF, such that [X,Y],
—(X,Y), is a local martingale. In particular if p =g =2, the relation
(1. 1) is equivalent to

(1. 2) S(Dd<X, 75 =(Y,Z> VZ e Ploc

and the stochastic integral S(DdX is the same one defined in [4]. We omit
the details. (See [7]).

§2. Radon-Nikodym derivative of continuous and increasing

APF.
Let ¢ be of A+ lec, A universal measurable function f on S is called

locally p-th ¢-integrable (locally ¢-integrable if p =1), if Stl flaz)|Pdo, is
0
locally integrable. Clearly, St fle)de, is of Ale if 5 is locally ¢-integ-
0

rable. For ¢ € A} loc, there exists a ¢-finite measure ¢ on S such that

Sfdgo= 0 a.e. P,, Y2 S if and only if f=0 a.e. g. Furthermore, if p
and g’ have the above property, g and x’ are mutually absolutely con-
tinuous. (See [9]). Such g is called a canonical measure of o.

Let ¢ be of Alc and ¢ € A loc, ¢ is called aboslutely continuous with

respect to ¢ (denoted by ¢ < ¢) if any universal measurable set E of S with
the property S:I zd¢ = 0, satisfies SIEdgo =0, where I, is the indicator func-
tion of the set E. Similarly, ¢ is singular to ¢ if there exists a universal
measurable set E such that §IEd¢ = ¢ and SIEd¢ =0 holds.

ProrosiTION 2. 1.  Let ¢ be of Alee and ¢ be of Afloc,  Then, ¢ is

uniquely decomposed into the sum of two continuous and increasing AF ¢ and ¢?,
where o' < ¢ and ¢? is singular to ¢. Furthermore, there is a universal measurable

Sunction f on S such that ¢! = S fd¢g.  f is unique up to measure O relative to a

canonical measure of ¢.
The above proposition is a trivial modification of a result obtained by
Motoo-Watanabe [9].  Actually they have proved that for A = ¢ + ¢, there

are nonnegative universal measurable functions g and % such that ¢ = SgdA
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and ¢ = ShdA hold. We define ¢! = Sgh"IEdgb and ¢ = ¢ — ¢!, where E=
{x: h(z)=0}. It is easy to see that these ¢! and ¢? are what we want.

Derinition.  The above f is called the Radon-Nikodym derivative of
o' with respect to ¢.

Let ¢ be of At such that (a) <X,Y> < ¢ is satisfied for every X and Y
of Mlec and, (b) ¢, has the decomposition ¢ A &+ ¢,, where ¢, is singular
to t A& The above ¢ is said to be canonical AF of the given standard
process. Let g be a canonical measure of the above ¢. The pair (g, z)
is called a canonical system of the standard process. A canonical system
exists certainly. For, Motoo-Watanabe [9] showed that there exists a count-
able family {X"} of 9 such that (X' > <(X? > ..., each of them is ortho-
gonal and every X of 9% is expressed as X1 S fndX™ Then ¢! =t \EHLXY,
satisfies the condition (a) and # A €< ¢'. Let f be the Radon-Nikodym
derivative of ¢! with respect to ¢t Aé&.  Then f=1. Define ¢ = S fido'.
This ¢ satisfies the conditions (a) and (b).

We shall denote by (X,Y), the Radon-Nikodym derivative of (X,Y)
with respect to a canonical AF ¢. In particular (X, X), is denoted by (X),.

ProrosiTiON 2. 3.  Let ¢ be a canonical AF and p, a canonical measure of
¢.  Then for every X, Y, Z of Mlc we have

(1) X, Y)y=(Y,X)y (X)y=0 a.e. p;
(2) (X,Y+2),=(X7Y),+(X,2), ae p;

1

3) XY, =X ae u;

@ If Z= S fdX, then (Z,Y), = f(X,Y), a.e. p.

(1), (2) and (4) are immediate consequence of the definition, (3) follows
from Lemma 10. 1 and its proof of [9].

A sequence {X"} of Mlec is a Cauchy sequence if there exists a sequ-
ence of stopping times {7,} with the limit ¢ such that, for each »p,
E(X?nr,— XFa7,)) >0 as n,m—>oo. Let {X"} be a Cauchy sequence.
There exists a unique X of Mlc such that for each p, E (Xirr,—XinT,)?) =0
as n—co (See [4]). A subset 3 of Mloc is closed if any Cauchy sequence
of ® has the limit in M. A subset N of Mlec is called a subspace if (i)
X,Yel—=X+YeR, (i) Xeh— SdeE N, where fis a locally square
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{X>-integrable function and (iii) M is closed. Let M be a subspace. The
set of all ¥ which is orthogonal to every element of % is denoted by %t*.

ProPosITION 2. 4.  Let M be a subspace of IMlc and let F be a mapping
Srom R to the space of all locally o-integrable function satisfying F(X +Y)=F(X)+
F(Y) and F(Sng) = gF(X). There is a unique Z of N satisfying F(Y)=(Z,Y),,

vYefw if and only if there is a locally p-integrable function f such that |F(Y)|< f %(Y)i
is satisfied for each Y of .

