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A.C. FowLrer,' E. ScHiav?
"Mathematical Institute, 24-29 8t Giles: Oxford OX13LB, England
? Faculty of Economics, Universidad Autonoma de Madrid, Cantoblanco, Madrid, Spain

ABSTRACT. A simplified model of a two-dimensional ice sheet is described. It in-
cludes basal ice sliding dependent on the basal water pressure, which itself is described
by a simple theory of basal drainage. We show that this simple but sophisticated model
predicts surges of the ice mass in realistic circumstances, and we describe these surges by
solving the problem numerically. We also are able to describe some parts of the surge ana-
lytically. The numerical solution of the model is a delicate matter, and highlights pitfalls to
be avoided if more complicated models are to be solved successfully.

1. INTRODUCTION

Evidence of periodic deposition (Heinrich, 1988) of ice-
rafted debris (Heinrich events) in North Atlantic deep-sca
sediments suggests that the Laurentide ice sheet may have
surged regularly with a time of order 10*a between surges
( Andrews and Tedesco, 1992; Clark, 1994). The primary can-
didate for such surges is the ice stream discharging down
Hudson Strait (Bond and others, 1992), although other ice
streams may have been involved (Bond and Lotti, 1995).
MacAyeal (1993) suggested a mechanism whereby the ice
sheet might behave in this way. Briefly, if the ice is thin, then
it is cold-based, sluggish and so thickens; this causes the hase
to melt, and if the resultant water production is sufficient to
allow fast sliding to occur, then a surge may result, drawing
the ice down to a thin state once more.

Fowler and Johnson (1995) presented a physically based
model of ice-sheet motion controlled by basal sliding, which
itself depends on basal water production. They showed that
the basal water produced by frictional heat at the base could
lead to multiple ice-flux/ice-thickness relationships, and
hence oscillatory behaviour by what they called Aydraulic
runaway, by analogy with thermal runaway that has been
previously suggested as an instability mechanism for ice
sheets (Clarke and others, 1977). Fowler and Johnson were
only able to suggest the possibility of surging in their model
by means of a crude “lumped” version which essentially re-
duced the model to a zero-dimensional one. Although they
later (Fowler and Johnson, 1996) offered some comments on
the possible form of spatially extended surges (comments
which we vindicate here), a proper numerical solution of
the spatially extended model remains to be done. This is
the purpose of the present paper, which also allows us to
show for the first time how the magnitude and duration of
the surge are controlled by the drainage-response time-
scale, an observation that is by no means obvious.

At the outset, it is important to enunciate the philosophy
of our approach. Our aim is to validate the idea that ice-
sheet dynamics, coupled with basal sliding which incorpo-
rates a canal-type basal hydrological system, can generate
surging behaviour. It is not our aim to produce the most rea-
listic model incorporating as much realism as possible; nor
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even is it our intention to produce the best numerical ap-
proximation. In fact, to make the study as simple as we
can, we intentionally strip the model of what we consider
to be inessential detail. Tt is a matter of debate what consti-
tutes inessential detail, but our approach is to strip the en-
gine down and get it working, then add the trimmings
later. This is an established modelling procedure.

Having said that, it turns out that some unexpected
trimmings do need to be added, and this dictates the pro-
gress of the paper, as follows. In section 2, we recapitulate
the earlier model of ice-sheet flow and drainage due to Fow-
ler and Johnson (1995); section 3 describes a numerical
method to solve this model, but also reveals that the model
has fundamental shortcomings, and that in fact it is not well
posed in a mathematical sense. Hence, in section 4 we intro-
duce realistic and essential modifications which allow a suc-
cessful numerical method, described in section 5, to produce
coherent results. As in the case of valley-glacier surges (Fow-
ler, 1987b), the resulting surges are initiated by the passage
of activation and deactivation waves, which propagate up-
stream and downstream as sharp fronts, and in sections 6
and 7 we provide a “shock structure” type of analysis to de-
duce the character and propagation speed of these fronts. A
discussion follows in section 8.

2. THE FOWLER-JOHNSON ICE-SHEET MODEL

The model is described in more detail by Fowler and John-
son (1995, 1996) and is reviewed for completeness here. We
consider a two-dimensional ice sheet on a flat base of thick-
ness fi(x,t), where z is a horizontal coordinate, and we spe-
cifically assume that 0 < = < [, with h, (= 0h/0z) = 0 at
x =0 (the divide) and h=h; > 0 at = =[. We have in
mind the transition at & = [ from ice sheet to ice shelf, and
though a more realistic boundary condition ought to be pre-
scribed, this is not essential to our purpose (indeed, we
chose h; > 0 simply to avoid possible numerical difficulties
associated with a singularity at x = it h = 0).
The basic equation is that of mass conservation,

hy + (uh), = a (2.1)

where subscripts denote partial derivatives, a is the accumu-
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lation rate and u is a depth-averaged horizontal velocity.
Again, to be realistic we would allow for both shearing with-
in the ice and basal sliding, but the former is relatively small,
so we begin by assuming that u is essentially a sliding
velocity (at least while the base is at the melting point),
and we pose a sliding law relating shear stress 7 to velocity
w of the form

iri= e N* (2.2)

(Budd and others, 1979; Bindschadler, 1983; Fowler, 1967a).
Kamb’s (1991) pseudo-plastic rheology would be accommo-
dated by choosing s = 1, r < 1. Here 7 and s are expo-
nents which may be between zero and one, and ¢ is a
measurement of the stickiness of the bed. The basal shear
stress 1s simply

(2.3)

where pis ice density and g is the gravitational acceleration.

