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Abstract

The support varieties for the induced modules or Weyl modules for a reductive algebraic group G were
computed over the first Frobenius kernel G1 by Nakano, Parshall and Vella. A natural generalization of
this computation is the calculation of the support varieties of Demazure modules over the first Frobenius
kernel, B1, of the Borel subgroup B. In this paper we initiate the study of such computations. We
complete the entire picture for reductive groups with underlying root systems A1 and A2. Moreover, we
give complete answers for Demazure modules corresponding to a particular (standard) element in the
Weyl group, and provide results relating support varieties between different Demazure modules which
depend on the Bruhat order.
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1. Introduction

Let G be a connected, simply connected, simple algebraic group scheme defined over
Fp. Moreover, let W be the associated Weyl group, B be a Borel subgroup and X(T )+

be the set of dominant weights. Given w ∈W and λ ∈ X(T )+, the Demazure module,
labeled by H0(w, λ), is constructed using iterated inductions involving parabolics
corresponding to simple reflections occurring in a reduced decomposition of w. When
w = w0 is the long element of W, one recovers the induced G-modules H0(λ) = indG

B λ,
which can be realized as global sections of the line bundle L(λ) over G/B.

Demazure modules arise naturally as the global sections on a line bundle L(λ)
on the Schubert scheme X(w) [12, Ch. 14]. The structure of Demazure modules,
and B-modules with excellent filtration in general, is closely related to the geometry
of the underlying Schubert varieties (resolution of singularities, sheaf cohomology,
normality and rational singularities). For example, Mehta and Ramanathan, using the
technique of Frobenius splittings, and later Andersen, using representation-theoretic
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techniques, showed that the analog of Kempf’s vanishing theorem holds for sections
of a dominant line bundle restricted to a Schubert variety. This result was applied to
complete Demazure’s proof of his character formula. As another example, Polo [15]
and van der Kallen [19] used the normality of Schubert varieties in a crucial way in
their investigation of the category of B-modules with excellent filtration.

In 2002, at a workshop in Seoul, Korea, B. Parshall proposed the problem of
computing the support varieties of the Demazure modules H0(w, λ) over the first
Frobenius kernel B1. This problem is a natural and interesting extension of the ‘Jantzen
conjecture’ on support varieties, which predicted the support varieties of H0(λ) over
G1 when the characteristic of the field is good. The conjecture was verified by Nakano
et al. [14] and the support varieties of H0(λ) over G1 were shown to be closures of
Richardson orbits. This computation was later extended to fields of bad characteristic
by the University of Georgia VIGRE Algebra Group [18]. In the latter case, the support
variety of H0(λ) is still irreducible and is the closure of an orbit, but the orbits need
not be Richardson.

Support varieties are natural with respect to the inclusion of B1 in G1, so one can
deduce from the aforementioned results that the B1 support varieties of H0(λ) will be
unions of closures of orbital varieties (see [13]). The orbital varieties arise as the
irreducible components in the intersections of G-orbits on the nilpotent cone with the
nilradical of a Borel subalgebra. Indeed, the closures of orbital varieties should play
an important role in the general theory of support varieties of Demazure modules. This
will be more evident in the results in this paper.

The main obstacle in computing support varieties for general Demazure modules
is that these modules are rarely G-modules (that is, their support varieties are not G-
invariant, and not closures of finitely many G-orbits). In general there are infinitely
many B-orbits on the nilpotent radical of Lie B. At present it is not known how to
classify these B-orbits. The aim of the paper is to study the behavior of support
varieties of Demazure modules. In many instances we will be able to provide an
explicit description of the supports.

The paper is organized as follows. In Section 2, we present various properties of
Schubert varieties that will be used throughout the paper. We then discuss properties
of support varieties over the Frobenius kernels Br and Pr. Several of the main results
in [8] and [14] need to be modified and generalized for the purposes of this paper (see
Theorems 3.2.1 and 3.3.1). In Section 4, we prove a G-saturation result for the Br

support varieties of Demazure modules. In particular, we show that if w1 < w2 (in the
Bruhat order), then G · VBr (H

0(w2, λ)) ⊆G · VBr (H
0(w1, λ)). This result is subtle and

we indicate by example that this inclusion does not hold if one ignores the process of
G-saturation (see Example 4.1.2). With these results, we describe the supports of the
Demazure modules in the A1 case. Calculations of support varieties VB1 (H0(w, λ))
are given for specific w ∈W in Section 5. Finally, in Section 6, we provide a complete
description of VB1 (H0(w, λ)) for algebraic groups of type A2. An interesting facet
of the A2-computation is the need to analyze and use information about higher sheaf
cohomology groups.
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2. Schubert schemes

We first introduce some notation. Throughout this paper, let k be an algebraically
closed field of characteristic p > 0. For an algebraic group H, the notation Mod(H)
denotes the category of rational H-modules and mod(H) denotes the category of finite-
dimensional, rational H-modules.