The above proposition is an analogue of the Riesz theorem of Hilbert
space. ’Only if” part is clear from Proposition 2.3 (3). Set N’ = {XeN;
F(X)=0 a.e. p}. Then 9’ is a subspace. Indeed, the linear property (i)
and (ii) is clear; we shall show %’ is closed. Let {X"} be a Cauchy se-
quence of M and let X be its limit. Then

StF(X —X"')dso‘é(Stfzdgo>%<X—-X”>%—>0 in 210"
0 0
Since F(X™ =0, F(X)=0. Thus % is closed.

We can choose Y from (%')"nN%: such that (Y), has the maximal sup-
port, ie., {x: (Y),(®) =0} contains {z:(Y’),(2) =0} a.e. p for every Y’ of
MNEng%. Note the relation FYXY),?d<Y>< f dg. Then Z =SF(Y)(Y);1dY
is well defined as an element of ®. It is easy to see that (Z,X), = F(X)
holds for every X of ®%'UL(Y) (linear sum), where 2(Y)=(ShdY; k is locally

square <Y>-integrable} .

We shall finally prove 9t =% UY). Let U be any element of N,
Set Ut = SF(U)(Z);‘dz. Then U!' € &Y) and F(UY) = F{U) (21 F(Z)=F().
Therefore F(U?) =0, where U?=U —U'. Consequently U2 R’. We can
now conclude that Rt/ U Y) > 9. The converse relation is clear.

Following S. Watanabe [15], we shall define a Lévy measure. Let
f(x,y) be a SxS-measurable function. Set sét'}:‘;l#h flzey ms) by Py(#) if it
is well defined. A kernel n(x,dy) on S such that n(x,{x})=0 is called a
Lévy measure if, for any f such that P,(¢) is integrable,

(2. 4) P, (1) = (nsde>

4 There exists an increasing sequence of stopping times {T',} with the limit { such that
each stopped process <X—X"); AT, converges to 0 in L%-sense.

5 nf(x) = Ssn(% dy) f(y).
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becomes a martingale. The existence of Lévy measure is proved in [15].
Let 9Mlc be the orthogonal complement of Miec, Then the set of all

P,(t)—gnfdgo which are locally square integrable is dense in 9tlc, Let
F, be the set of all SxS-measurable functions f(x,y) such that nf? is
locally ¢-integrable. Then for each f& F, we can associate Q, of Miee
in such a way that if P,(¢) is locally integrable, @, agrees with (2. 4) and
satisfies

(2. 5) (Qy) = nf-
We shall write sometimes @, as Sf(x,, y)q(ds, dy).

§3. Extension of generator.

Let ¢ be of %At and D(4,) be the set of all bounded measurable func-
tion « such that there exists a locally ¢-integrable function f on S satisfy-
ing

Y Xt = () — ulwy) + | fdo

is of 9Mlec, We define the operator A4, for D(4,) by Au=—f. Itis

uniquely determined up to measure 0 relative to a canonical measure of o.

In particular D(G) is the set of all bounded function # such that (3. 1)

holds for bounded f and ¢ of the form ¢t A &, We define Gu for #=dD(G)

by —f. G with its domain D(G) is the generator of the standard process.
The following proposition is immediate.

ProrositioN 3. 1.  Let (p,p) be a canonical system. Then D(G) c D(A,)
and A,u = Gu holds for u e D(G). Furthermore D(G) coincides with {usD(A,);
Ayu is bounded and agrees with 0 a.e. v}, where v is the canonical measure of the
singular part ¢ of ¢ relative to t A €.

Let {7,} be (at most) countable family of D(4,). If S is a manifold,
it is natural to take such {7,} as its coordinate system. We shall call a
bounded measurable function # on S is of the class C%S) if for each w, of
S there exists a C2-class function U(y,, - -+, ¥y) on R¥(N=1,2, - - -) such
that u(x) = U(y,(x), + - +,7n(x)) holds in a neighborhood of z,, We define
differential operators By, for such u € C¥S) by ’
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(3. 2) B”'u(x) = '—g% (77(33)), i=1, -, N’

=0, i=N.

THEOREM 3. 1. Let (o, 1) be a canonical system. Then CXS) < D(A,) and
every u of C¥S) has the following expression.

(3.9 Au(e) = - 3a"(s)BrBr,u(a) + 3 6'(@) By(v)
+ [[u) — u(e) — 2 Boasle) (rw) — )i, dy),  ae. p.

Here a are positive definite, symmetric, locally ¢-integrable functions, and b° are
locally p-integrable functions.