7= —pghh,

The extra variable N is the effective pressure (ice-over-
burden pressure minus water pressure), introduced into
basal sliding laws by Lliboutry (1968); it must be described
by a basal drainage theory. It is fundamental to this theory
of surges that a drainage law of the type predicted by Walder
and Fowler (1994) should be applicable. This was based on
the physics of drainage over wet, deformable sediments,
such as the detrital carbonates of Hudson Strait, and in its
simplest form can be written as

N =c*/Q (2.4)

where ¢ is a constant relating to the deformable-till proper-
ties, and @) is the water flux (per channel) in a distributed
system of canals which drain the bed. A number of simplifi-
cations are built into Equation (24), and we return to these
later. In particular, Equation (24) is an equilibrium theory
(steady drainage), and it cannot apply as Q — (.

The precise form of Equation (2.4) is inessential; the
important point is that /N decreases with increasing (2, and
this property would be shared by a drainage system consist-
ing of a patchily distributed film (Alley, 1989).

The final relation determines the water flux Q. For
steady drainage, this is given by

0Q (G +T1u—q)wy
dr Pwl

where G is geothermal heat flux, 7u is the frictional heat

(2.5)

generated by the basal ice motion, ¢ is the cooling rate to
the cold ice above, py is water density, L is latent heat and
wy is the mean inter-canal spacing. Fowler and Johnson
(1996) parameterised the cooling rate to the ice by means of
a thermal-boundary-layer deseription:

1
ke 2 d
g= AT(”“ ) 4 500 (2.6)
T & h
where
e / udar, v
Jo

—AT is the ice-surface temperature, ¢, is specific heat and k
is thermal conductivity. The first of these is a heat-transfer
term associated with rapid ice flow; the second is represen-
tative of conductive cooling. Adoption of Equation (2.6)
avoids solving the two-dimensional temperature equation,
again for simplicity: the form of Equation (2.6) is not of pri-
mary essence.

This parameterisation of the basal cooling allows the
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thermal effect of changes in ice thickness to be instantly
communicated to the base. Johnson (1995) examined the
effect of including a delay in this cooling term (for the
lumped (zero-dimensional) model), and found little quali-
tative effect. Indeed, in some runs this term was ignored en-
tirely. We shall come back
parameterisation of basal cooling in sections 6 and 7.

Equations (21)-(27) are those posed by Fowler and
Johnson (1996) when the basal ice is at the melting point.
They must be supplemented by appropriate relationships
when the basal ice 1s cold. We will consider this situation
further in subsequent sections.

to a discussion of the

Scaling the model

The model consists of Equations (2.1)-(2.7) for the variables
h,u, 7, N, Q, q and £ with boundary conditions

=0, @=0at =0, k=W at &=l (28)

and an initial condition for A. The model is then non-dimen-
sionalised as described by Fowler and Johnson (1996) in
terms of scales [h], [u], [7], ete., and when the variables are
written in terms of these scales, we find the dimensionless
form of the model

hy + (hu), = a,

e TN
= iz
U A
= Tuty-fo—7,
N=gl

£= (2.9)

0

where the dimensionless parameters 7, 3, A have typical
values of order one. For example, we take 7 = s = 1/2, and
choose

[@ =0.2ma', I=2000km, [N]=0.4bar (2.10)

where [a] is the accumulation-rate scale (@ in Equation (2.9)
is the dimensionless accumulation rate). The value of [NV]
corresponds to ice-stream conditions in Ice Stream B, Ant-
arctica (Bentley, 1987), and if we choose ¢ correspondingly,
then we find

[h] ~ 1500 m, [u] ~250 ma ', [t] ~8000a (2.11)

and

v~ 055, B=1.2, (2:12)

The definitions of the parameters are extremely cumber-
some, but it can be shown that they are related to the critical
friction coefficient ¢ and drainage coefficient ¢ via the com-
bination

O_Z(C(.*N)l/(?.il-}i)-. (2.13)
and then
1 1 1
a a ot

In view of the lack of real constraint on o, we use Equation

_ (212) as a plausible guideline.

105
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3. NUMERICAL SOLUTION

Elimination of N and 7 in Equation (2.9) enables the sliding
law to be written in the form

= —h® |k, | 0, QF (3.1)
where
Rt g (3.2)
i 3r

and the modulus sign allows the application of Equation

(2.9) even if hy > 0. We define
D = ™R~ 105, (3.3)
and then the equation for h takes the form
8,39
gt dx | Oz
and 1s of non-linear diffusion type, with D = D(h.h,, @),
and @ is obtained by quadrature of Equation (2.9),.

We thus solve Equation (3.4) using an implicit diffusion
solver. Specifically, we define a scheme as follows:

hf— h‘i"_l — al\t
+ra(l - 6) [D-Fhrn (Dy+D_)hi + D_h:f_l]

(3.4)

+ 720Dt} — (D + DB + D). (35)

Here At is the time step, Az is the space step and
= At/(Az)*. The current time level is indexed by j and
lhc current space location is indicated by 4 The diffusion
cocfficients D are essentially D;.1, and are specifically
defined (for the relevant time step) by
%(Di + D). (3.6)
This choice corresponds to type 2 of Huybrechts and
others (1996) and is thought to be less accurate than a type
1 (mass-conserving). For the present purpose, we believe it

1
D, :i(Df+Dl+l)1 D_=

suffices, although in the sequel we do require very small
space steps to ensure accuracy and stability in the solver for
Q.