Proof. Let X" =X'+7Y’, X' e Mlec and Y* € Mlc be the decomposition
of Proposition 1. 2. Then

Y= S (:(y) — ni(,))alds, dy)

by [16]. Set ¢’ = SAV,,mdso. Let U(yy, ++ -, yy) be a C2-class function on
RY,  Since 7,(2,) = X! +Yi+ ¢' —9,(x,), formula on stochastic integral [4]
is applicable and we obtain

U@y(®s)y + =+ gu(®e)) — Uni(20)s =+ +5 nn(20)) = X7 + ¢ty

where
/ * U !
(3. 4) xi =2 U ax; + | wow) - Utde)atds, dy)
o 0Y; 0
P ¢o9U iy taU
(3. 5) vi=5 0| o ax, xh+ 2| Xay,

+ [ J @ an) Won @) = Uonta) — 220 (e mu(w)—nw1de.

Suppose # of C%S) coincides with U(p,(x), - + -, 7x(2)) on a neighbor-
hood V of a point z,, Then we can conclude from (3. 4) and (3. 5) that
u(@:a1) — w(®o) = XipT + ¢ipr, where X,eMlc and ¢, agrees with ¢} replac-
ing U(py(x), « « -, 7x(2)) by u(x) in the expression (3.5). Here T is the
hitting time for V°.  Set
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(3. 6) a’ = (X', X"y b = A
Then we obtain the expression (3. 3) for 2 of V, provided « & ®(4,). Since
such {V} covers S, we obtain (3. 3) for all z provided x € D(4,).

We shall show that C%S)c D(4,). Let u < C¥S) and, {V,} and {W,}
be open coverings of S such that V,, © W, and that for each m there exists
Un(¥s +**, Yn,) of C?class function on R¥» satisfying u(x) = U,(n,(x), * -+,
7x.(2). Set Vi, =V, —:E:Vk and define Ty(0) = Ty, (o) if z0) € V}, where
Tyw- is the hitting time for the set Wy. Define T,, by induction as T,-,+
Ty(6s,,). A similar argument as the preceding paragraph concludes that
(T, ;vioat,) — w(®r, ) is the sum of two elements belonging to 9tlec and
loc; the latter is absolutely continuous with respect to ¢. Therefore u(x:pr,)

—u(x,) has a similar decomposition. Note that T',, increases to +eo. Then
we can conclude that # € D(4,).

CoroLLARY. If u and v are of D(A,), uv is of D(A,) and
3.7 (X" X")p = Aputv — A v —vA,u
holds. In particular if u and v are of CXS), then (X*,X"), is expressed as
(3. 8) 2@ Br.uBa + | (ul2) — uly) (l2) — o(y)nlz, dy).
Proof. It suffices to prove the case u =v. We may apply the theo-

rem by setting 7, = u. Then #* e D(4,) and from (3.5) and (3.6) we
obtain

(3.9) Agu? = (X?), +2uA,u + S (u(y) — u(x))?*n(x, dy),
where X% is the projection of X* to Jle, Note that

(3. 10) (X2, = | () — ulw)pn(a, ay),

where X3 is the projection of X* to Milec. Therefore (X*), = (X%),+ (X5, =
Au® —2uA,u.  The expression (3. 8) follows from (3. 7) by calculating the
right hand of (3. 7) using (3. 3).

§4. Transformation by MF.

A functional M, is a MF (multiplicative functional) if M,M,6,) = M., is
satisfied for ¢+ s<<i. We shall assume the following (M. 1)~ (M. 2)
throughout this paper.
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(M. 1) M, is strictly positive for t <¢ and M, =0 for t=¢.

(M. 2) M, is a local martingale.

It is known that there exists a standard process (z¥, &% ¥, P¥) having
P¥(2,E)= E,(M,; x, € E) as its transition function. We shall call such

(¥, P¥) an M,-process of (x, P,). The operator and generator etc. of
(z¥, P¥) are denoted by A¥, G etc. We define the M,-process on the

same space (%, B,, 2) as that of (%, P,). Then we have
(4. 1) EMr; B, T<&) =P¥B; T<t) BeB;

for any stopping time 7 (see [5]). Thus if P,(T<® =1, (Bs P, and
(87, P¥) are mutually absolutely continuous. Hence continuous functional
Z, with respect to (x;,P,) may be considered as a continuous functional
with respect to (z,, P¥). Furthermore, we obtain

TAE
(4. 2) E{ "'Maz) = EMirrZinr) = E¥Zsnr)

if Z, is of ¥, and if P(T < &) =1.
THEOREM 4. 1.  Let (%,, &, &, P,) be a standard process with a canonical
system (9, pt).

() Let (x, PY) be a M~process. Then (9, p) is also a canonical system of {x,, P¥y
and D(A,) = D(AY) holds.  Moreover, B = AY — A, is decomposed into the following
two linear mappings B, and B, from D(A,) to locally e-integrable functions;

(B:)) Buuv = uBw + vByu holds for any u and v of D(A,). There exists a locally
p-integrable function h such that

(4, 3) |5 wButtal < B f o fn(X 2, X2,

holds for any measurable {f,, - -+, fx} and {u;, + -+, uy} of D(A,).