The relaxation parameter ¢ is zero for a fully implicit
method, and equals 1/2 for a Crank—Nicolson-type scheme
which is, however, less stable (though more accurate). The
spatial discretisation allows second-order accuracy, and in
order to prO\ ide second-order accuracy in time, we define
D; as I)’ , that is to say

Dy =5 (D + D). (3.7)

Equation (3.5) (with Equation (3.7)) is not in itsell sec-
ond-order accurate in time, but we expect that if the step is
iterated (by analogy with the improved Euler method for
ordinary differential equations), then it will give second-
order accuracy, providing Equation (3.7) (and in fact Equa-
tion (3.8) below) is used. A problem in the implementation
of Equation (3.5) is then in the non-linear diffusion coeffi-
cient D). To obtain second-order accuracy, we iterate the dif-
fusion step by a simple predictor-corrector strategy, in which
at the kth iterative step, we replace Equation (3.7) by

5 1 = e
o =2 [Df" 4+ D] (3.8)
and [, O = = D! Thus the first pass corresponds to assign-
ing D; at the preceding time step, with subsequent iterates
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prm‘iding correction. In the iteration, h{ then also becomes
h,_i ad

Following cach iterative step for h ., we update ) by
computing Q from Equation (2.9). Wllh (only) second-
order accuracy required, we use an improved Euler discret-
isation. We have also tried usi (fi{ a fourth-order Rungc—Kutta
solver. With the i 1mpr0\ ed @.", we then compute A via
central differences on h ) (and a three-point second-order,
or five-point {Oulth-mder estimate for h; at £ = 1). From
this we have D) = D(R*) , A .Q™), and the iteration
can proceed. The iteration termlndtts at a spcuﬁcd value
of k, usually 2, and then i/ = h Q] Q

Results

Extensive numerical computations reveal that ice-sheet
“surges” do occur, but these betray many signs of numerical
unpredictability and bad resolution. With a good deal of
effort, and with a particular choice of the parameters (par-
ticularly R and 5), given by v = 03, =12, A = 0.75, and
withAt =10 Y, Az =10 *, R = 1.1, S = 04, we find that a
front propagates backwards during a surge, as shown in Fig-
ure 1. Figures 2 and 3 show associated plots of u and Q. We
see that very high spikes of w and a sharp jump of @) are as-
sociated with the propagation of this front. The jumps are in
fact smooth for a sufficiently fine mesh, and they suggest the
existence of a travelling wave. However, efforts to analyze
the local structure of this travelling wave failed, and in fact
a closer inspection reveals that the apparent wave speed V is
greater than Ax/At, which indicates that the algorithm is
not resolving the wave. Reduction to values Az =10 *,
At = 10 %, only served to sharpen the profiles and raise the
maximum values of v and ) in the front. The implication is
that the problem as formulated does not have smooth solu-
tions, and we might conjecture that (weak) solutions in
which h is discontinuous and w has delta-function-like beha-
viour do exist, though this is a matter of conjecture.

4. MODIFICATIONS TO THE MODEL

We believe that the solution type represented in Figure 1 is
realistic, but the model is unable to be solved satisfactorily,
because of the absence of relaxational processes which allow
for a switch in basal conditions. We believe that ice sheets
can flow in either of two stable flow regimes (Fowler and
Johnson, 1995), which depend on the amount of basal water
present. At low @, slow flow prevails, while for higher @), fast
flow occurs. The occurrence of multiple flow states can lead
to self-sustained oscillations, as explained by Fowler (1987h),
but in order to prevent discontinuities in the flow, it is neces-
sary to include relaxation processes between the different
regimes. Fowler (1989), in a model very similar to this, de-
scribing glacier surges, showed that inclusion of such terms
allowed smooth solutions involving the rapid propagation of
wave fronts in the surge, and we follow this suggestion here.

There are other realistic glaciological effects which
could be introduced to alleviate the apparent singularity of
the Fowler—Johnson model. In particular, inclusion of long-
itudinal stresses is known (Fowler, 1989) to act as a smooth-
ing term in the transition between fast and slow flow. We
doubt that such damping effects will alleviate the problem
here, which 1s fundamentally due to the implicit assumption
of an instantaneous adjustment of the hydraulic pressure to
equilibrium. In the lumped model of Fowler and Johnson
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R=1.1 S=0.4 dx=1.D-3 dt=1.D-4 gamma=0.3 beta=1.2 lambda=0.75
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Fig. 1. Propagation of a surge front backwards in the course of a numerical solution of the model ( Equations (2.9) ), using para-
meter values B = 1.1, S = 0.4 (corresponding lor = 091 and s = 1.09),y = 0.3, 3 = 1L2and A = 0.75. The apparent wave
speed is about 200 and the shock width is about 0.0, whereas the space step is 10" and the time step is 10 *. Thus the shock
structure is resolved, but it moves by about 200 x 10", i.e. about 0.02 in a single time step. The numerical solution is not solving

the model.

(1995), this adjustment is the cause of the discontinuous
changes in ice flux, and Figure | simply shows its spatial ana-
logue.

Drainage relaxation

The description of time-dependent drainage is a compli-
cated problem (Nye, 1976; Fowler and Ng, 1996), and we
choose to represent the response time of the drainage system
by modifying Equation (2.9); as follows:

6N, + N = (Q+Q)3. (4.1)
The term in § is analogous to that introduced by Fowler
(1989), and is a simple representation of the relaxation of N
towards equilibrium. 6 is the ratio of the drainage-response
time (perhaps a month or less) to the ice-sheet-growth time-
scale, so that values of & ~ 107" can he expected. The term
@ is introduced so that when Q — 0, the pore pressure can-
not go below zero (or N cannot go above the overburden ice
pressure). In fact, it is convenient to choose Q (which 1is
small) so that when @ = 0, the equilibrium value of N is
such that the sliding law Equation (29), describes realisti-
cally the small amount of shearing in the ice, which is des-
cribed below.

Freezing base

We now seek to extend the model more realistically to ac-
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commodate what happens when ¢ = 0. There are two prin-
cipal basal situations to consider: till-based and sediment-
based. By till-hased we mean that a layer of basal deformable
till lies between the ice and an essentially impermeable bed-
rock; while sediment-based means that the (permeable) sedi-
ments below the ice extend to a significant depth.