(By)  There exists a SX S-measurable function f(x,y) such that n|le’ — 1| is locally
p-integrable and B, is expressed as

. 1) Buu(x) = [ (u(y) — u(@)) (¢/ =¥ = Dl dy).

(IT) Conversely if A’ is a linear operator with domain D(A,) such that B=A'—A,
satisfies the conditions of (1), there exists a unique M,-process such that A¥ = A’

Proof. We divide the proof into several steps.
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1. Let M, be a MF satisfying (M, 1)— (M. 2). Then it has the
following expression

4.5 M=exp|X,+Q,,(6)~1 0~ { ne/—1=£)dp+ P, (1) nle'=~1ap).

Here, X Mlc and f = f(z,y) is a SxS-measurable function such that
n(f,)? and n|e’2—1| are locally g-integrable, where f,= fI;s<;; and f,=f—f,.
Conversely if X and f satisfy the above conditions, the MF defined by the
right hand of (4. 5) satisfies (M. 1) and (M. 2). Furthermore, we have

(4. 6) M, 1= Max,+ | MaQu-n(s).
{See [4]).

2. Let u e ®D(4,). Set
4.7 Z, = X, + Qer-1y(t) and Bu = (Z, X"),.
We shall show that every « € ®D(4,) belongs to D(A4)) and satisfies Alu =
(A, + Bu. Set Y, = S:MdZ. Then it is a local martingale and further
XYY, ——S: MBude is also a local martingale. On the other hand, since

t
4.8 XiY, = M,(u(z) — u(z)) — M, | Audp— X,

t t
Miu(w) — ulzo) — M, | Awudo — | MBude

is a local martingale. Let {S,} be the associated stopping times of the
above local martingale. We may assume, without loss of generality, that
each M,,s, is a martingale. Then,

4.9 Eu(Myps,ulens,)) = (®) = Eo(Mins,." (4, + Bludg) = 0

or equivalently,

. 10) E¥(u(ains,) — u(x) — EX([ " (4, + Budo) =o.

Clearly, u(x,)——u(xo)—st(A(,,%—B)udso is a locally square integrable AF of
0
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the M,-process. Hence « belongs to D(AY) and we get

(4. 11) A¥u = (A, + Bu.

3. We shall next prove D(A)) = D(4,). Define M} by M:* if t <§&
and by 0 if #>¢. Then M} is a MF satisfying (M. 1) ~ (M. 2) relative to
(2, P¥) and M}!-process of (x,, P¥) coincides with (z,,P,). Let ¢' be a
canonical AF of (¥, P}). Then ®D(A}i) S D(A4,!) by the preceding paragraph.
Let u e ®(A)y) and write AF defined by (3.1) relative to (2, P,) and

(#,, P¥) by X% and X% respectively. Then Lemma 4.1 given after the
proof of this theorem concludes that (X% =<(X%*>*, Note that (e/@¥n(x,dy), ¢)
is a Lévy system of (x,, P¥) (see [4]). Then we obtain

(4. 12) xmx = x + ([ () — w@)yeran n(z, aydy.

which implies <X**>* < ¢, This show that we can choose ¢ as a canonical
AF of (z,, P¥). Thus we obtains D(A4,) c D(A)) € D(A4,).

4. It remains to prove the conditions (B,) and (B,). Set Byu=(X,X%),
andiB,u = (Qer—1yy X4),y where X and Q. _; are the ones appeared in
(4. 7). Then B,u satisfies (B,) by (2.5). (B,) follows from

|5 faBual = |(X, 2 fodX2),|
< (02 { Faaxe)
< (XSS ful Xt X1

Thus we have proved (I) of Theorem 4. 1.
5. Conversely let A’ be the operator of (II). We define F(Y)=Xf,Bu,
if ¥=3/.dXt.  Then |F()|=h¥v)} holds. Since Miee coincides with

the closure of [Z}gf,,dX%"; n=1,2 + ¢ ¢ ], F can be extended to Iklec uni-

quely in such a way that F(Y)gh%(Y)i holds for every Y of 9lec, Then
there exists a unique X of Mloc satisfying F(Y) = (X,Y), for all Y € Mlec by
Proposition 2. 4. Define a MF by (4. 5) using this X and f. Then M,-
process is exactly what we want by the first part of this theorem.
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Lemma 4. 1. Let ueD(A4,) and let 0 =t,<t,<++ <t,—>+oco. Then
,E(u(xt")— u(x,, ) converges to [X"],, 1i.e.,

[

(4. 13) (X, + E.t(u(xs) — u(x,-))?
in the sense of L'°c, if sup |£, — ta-y| 0.

Proof. We may assume that X% is square integrable. Meyer [7] has
shown that tﬂZ}ét(X‘;ﬁ —X¢ )% converges to (4. 13), while the limit of the above
coincides with the limit of tEt(u(xtﬂ) — u(x,, ,))? as is easily seen. Hence the
lemma holds.