For a sediment-based ice sheet, let s(x,t) denote the
depth of the frost line below the ice sediment interface. If
the sediment porosity is ¢, then the motion of the frost line
is approximately governed by the Stefan condition

pw(bL'—é == 7(C’Y o q) ’ (42)

and when this is scaled as in section 2 (with s ~ ice depth
[h]), we obtain the dimensionless equation

ApStPes = — (v — q) (4.3)

where the Stefan number St and Peclet number Pe are

defined by

n _ alln]
geAT R

St (4.4)
and ry = k/pyc,. With previous estimates, and taking
L=33 x 10°Jkg), ki, =38m%a, AT=50K as the
surface sub-cooling helow freezing and cp=2 X I(J”J kg
'K\, we have St ~ 34, Pe ~ 79. With ¢ = 0.4, we then
have ¢StPe ~ 10.7, which implies that (for times of O(1)) s
is small relative to ice depth, and the conductive temper-
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R=1.1 S=0.4 dx=1.D-3 dt=1.D-4 gamma=0.3 beta=1.2 lambda=0.75
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Fig. 2. Propagation backwards of a velocity pulse in the surge. Note the scale of v, which exhibits delta-function-like behaviour.

ature profile in the frozen sediment implies the following
(scaled) thermal relation for the basal ice temperature Tj:

Ty = —qs/A (4.5)

where ¢ is the dimensionless heat flux, which is now taken to
be given by

A (4.6)

q:h+s &

We discuss the theory fora till-based ice sheet further below.

The above description is by no means watertight, but
represents the simplest coherent description of basal freez-
ing, along the same lines as the description of the basal cool-
ing ¢ The fact that s is small is what motivates the
assumption in Equation (4.2) that the heat flux at the freez-
ing front is the same as that at the ice-sheet base, and
(equivalently) that the temperature profile in the sediments
is linear (Equation (4.5) ); this is due to the small aspect ratio
of the frozen sediments. Since Equation (4.3) then implies
that sub-basal freezing and thawing occur on the (slow)
convective time-scale, in fact the description here is likely
to be reasonable. The main shortcoming might lie in the fact
that g changes rapidly during a surge. However, since it is
the heat flux rather than the basal temperature which
changes, Equation (4.3) apparently does not imply a conse-
quent rapid change in s.

Shear flow in the ice

When the ice is cold at the bed, we may take the sliding
velocity to be zero, but there is a small component of ice
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velocity due to shearing within the ice. Fowler (1992) showed
that the shear is concentrated in a shear layer near the base
which gives an effective plug-flow velocity in the ice of (with
the present definition of the scales)

S

u R E;1'”0"[" (4.7)

T
where 7 is the activation exponent defined by Fowler (1992;
denoted there asy), ¥ = QAT /RT,% and

Alr]"[R]
[u]

where A is the flow exponent. Taking A = 02bar "a

(Paterson, 1994), n =3, [r] =02bar, [h] =1500m and

[u] = 250 ma!, we have & ~ 10 * so that even if Tj & 0,

the shearing velocity is very small (note also that y ~ 11).
We define

E= (4.8)

=1y,
1 _
V= Sgspe Ol
Y =vy~1,
oy |
o= 0, (4.9)
i

so that Equations (4.3), (4.6) and (47) give, approximately
(since 8 < hand u/{l’ < 1in Equation (4.6)),

u = X" exp(—y 2/ h), (4.10)
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R=1.1 S=0.4 dx=1.D-3 dt=1.D-4 gamma=0.3 beta=1.2 lambda=0.75
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Fig. 3. Growth of water flux and its backwards propagation in the surge of Figure 1

while Equation (4.3) is (since u <€ 1)

; _ - Bu A
X —|Tu+ f_g_hﬁﬂfﬂ .

(4.11)

The term 7w is (inessentially) introduced in Equation
(4.11) purely to facilitate the numerical solution (see Equa-
tions (4.13)). When 3 > 0, the base is frozen, and u is given
by Equation (4.10); so long as A*7""! is small, then Tu is
small and the term makes little difference. This is no longer
true if X7+ ~ 1 (i.e. shear stresses of order 1bar), which
may be approached near the front or (briefly) during surge
activation. We have no reason to believe that its inclusion
has any significant effect, but we have not explored the
point.

Equations (4.10) and (4.11) apply when @ = 0. The term
in v is retained in Equation (4.11) because il h reaches a
steady state with ¥ > 0, then Equation (4.11) indicates that
s reaches an O(1) steady state over the longer time-scale of
O(1/wv). For the oscillatory solutions we find below, the term
is not important.

In solving the model, it is convenient to choose @ so that
the equilibrium value of N as computed (Q_% when @ =0)
causes the sliding law to give the shearing velocity (Equa-
tion (4.10)). We find that this is the case if we choose

Q= {/\*T”_%Oxp(— E)]* (4.12)

h

which we promptly do.
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Water-flux adjustment

We may also modify the equation for by including a term
6'Q; on the lefthand side of Equation (2.9),. In this case, a
stable numerical method is to define the time step as
At = ¢ Az, so that integration from (4,7) to (i +1,j+ 1)
is along the characteristics, and is implemented with an im-
proved Euler method.

Summary

The model we now solve is the following:

hi + (hu), = a,

7 =TI,
7= — hh,, _
Qi +Q.=f=Tu+7 —%_u—'w)\mz if Q >0,
Y= —f if >0,
N+ N =(Q+Q)7,
§= /UI udr, (4.13)

with @ given by Equation (4.12). This reduces to Equation
(2.9) if 6,8, A* and v are put to zero, i.e. il we revert to the
assumption of equilibrium drainage hydraulic pressure and
water [lux, and take zero ice shearing and negligible frost
penetration.
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5. NUMERICAL METHOD

The model is solved for h as before. As mentioned, @ is
solved along characteristics by choosing At = & Az; both
N and @ are solved with the improved Euler method, and
we also time-step ¥ forward using an improved Euler
method from (4, j — 1) to (i, j). The treatment of cold tem-
perate transition points requires a good deal of care, and
here we describe possibly the simplest way of dealing with
this point; more sophisticated methods could certainly be
devised.