Condition (B,) of Theorem 4.1 is not clear. But for « € C¥S)cD(4,),
it can be rewritten in a clear form.

CororLLARY 1. If u e CXS), then it holds that
(4. 14) Bu =3\ f*Byu.

Here, {f*} are measurable functions such that there exists a locally ¢-integrable
function h satisfying

(4. 15) I3 Figs] < R (SaV i)

for any family of functions {g,}. In particular, if the range of CXS) by A, is
dense in the space of locally p-integrable functions, the expression (4. 1) togetther with
(4. 1) are equivalent to Condition (B;).

CoRroOLLARY 2.  Suppose an operator B, salisfies the condition of Corollary 1.
Then there exists an M,-process such that AYu = (A, + B, + Byu holds for every
ue CAS). In particular, if the range of CXS) by A, is dense in the space of
locally p-integrable functions, such M,-process is unique.

Proof of Corollary 1. Let ¥V be an open set such that u(x) = U(p,(x), « -
-y 7y()) for x €V, where U C¥R™. Then X%°(= projection of X* to
Mloc) is expressed as ZS: BrudX® for ¢t <T =inf{t>0; 2, €V} by (3. 4).
Therefore, B,u = XXX, X"),Bru holds a.e. z on V. Set f'=(X,X%,. Itis
easy to see that {f°} satisfy (4. 15) by applying (4. 3).

The proof of Corollary 2 is similar to that of Theorem 4.1 (II).

Remark. The condition (4. 15) is closely related to the ellipticity of a*.
We shall discuss this problem in the next section.
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§5. Transformation of diffusion process with a boundary con-
dition.

As an application of Theorem 4.1, we shall discuss how the boundary
condition of diffusion can be changed through the transformation by MF.

Let D be a connected domain in N-dimensional manifold of class C*
and have compact closure D. The boundary D = D — D is assumed to be
N — 1-dimensional hypersurface of class C. Let A be an elliptic operator
given on D by

N, 0% N . ou
— i Y r %
(5. 1) Au = i']Zila 2.3, + Elb P

where ¥

are contravariant tenser of order 2 of class C* which is sym-
metric and positive definite, and 5" are vectors of Cl.

A conservative standard process whose semigroup maps C® into C and
is strongly continuous is called a diffusion process if its infinitesimal genera-
tor G with the domain ®’(G) is a closed extension of A. Throughout this
section,we shall consider diffusion process satisfying the following hypoth-

esises.

Hvroruess. 1. (a— Au = f has a solution u e D'(G)N C* for f of a
dense subset of C.

Hveoruesss. 1. For each %, of D, there exists (ny, + -+ +, ny) of C*~class
Sunctions which is a coordinate system on a neighborhood of x, and each 7u; coincides
with the difference of two bounded regular excessive functions.

Hypotnesis. III.  The resolvent kernel of the process does not have mass on
the boundary, i.e. G,(x,0D)=0 holds for every @ >0, x € D.

Let (3, + « +,7%) be a class of C?-class functions satisfying the Hypothesis
II and U, be an open neighborhood of x in which (3%, « - -, %) is a co-
ordinate system. Let {U,} be a finite open covering of D. We shall fix

such {(z%*, « - -, 97"}

Lemma 5. 1. There exists a canonical AF ¢ such that each 77 is of D(A,)
and S]Ddso =t A&

DeriniTiON. We shall call SIaD dy a local time on the boundary.

6) The space of all continuous functions on D.

https://doi.org/10.1017/50027763000013106 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013106

18 HIROSHI KUNITA

Proof. By Hypothesis II, there exists a unique ¢** of %, such that
7i"(x) = E, (S:e‘“dgoi'") . Then

Ln ’
X1 = g — 77 (w0) + 04" — & 72(@)ds

is of M. We shall denote by ¢¢" the singular part of ¢i" relative to
t AN¢. Let ¢' be a canonical AF. Set ¢ = ¢' 4+ 3¢ -27*®, Then ¢ is

a canonical AF and ¢i" —a Stv’ﬁ"ds<so, which implies 7j"e D(A4,).
0
By Theorem 3.1, any u of C? is of ®D(4,). Set k= u— Gila— Au.
Then we obtain

hiz) = E,,(S:e"”Aw(xs)dsos) —E, (S: e“"Au(xs)ds)

Note that (@ — Ak =0 on D. Then % coincides with &' = E(e™'h(x,-))
everywhere, where 7 is the hitting time for the set 4D. Indeed we know
that A(x)=h'(x) except for irregular points of dD. Therefore pG..ph=pG,.gh’"
holds everywhere. Letting 8— > we obtain % = &’ everywhere. Let R be
the first time of ¢ such that S: A,udp — S: Auds = 0. Then R=T a.e.
P,(vz). Consequently, the fine support of the above is included in 3D by
Getoor [2]. Thus we have

5. 2) ((14,udp = {Auas.

Then by Corollary to Theorem 3.1, we obtain that SI pd (X" X <t AN
for u,v of C% Since {X“; u = G,f, {f} is dense in C} generates M ([10]),
we can conclude that S: Ipd<X,Y> <t A ¢ for any X and Y of Mlec, using
Hypothesis I.  Hence we have proved the lemma.

CorOLLARY. Let ¢ be a canonical AF with the property of Lemma 5. 1.
Then A,= A if A, is restricted to D.

Proof. By (5.2), A,u = Au holds for any u. Set u =7, then the
coefficients &* of A, and A coincide. Noting the formula (3. 8), it is easy
to see that the coefficients 4/ of A4, and A coincide each other.

By Hypothesis I, the infinitesimal generator is the closure of A restricted
to the domain ®(G) N C?, i.e., the process is characterized by the operator
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A and the domain ®'(G) N C:.. We shall characterize ®'(G) N C? in terms
of boundary condition.

THEOREM 5. 1. Let (2,,¢, 5., P,) be a diffusion process with ¢ as a local
time on the boundary. Let v be a canonical measure of ¢.  There exists an operator
L from C* to the space of locally ¢-integrable functions expressed as

1 azu N

(5. 3) Lu=3 ¥ 0 _ | S\ 00
) ij=1 omom; S0 o

+ [[w) — ule) = 224 @) :0) — (e Jala, ) acc.

and u € C? is of D'(G) if and only if Lu =0 a.e. v. Here (9, «++,79y) is a
canonical coordinate system,” a'’ are positive definite and symmetric locally ¢-integrable
Sunctions on D, B* are locally ¢-integrable functions and n(z,dy) is the Lévy
measure.

Such diffusion is called (A4, L)-diffusion.

Remark. Wentzell [14] has obtained a similar expression of the boun-
dary operator L without our Hypothesises I~III. But our result is sharper
than his. In fact, it is not clear in [14] whether or not any C2-class func-
tion satisfying Wentzell’s boundary condition belongs to ®'(G).

Proof. Let L be the restriction of operator A, to dD. Then « e C?
is of ®(G) if and only if Lu =0 a.e. v by Proposition 3.1 and Hypothesis
III. We may and do assume that canonical neighborhoods belonging to
{U,,} (defined at the paragraph after Hypothesis II). Then (7, + -+, 7y)
of expression (3. 3) may be considered as a canonical coordinate system on
a neighborhood of a boundary point. Let « and g' be the restrictions of
coefficients & and " of (3.3) to aD, respectively. We have to prove
a;y=0for i =1, ---, N.

Let » be a nonnegative constant. By formula on stochastic integral [4],
y(2,)2 — x(2,)2*" is the sum of the following X3, Y and Z7.

7 For any %, of 3D there exists a neighborhood U of %, and a co-ordinate system (7y, + * *, 7x)
such that 9D U and DNU are characterized by »¥ =0 and 7y > 0 respectively. We call such
(915 +*, 7x) a canonical co-ordinate system. The neighborhood U is called a canonical neigh-
borhood. Let {Uy,-++,Up} be an open covering of canonical neighborhoods. The expression
(5.3) means that Lu coincides with the right hand a.e. v if €U, and (9,:**,7x) is a ca~
nonical co-ordinate of U ;.
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X1 =@+ [ ol Fax + [ Una@)* = Ina(2)]* }ads, dv)

vy = A2ENOEN [y g cxmy
0

N

t
= [, #llmsl ™ — Inxl*" = @+ Ny | Fde
t
+ 2+ 7) | lowl """ FAjade,

where F is the function on R taking the value 1 on x>0 and 0 on z <0.
X7 and Z} converge to X? and Z? (r =0), while Y} converges to SI »d (X7

as r tends to zero. Consequently we obtain (X*) = SI pd<{X">, which implies
ayy = 0. Now the inequality |a;y|< a%ia%, ~ concludes that a;y=0 for every i.

Remark. The boundary operator L depends on the choice of local time
on the boundary, obviously. Let ¢’ be another canonical AF and L’
be the boundary operator relative to ¢’. Suppose ¢ < ¢’ and let f = —%%:
Then L = fL’ as is easily seen.

Let {fY i=1, -+, N} be a contravariant tensor on the manifold D.
We shall call that {f‘} is associated with locally ¢-integrable functions
relative to 4/, if there exists a set of measurable functions {f,, i =1, + + +, N}
on D such that 31a”f,f; is locally ¢-integrable and 3la"f; = f' holds for
each i. If the determinant |a] of the matrix (a”) is not zero everywhere,
such {f;} is unique and is equal to {Za,;f’} where a;;= A”/|la] and A" is
the cofactor of ¢/, Hence a contra\;ariant vector {f‘} is associated with
locally-¢-integrable functions if and only if each f' is measurable and
SNaftf is locally ¢-integrable.

TueoreM 5. 2. Let (%, P,) be an (A, L)-diffusion on D with a canonical
system (@, p).  Let (x,, P,) be an (A’, L')-diffusion on D with the same canonical
measure. Then (A’, L)-diffusion is an M,-process of (A, L)-diffusion if and only if
the following conditions (1) and (2) are satisfied.