The basic problem is illustrated in Figure 4. Each of the
cases [Aa, 1Ab, 1B, 2A, 2Ba and 2Bb represents two succes-
sive time steps j — 1 and j, with the spatial grid 7 indicated
horizontally. Solving for ¥ or (Q is straightforward in Equa-
tions (4.13) except at points TeT which define cold-tem-
perate transition points (that is, ¥ > 0 on one side of zcr
and @ > 0 on the other). At each point of the ice-sheet base,
we need to solve either [or ¥ (frozen base) or for ) (warm
base), and the difficulty arises because we integrate @) from
(i,5—1) to (i +1,7), but E from (¢,7 — 1) to (4, ).

i i+1
550 Q>0
j S
* \
1Aa R
: ks

At time step j — 1, there are two main cases to consider:

‘5 "
casel, B30, QLis0;
; i—1 i—1
case 2, QI >0, X, >0.
Case I corresponds to frozen bed upstream, case 2 to frozen
bed downstream.
Each of these has two separate subclasses:

sub-case A, f;t} =1
sub-case B, f;’;ll <= 1

Sub-case A corresponds to thawing conditions (zcT
moving towards the frozen bed), and sub-case B corre-
sponds to freezing conditions (zcp moving towards the
warm bed).

In Figure 4, the location of z¢p at time levels j — 1 and j
is indicated by open circles. o one side, ¥ > 0 and X can be
integrated to step 7 (at the same value of 7). On the other,
() > 0 and it can be integrated to step j at the next value of
i. Thus, for the various cases, we may sometimes be able to

<0
G>0 Q>0
87
2\
\
1Ab TcT

Q>0%r >0

S ; 8 = shock (as 24)

el
oy
=}
‘I.
PO

g 3

Q>03%>0
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Fig. 4. lllustration of the various cases which must be considered in determining the evolution of the cold—temperate transition point
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compute values of both ¥ and @) at some gridpoints at step j,
or sometimes neither. _

For example, in case 1A, with f > 0, then E;’*l de-
creases; if 3 > 0 (case l1Aa), then Zer remains in the inter-
val (z;,@;11), and the value of Q“:H is computed using a
weighted value of the step length Az. Since this corresponds
to backwards propagation of zcp (f > 0, so melting is oc-
curring), and since (see section 6) we expect that the speed
of zer is much less than 1/, we can assume that zep traces
an approximately vertical path in Figure 4 (case 1Aa), and
also that Q, = f, whence the distance ;.1 — z¢T isapprox-
imately Q.-H/fm-l In computing QJ+1 we replace Az by
this approximation (for case 1Aa). Case 1Ab is similar, ex-
cept that £/ < 0, and xer crosses into (i1, ;). In this
case, T; becomes warm, and we assign the value Q: 7 (LI
on the other hand, f < 0 (case 1B), then xcp must propa-
gate forward at a rate larger than 1/&', and this is illustrated

in Figure 4: in fact, from the definition of zep (X =Q =0
onx = xcr(t)), we find that ¥, ~ & and
Fi
Tor = 7 ( JrQ.r (5.1)

As indicated in Figure 4 for case 1B, one or more nodes
change from Q(>0) to ¥(>0). A simple algorithm is to
compute QA (if @,_; > 0), and if @, < 0, then for such k,
we assign a value E{‘. = 0. In practice, we choose ¥ =0
which should be accurate for these interpolated nodes, since
Ty roill.

Cases 1A and 1B represent the two important cases that
occur in practice. For completeness: we describe tvm further
cases. Case 2A occurs when QJ = 0, Z" 1 >0 and
f/71 > 0. In this case, zor represents a shock, insofar as Q
and ¥ suffer discontinuities at zep. A conservation argu-
ment then implies that

ZoT :% (5.2)

where @ is evaluated on zep—, and ¥ on zer+, and we rep-
resent this algorithmically in a crude way by selecting the
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com]pulc(l value of @/, it Q™' /! o L8 and XY,
Q! /E:H < 1/6". This has the effect of pushing xcr for-
wards to the next grid space if zor > 1/8 = Ax/At,
Again, a more sophisticated method would be more
accurate, but this is sufficient here, where this situation does
not in fact arise.

Lastly, case 2B is illustrated in the two cases 2Ba and
2Bb. If the. computed Q;'“ > 0 (case 2Ba), then a shock is
propagating, and is dealt with as in case 2A. If Q! , <0
(case 2Bb), then the front is no longer a shock and may pro-
pagate backwards. In either of the illustrated examples, the
algorithm simply retains £} (= 0) if @] < 0 (as for case IB).

Results

In the following figures we show the course of a surge using
a value of & = & = 107, with space step Ar =4 x 10°
and time step At =4 x 10 ~. Consistent results are
obtained with coarser resolution, though in certain regions
there is then some numerical instability. A remnant of this is
in fact visible in Figure 6. Although we have supposed rea-
listic values of & and & to be of order 10 %, we can anticipate
from the form of the equations that such small values will
lead to an extremely stiff system, and require inaccessibly
small time steps to capture the anticipated rapid transitions
in N and (). This expectation is validated in sections 6 and
7. where we are able to obtain analytic estimates for the fast
time-scales involved, and we then use these to extrapolate
the numerical results to more realistic conditions. Figures 5
and 6 show the evolution of the central thickness by =
h(0.1) and the outlet velocity g, = u(1,t) as functions of
time. We see a pattern of surging at regular intervals, with a
period of the order of the convective time-scale. The surge is
initiated by an activation wave which propagates backwards
from the margin at a rate controlled by the drainage-pres-
sure relaxation time (6), and which enables the transition
from cold-based to temperate-based dynamics. The propa-
gation of this wave is shown in Figures 7-9.

When the activation wave reaches the divide, a deactiva-

25

h(o.t)

05

0.6 0.8 1

Fig. 5. Evolution of the maximum thickness h(0,t) at the ice divide, for values X = 0.75, v = 0.55, = 12§ = 10 °

§=10"
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Fig. 6. Evolution of the outlet velocity u(1, t), as for Figure 5.
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Fig. 7. Backwards propagation of the activation wave in the depth profile. Near the divide, the profile continues to thicken due to
accumulation, while the ice velocily is negligible.
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Fig. 8 Backwards propagation of the activation wave in the water flux.
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Fig. 9. Backwards propagation of the activation wave in the effective pressure. Note that the values above the kink at about 0.2
apply when the ice is frozen al the base, and have no physical meaning. The value of N has been scaled down by a factor of

N5 = 107 consistent with Equation (6.1).

tion wave is formed which propagates forwards (at a faster
speed which is controlled by the water-flux relaxation
time(8')) causing the base to freeze again. The outlet ice flux
at the margin is shut down very rapidly when this wave
travels towards the front, and the slow build-up begins
again. The propagation of this deactivation wave is shown
in Figures 10-13. The propagation speeds of the activation
and deactivation waves are controlled by the relaxation
parameters 6 and &'. In sections 6 and 7, we analyze the
two fronts, and derive expressions for the propagation
speeds, and the form of the variables in the fronts, by meth-
ods analogous to those used in studying shock structure. An
interpretation of the numerical results in the light of these

controlled by the water-pressure response time 6. Suppose
the wave illustrated in Figures 7-9 is located at 2 = x4(t).
We define local shock variables by rescaling as follows:

~E ¥ 2
T=nkeX, T N~XNT5 un V=26,

==

-VV, Q~V, (6.1)

s =

where V' ~ O(1) is to be determined. The rescaled equa-
tions to determine the variables within the activation (ront
become, to leading order (assuming e < 1),

Vhy + (uh)y =0,
=N

analytic results is then given in section 8.
= — filise.
Q= it =0,
6. SURGE ACTIVATION VEr= —ru #f B0,
1
4 . - = x 3
During a surge, a wave front propagates backwards at a rate VNx+N=(Q" +AQ), (6.2)
0.2 T T
1=0900 —
1=0.906 ---
1=0.008
1=0.909
1=0910 - -
015 | _
z o1} i
005 !
B ;
0 08 08 1
X
Fig 10. Forward propagation of the cold—temperate transition point in the deactivation wave, N is scaled as in Figure 9.
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Fig. 11. Forward propagation of water flux in the deactivation wave.
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Fig. 12. Adjustment of h in the deactivation wave. A slight adjustment of slope can be seen to propagate over the freezing front.

providing V 3 &, 8'V <« 1, and where

* 3r/s
* _ |n-t _'YE
@ = e )]

= V/X«:’rr/s .

(6.3)

and we have chosen
~ £
V==
6
which is consistent with V 3 ¢, 8§V < 1 if, for example,
& = & <« 1. Note that the condition 8V < 1 underlies the
algorithm used in case | in section 5. From Equations (6.1)

and (6.4), we have

(6.4)

&= (6N°)7T, (6.5)
whence the wave speed is of order
V=xm6e, (6.6)

If we choose r =5 =1/2, \* ~10 7, then V~ 1071673,
£ ~ 1071 §3. Thus for 6 ~ 10 % the predicted shock width
is ~0.02 and speed is ~2, while for the more realistic § ~

https://doi.orgl183189/50022143000002409 Published online by Cambridge University Press

10 % we have Vo~ 10% e ~ 10 3 From Figure 7, the apparent
front speed is about 6, and the front width is about 0.4. This
suggests that V & 3, so that the wave speed is about 3V, and
the shock width is about 20z. The parameter A in Equation
(6.3) 1s defined by

A= s+ s, (6.7)
cg A~ 10" for 6 =102 A ~ 107 for § = 10 ©.

We now seck solutions to Equation (6.2) in which @ > 0
at X > 0, and ¥ > 0at X < 0, so that the cold—temperate
transition is at X =0. In X >0 (@ > 0), we neglect
O(A~Y/3), so that (ifh = hgpand N — Ny at X = 0)

N = Noe'X”V,

V(ho — h) = hu (6.8)
(since u 3> 1 at X = 0), and therefore
il 2

Q ~ E V(hu - h,) . (69)
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Fig. 13. A snapshot of the deactivation wave, as exhibited by profiles of h, N and Q. Also shown for comparison is the h profile
Jollowing the passage of the wave. Note that as in Figure 9, N is scaled by 10 ~; behind the front at 0.9, Q = 0, while ahead of i,

N=i?

The depth profile in X > 0is therefore determined by

/1114 hHdh NN'Usvv'H -
h

Ta—lr= g W B'h (6.10)

and the (scaled) shock speed V' is then determined by

h -1
0 hl!— dh
N-*‘V"“zf e
! h, (ho—h)

where h is the depth ahead of the front (A, < hg).
A crude estimate for V is obtained by taking h. h | < hy
in Equation (6.11), so that

(6.11)

o L ]ﬁ (6.12
- [(7' +2)Np* ' e
If we take hg = 2.5, Ny ~ 0.2 from Figures 7 and 9 (note
that N has been rescaled with A* % in Figure 7, just as in
Equation (6.1)), and » = s = 1/2, then this gives V' = 3.15,
consistent with the propagation rate in Figure 7. Further-
more, Figure 9 suggests an e-folding decay distance of about
(using a ruler on the ¢ = 0.86 profile in Figure 9) 0.077. This
is predicted to be X =V, or x — z, = Ve. With € = 0.022
from Equation (6.5), this would give V' 22 36, again consis-
tent with the propagation rate. These results are added con-
firmation of the validity of the analysis.