1). (a) @7 =a'", (b) b°— b¥ is a contravariant vector on D associated with
locally t A E-integrable functions relative to oV,

(2).  There exists a p-integrable function f on 9D such that L' = fL’ satisfies
(@) a' = at?, (b') {' — B} is a contravariant vector on 3D associated with locally
o-integrable functions relative to a', and (c') there exists a bounded D-measurable
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Sunction f(x,y) such that nf?® is locally ¢-integrable and n'(x,dy) = e @D n(x,dy)
a.e. p,. Here p, is the restriction of p to aD.

Proof. Suppose that (A4’, L')-diffusion is an M,-process of (A, L)-diffusion.
Then there exists a ¢-integrable function f on 4D such that B of (4. 3)
agrees with A— A’ on D and with L — L’” on D by Theorem 5.1 and the
remark after that. Hence (a) and (a’) hold by Theorem 4. 1. Note that
the operator B is invariant under the choice of co-ordinate system. Then

o is Z(bi——b“)gg—. Hence #'—b% is a contravariant vector. We can
i

easily conclude from (4. 4) that 5 — b*" is associated with a locally ¢-integ-
rable functions relative to @”. The proof of (2) is similar. “If” part of
this theorem follows from the second half of Theorem 4.1 and Hypothesis
I.

Condition (b) and (b’) are closely related to the ellipticity of 4"/ and &'

CoroLLARY 1. If a¥ is uniformly elliptic, the condition (b') is equivalent to
that {8 — B*"} is a contravariant vector such that each component tis locally ¢-
integrable.

CorOLLARY 2. If a”=0, (V') is equivalent to 8* = g*". In addition if
(A, L)-diffusion has continuous path, then L = L',

The above corollary shows that the boundary condition can not be
changed through M,-transformation if the sample path is continuous and if

a“EO.

§6. Appendix. Diffusion process with the given boundary con-
dition.

Suppose the boundary condition of the diffusion process is already known
such as Wentzell [14] and Sato-Ueno [11]. We are interested in the rela-
tion between such boundary conditions and the one obtained in the pre-
ceding section probabilistically. Our main result in this section is that the
diffusion process discussed in [11] satisfies Hypothesises I~III and the bound-
ary operator defined in the preceding section coincides with the given one.

Let L be a boundary operator defined by

N~1 . 52y N i ou
- ij i YA
(6. 1) Lu ,.JZ:{" onom; +,~§lﬁ a;

+ [[4w) - u@) = 22~ la) ~ 0w niz, ).
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Here (;, + - +,%y) is a canonical coordinate system. We assume that n(x, dy)
is concentrated on oD and if # € C?, Lu is continuous. We shall call the
diffusion process on D as (Ar)-diffusion if the infinitesimal generator of the
diffusion coincides with the closure of A restricted to the domain {« € C?%;
Lu = 0}.

Suppose Ar_,-diffusion exists for each 1=0. Sato-Ueno [11] have
proved the following. For each a >0, there exists a Markov process on
the boundary with the resolvent K, 2=0, whose infinitesimal generator is

the closure of LH,; the resolvent G, of (Ay)-diffusion is expressed as
(6. 2) G.f = G™™ f + H,K:LG™" f,

Here, G™" is the resolvent of (Ay)-diffusion absorbed at the boundary, H,u

is a continuous function on D taking the value # on 4D and satisfying
(¢ —A)H,u =0 on D, and LG?‘“ is the extension of the operator LG™®

(LGT™) f = L(GF*™f)).

THEOREM 6. 1. Suppose (Ar_, )-diffusion exists for each 2=0. Then (Ay)-

diffusion satisfies Hypothesis I~TIL.  Moreover we can choose local time ¢ on the
boundary in such a way that

. 3) E, ([ e f(w)dg,) = HK3f(2)
holds for every x € D and f.

CoRrROLLARY. L coincides with the probabilistic boundary operator.
For the proof, we prepare several lemmas.

Lemma 6. 1. A nonnegative measurable function on 9D is K*-excessive (exces-
sive relative to K3, 2=0) if and only if it is the restriction of an a-excessive
Sunction on aD.

Proof. Let f=0. Since LG™™f is positive, H, K LG™") f is a-excessive.

Note that LG™"f = azﬁc;;niﬂf is dense in C(3D). Then H.Kf (f=0) is
also a-excessive. Let u be a K°®-excessive function. Then it is an increasing

limit of potentials Kjf.(f,=0). Therefore H,u is a-excessive. Conversely
suppose # is an a-excessive function on D. Then u is an increasing limit of
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Gofn (fa=0). Since H,G,f,=H,KiLG™"f,, the restriction of G,f, on 4D

is K*-excessive. Consequently, the restriction of # on 4D is also K*-excessive.
CoroLLARY. Every point of oD is regular to itself.

Proof. Let f be a positive continuous function on dD. Then u=H,K{f
is a continuous and a-excessive function. Since (« — A)u = 0 on D, u satisfies
w(x) = E(e~*Toru(x7,,). Note that Kif is dense in 9D, we obtain that
f(x) = E (e~2Torf(x7,,)) for every « of D and f. Therefore P,(T;p =0)=1
for every z of aD.

Lemma 6. 2. Let (x%,P3) be the Markov process on the boundary with K3,

A=0, as its resolvent. Then

E (e~oTc; gp, € F) = Ey(x$, € F) Yo 4D
is satisfied for every open set E of aD and Borel set F C E.

Proof is similar to [10]. Note that each point of E is regular to
itself relative to (x,,P,) by Corollary to Lemma 6.1. Then we obtain
from Lemma 6. 1

E (e=T:K*f(x1,)) = ES(K{f(2%,)), VYo €D,

because the left hand is a-order balayage of H,K;f to the set E relative to
(%;, P,) while the other is the balayage relative to (x%, P%). Since K{f is
dense in C(¢D), we obtain the lemma.

Lemma 6. 3.  Let (x,, P,) be a standard process on S and let U,(x, dy) be
a nonnegative kernel satisfying

(1) U.f(x) is a bounded regular a-excessive function if f is a bounded positive
Sunction,

(20 HiU.f =U,f s satisfied if the support of f is included in the open set E,
where Hy(x,dy)= E (e~°T=; xr, € dy).

Then there exists a unique continuous and increasing AF A, such that

6. 4 Uus(a) = E,([ e=trw)da,).
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Proof. 1t is well known ([6], [9]) that, for each bounded f=0, there
exists a nonnegative and increasing AF A} such that U, f(x) =Ez<re—“f dA{).
0

We have to prove A = St fla,)dA,, where A, = Al
0
Let K be a closed set and {G,}, a sequence of open sets decreasing to
K. Then we obtain

U2, K) = limHg,.Ua(x’ K) = HzU,(x, K),
because U,(x, K) is regular. The above relation implies
E,([le-taar) =E([, e-aar),

where Af = Alx and Tk is the hitting time for the set K. Hence Af =0,

which concludes

Tx<inf {t >0; AF >0}.
Consequently the fine support of Af is included in K. Then by Getoor
[2], we obtain

t
(6. 5) AF = jo I d A,

This formula also holds for open set K. Indeed, let {F,} be a sequence
of closed sets increasing to the open set K. It is easy to see that A%~ increases

t
with #» and AT = lim A". Since AI" =S I,dAP is satisfied for each n, we
0

n—>c0

obtain A¥ = S: I,d A%,
Now let K be a closed set. Note that 4, = AF + A" and that both
of A¥ and A¥® satisfy (6.5). Then we obtain

S: IxdA, = S: IdAX = AF,

The Lemma is now clear.

Proof of Theorem 6. 1. Set U,f = H,Kif. Then U,f is a-excessive if
f=0 by Lemma 6.1. Since U,f is continuous if f is continuous,” U,f
satisfies the condition (1) of Lemma 6.3. Let E be an open set of 3D
containing the support of f. Then
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HyU.f(2) = E,(e=*T00Eey, (e=TsK3f (®1,)))
= E,(e~To:E, (Kif(23))
= E,(e=*T00K3 f(,,))
= H.Kif = U.f,

by Lemma 6. 2. Therefore there exists a unique ¢$ of A} such that

HK3f (0) = B, ([ et f(2)dg)

It is clear that the support of A% is included in aD.
We shall next prove ¢$ does not depend on «. First we notice the
following relation

H.Kif — HpKif + (a — B) GgH. K3 f = 0.

Indeed, put the left hand of the above by u. It is easy to see that
(B—Au=0on D and Lu=0 on 8D. Therefore u =0. We have, on the
other hand,

E.([, evtaye) = B. ([ ewtdp) + (6= @) o ([ etayp) = 0
as is easily shown. Hence

HES1 = E. ([ e-page),
which implies ¢ = ¢». Thus we have proved (6. 3).
To show Hypothesis II, it suffices to prove any u < C? is written as
the difference of two bounded regular excessive functions. Set »=u— G,
(e — Au. Then (a —A)h =0. Therefore LH,h = Lh = Lu. Hence we
have k= (LH,)"'Lu. Consequently,

(6. 6) u=Ga— Au+ HK;Lu.

Therefore any « of C? is written as the difference of two a-excessive func-
tion. Hypothesises I and III follow immediately from [11] and the proof
is now complete.

Proof of Corollary to Theorem 6. 1. It suffices to show that C*c D(A4,)
and A,u coincides with Lz on aD. Let u be of C%. Then (6. 6) implies
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ulw) = Ex(S:e—”(a — A)u(z)dt) — E, (S: e=stLu(x,)dg,).
Therefore
u() — ulag) — || Autz)ds — { Lu(a.)dg,

is of Mlee, Hence u € D(A4,) and A,u = Lu on 3D,
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