This gives the basic wave profile ahead of the cold—tem-
perate transition point, although the approximation in-
volved in deriving it breaks down as X — 0 (as then
AQ) — 0). More specifically, we see that

hp—h~ X, Q~X5 Ny— N~ X, u~ X5,
(6.13)
as X — (), and we select the region near X =0 where
Q ~ 1/A by writing
X=A"TE h=hy— AW,
N=DNy—A"TM, Q=A"y,

=AW, r=A"T. (6.14)
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To leading order, Equations (6.2) become
—VI’VE -+ h-(]ljg = [},
P = h[]”'r{. = N(TLH.‘
—H T

X¢
—VMe+ Ny =[@Q" +x] 7" (6.15)
In terms of x, this region is of thickness
e = AT = s (6.16)

For = s =1/2, the exponent of A* is one, so that
e~ 82N and with X" =10% e* ~ 10" for 6=1072
e ~ 10 * for = 10 . Even for the higher values of 6 used
numerically, this region is still practically at the limit of re-
solution.

Within this region,

o
ho”

7(]: ~ No®U", xe~ Pt (6.17)
whence
, 5L
No®’V(1l—=r -7
U~ [%(f + En)] (6.18)
)

where £ is an integration constant, and thus

(6.19)

and M is determined from Equation (6.14). By choosing
Ny = Q* /3, we can sce that M will be zero at X =0,
and thus NV is smooth. This upper portion of the front must
be joined smoothly to the upstream part where ¥ > 0. In
fact, we see that in this upper portion,

h

~ —

(6.20)
and if 7 = s = 1/2, this is (\2/8)” "V, This is small for
A'=107 6 =10" and even for = 10 ® it is O(1). This
suggests that the portion of the front where ¥ > 0 is of little

significance, and this is borne out by the numerical results.
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7. SURGE DEACTIVATION

When the activation wave reaches the divide, a deactivation
wave propagates rapidly downstream, thus switching the
surge off. We can see from Figures 10-13 that this deactiva-
tion wave is associated with the propagation of the cold—
temperate transition point zep downstream. We have seen
in section 4 (Equation (4.14)) that this front moves with the

speed
o1 S

When f > 0, the zcT point represents a “warming” front,
and the wave speed is less than the characteristic speed,
while for f < 0it is a“cooling” front, and moves faster than
the characteristic speed. In the latter case, the front can be
considered to be a weak shock. In any event, there is no
shock structure associated with this front propagation (at
least in this model), and from the numerical solutions, and
also Equations (4.13), we see that h experiences a jump of
O(6) across the front, and N decreases from o(Q~/3) to
O(1). Without any smoothing mechanism for @, the solu-
tions for N (and thus also & and w) exhibit numerical jud-
ders near zcr on a small scale, though these are not
apparent in the figures. It can be seen from Figure 11 that
for &' = 107", the speed of the front (between t = 0906
and t = 0909) isv = 17 x 10* = 178’, consistent with this
result.

8. DISCUSSION

The model of ice sheets incorporating canal-type drainage
described by Fowler and Johnson (1995) exhibits surges on a
regular periodic basis, with a period between surges con-
trolled by the accumulation rate. When the ice is thin and
cold, then h thickens towards its equilibrium hu = ax. In
the present model, if T <1, then u=AT" so0
AN h(—=hh;)" — az, and the equilibrium profile is given by

i 2 -+ 2N FdNe £
5 = B L e 1
gl g (”H) (A) n-o% &

where hy, is the marginal value of h.

So long as the marginal ice remains cold, then 3 will
tend to an equilibrium (~ 1/v), so long as f = 0 for some
¥ > (. By consideration of Equation (4.13) 5, we can see that
the condition for this nof to occur is that

A PBu

AT £

Since h (and thus u and thus &) is given at x = 1, thisis a
messy but explicit criterion which indicates melting will be
initiated at the front if v is large enough. For O(1) values of
~, A and [, Relation (8.2) will inevitably be :sallsf'ed since A*
is small.

v+ TU > — it =1 (8.2)

Physically, the condition to maintain a freezing base
requires (assuming w is then very small) that the geother-
mal heat flux 4 can be removed by conductive cooling,
which in a steady state is just A/(h + vE). If then v > A/h,
then this is not possible for a positive frost depth %, and the
criterion for the initiation of melting 1s simply Relation (8.2),
or (with small u) h > A\/~. '

When melting is initiated, an activation wave propa-
gates backw ards at a dimensionless speed of order
3V = 3A*#1§ 71, The surge is active during the passage. of
this wave, which therefore lasts a time tg,rge ~ 0. 367N =,
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and the ice velocity (and thus the discharge flux at the mar-
gin) are of order 1/V.When the melting front reaches the
divide, the dome collapses, and a freezing front deactivates
the surge on a time-scale 1/8". The timing and magnitude of
the surge is thus critically dependent on the relaxation times
for the basal drainage system.

Dimensional results

The hasic units used by Fowler and Johnson (1995) are given
by Equation (2.11). We identify the convective time-scale [t],
the ice-sheet depth scale [h] and the ice velocity scale [u].
The drainage time-scales can be identified in terms of two
processes, pressure relaxation and water-flux relaxation. If
we compare Equation (413) with, for example, Nye’s (1976)
hydrological drainage model, then we can identify a con-
vective water-flux time-scale ¢ = [/ where @ is a typical
water velocity in the drainage system; then

§ = Eﬂ‘i — M
[ @
The pressure-relaxation time-scale is less obvious. In terms
of Nye’s hydrological model, it is given by the closure time-
scale of ice (and would thus be {A[N]"}"" where A is the
flow-law constant and [N] is the effective-pressure scale).
For Walder and Fowlers (1994) canal drainage system, the
relevant closure time-scale t.0s might be given by
il

(8.3)

telos = 7777 - (84)
[N]
It can also be shown (Ng, 1998) for the Nye model that
l A ,

telos ,OIL L

where A¢ is the driving hydraulic head, and L is latent heat.

If we suppose Equations (8 4) and (8.5) are valid, then wnh
values L ~ 8.3 x 10°Jkg ', [N] ~ I bar and nuy ~ 10" Pas

(Alley and others, 1986), we would have

tiux ~ 0.6 x 10's, (8.6)

05 = 10”5, we would deduce

telos ™~ 105 S,
and with [t] = 8000a =

ll'l'lux

[t]

telos
g

These are merely indicative. In particular, it is likely that
telos will be longer than 1d, if account is taken of the time
taken for lateral water transport between flow pathways.
That is to say, Equation (8.4) gives a response time for pres-
sure adjustment at a canal, whereas what is of principal con-
cern is the response time of the effective pressure in till away
from the supposed drainage canals. In what follows, we sup-

& = w2 1070,

8= ~4x107T7. (8.7)

pose always tux /teos & 0.06, and give estimates for quanti-
ties of interest for various values of ¢.jss.

The surge period is of order [t] ~ 8000 a, entirely con-
sistent with Heinrich-event intervals of 500010000 a.
Other quantities of interest are:

surging ice velocity, = 7.4V[u];

surge duration, = 0.3[t]/V;

deactivation wave speed, 2= [u]/¥";

[Q]V/wd :

According to Fowler and Johnson (1996), [Q] is the water-
flux scale per channel, [Q] ~ 2 m®s ', while wy is the chan-

peak surge basal water flux, =~
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nel spacing, wy ~ 4 km. This last value is badly constrained,
but the quantity [Q]V /wq is the water flux per unit width,
which does not depend on wy (since in fact [Q] X Wy ). V is
defined by Equation (6.6), and in our numerical results
(F=1/2, § =10 2 A =107%, V ~ 215, and this together
with the results in Figure 6 (velocity reaches 16, duration is
0.15), Figure 8 (maximum @ is about 2) and Figure 10 (de-
activation time is 0.01) determines approximately the nu-
merical coefficients above. In Table 1 we show values of
these quantities for wvarious choices of lges (assuming
tux/Telos = 0.06), and using [t] = 8000 a, [u] =250m a!
and [h] =1500m, and with A" (given by Equation
49)) =103 r=5s=12

Table 1. Computed values of surge characteristics, based on
= r=1

telos
Quantity Definition 1075 17 s 107 s
(1d) (4 months ) (30a)
& telos/ [f] 4 51077 4 x107° 4x107
&' tue /] 24 %10°% 24 x10° 24x10*
v NFETST 1842 85 1
Surge velocity 74V [y 3400 157 74
(kma ' R
Surge duration (a)  03[t]/V 1.3 28 600
Deactivation wave  [u] /&’ 10° 10° 10’
speed (kma Y
Peak water flux — [Q]V /uy 900 43 2

g~ By
(m”s km )

The violence of the surge is sensitively dependent on the
pressure-relaxation time-scale, ranging from benign if
telos = 30 ato catastrophic iff.,s = 1 d. Note, however, that
the total ice discharge (which is proportional to the product
of velocity and duration) is independent of £.,. For an out-
let channel of width 200 km, and an exit depth of 500 m (as
used here), the net ice discharge is 4 x 10° km”.

The activation wave is controlled by the closure time-
scale. As the cold—temperate transition point rer moves
back, one can think of the rate of propagation being deter-
mined by the rate at which the drainage system is set up,
and this is controlled by the balance between (for a canal)
till creep and sediment removal. On the other hand, the de-
activation wave is controlled by the convective water-flux
time-scale, and is effectively instantaneous by comparison.

Even for the most vicious surges, the water flux is not too
enormous. The most violent jokulhlaups in Iceland have
maximum peak discharges of 10°m®s 'km ' (Tomasson,
1996), although only for several hours. The regular
Grimsvitn jokulhlaups have discharges of order 10°m?
s 'km 'over several days (Bjornsson, 1992). Total discharges
are thus less than about 10°m*km ' For the ice-sheet
surges, however, the total discharges are larger. Indepen-
dently of the surge duration, Table 1 suggests a total dis-
charge of 3.8 x 10" m® km ], or (for a 200 km wide outlet
ice stream) 76 x 10° km” about 1% of the ice discharge.
For a drawdown area of 10° km”, this represents melting of
76 m of ice.

Apart from {.os, the other imponderable in'lable 1 is the
value of 7 in the sliding law 7 = cu” N®. The values r = s =
1/2 correspond to the view of Boulton and Hindmarsh (1987)
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and Boulton (1996) that coarse (sandy) tills have values of
r,s of O(1). The view of Kamb (1991) is that for clay-rich
marine sediments, the sliding law is more nearly plastic, so
that s = 1, r < 1. We can see the effect of choosing r < 1
in Table 1. The values of V in the three columns are then
V=025 x 10,025 x 10° and 025 x 10°. Even for the
mildest case t..s = 30 a, V= 250, the surge velocity is
460 kma ', the duration is 10 years and the peak water dis-
charge is 120 m’s 'km .

Variable periodicity

The Heinrich-event intervals are not constant. This is
hardly surprising since the intervals are controlled by accu-
mulation, which must be significantly affected by the cli-
matic alterations induced by these surges.

Synchronised surging

Bond and Lott (1993) indicate evidence that different ice
streams surged simultaneously, which would apparently
cause difficulty for the notion that their oscillations are con-
trolled internally and independently. This point of view has
been supported by Revel and others (1996), while Gwiazda
and others (1996) indicate that, at least for Heinrich event 2,
the Hudson Strait origin is dominant. T'he idea that ice-
sheet surges can be caused (as opposed to influenced) by ex-
ternal forcings is, however, dynamically naive. In fact, it is
well known that even weakly coupled non-linear oscillators
will readily become synchronised, and there are many
examples where this phenomenon can be recognised,
despite the apparent minuteness of the coupling: firefly illu-
minations, human menstrual cycles, and mechanical clocks
come to mind. It would in fact be almost surprising il the
surging of different ice streams did not tend to become syn-
chronised, or at least harmonically resonant, as they are
coupled through the climatic input. A similar comment
applies to the minute 100000 year Milankovitch forcing of
the ice ages.
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