Let Φ be a finite irreducible root system for a Euclidean space E. The inner product
on E will be denoted by (·, ·). For α ∈ Φ, let α∨ = 2α/(α, α) be the corresponding
coroot. Fix a set ∆ = {α1, . . . , α`} of simple roots, and let Φ+ be the corresponding set
of positive roots. The Weyl group W ⊂ O(E) is the group generated by the reflections
sα : E→ E, α ∈ Φ, given by sα(x) = x − 2(x, α∨)α.

Unless otherwise stated, G will denote a reductive algebraic group over k. We will
always assume that the derived group G′ is simply connected. Also, assume that G
has root system Φ with respect to a maximal split torus T . Let B ⊃ T be the Borel
subgroup defined by −Φ+. The positive Borel subgroup containing T will be denoted
B+. Moreover, let X(T ) = X(B) be the group of integral characters of T or, equivalently,
of B. Given λ ∈ X(T ), we will let λ also denote the one-dimensional B-module defined
by regarding λ as a character on B. Then the set of dominant integral weights is defined
by

X+ := X(T )+ = {λ ∈ X(T ) : 0 ≤ (λ, α∨i ), 1 ≤ i ≤ `}.

Let ρ be the half sum of the positive roots. We partially order X(T ) by setting λ ≥ µ if
and only if λ − µ ∈

∑
α∈∆ Nα. Let h be the Coxeter number of G. Thus, if G′ is simple,

h = (ρ, α∨0 ) + 1, where α0 is the maximal short root in Φ; otherwise, h is the maximum
of the Coxeter numbers for the simple factors of G′.

Each subset J ⊂ ∆ gives rise to a standard parabolic subgroup P = PJ containing B,
whose Lie algebra is generated by t = Lie T , the negative root spaces g−α (α ∈ Φ+) and
the positive root spaces in the span of J: gα for α ∈ ΦJ . The subgroup PJ has a Levi
decomposition PJ = LJUJ , where lJ = Lie LJ is generated by t and the root spaces g±α
for α ∈ J, and uJ = Lie UJ is generated by the root spaces g−α for α ∈ Φ+ \ ΦJ . We
denote by WJ the subgroup of W generated by reflections sα for α ∈ J and identify
it with the Weyl group of LJ . We denote the set of minimal length right coset
representatives for W/WJ by W J . When P = PJ , we write WP and WP rather than
WPJ and WPJ . We denote the opposite parabolic subgroup that contains B+ by P+

J .
For G as given above, the dominant weights λ ∈ X(T )+ index the simple modules

L(λ) by their highest weight. If indG
B : mod(B)→mod(G) is the induction functor, let

H0(λ) = indG
B λ for λ ∈ X(T ). If λ < X(T )+, then H0(λ) = 0, while, if λ ∈ X(T )+, then

H0(λ) has socle L(λ).
Let F : G→G be the Frobenius morphism on G induced by its Fp-structure.

For r ≥ 1, put Gr = ker(Fr). Similarly, if H is an F-stable subgroup of G, write
Hr = ker(Fr |H); for example, Br = ker(Fr |B). The group scheme Hr is a finite k-group,
that is, an affine algebraic group scheme over k with finite-dimensional coordinate
algebra k[Hr]. Also, its height is at most r. In what follows, all affine k-groups A
will, by definition, be assumed to be algebraic, that is, the coordinate algebra k[A] is
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assumed to be finitely generated over k. If M ∈Mod(H), let M(r) be the module in
Mod(H) obtained by composing the representation corresponding to M with Fr.

Next we follow the notation and conventions of [12, II. Chs. 13–14]. Fix a parabolic
subgroup P. The group G has a Bruhat decomposition:

G =
⋃

w∈WP

BẇP,

where ẇ denotes a chosen representative of w in NG(T ). This induces a decomposition
G/P =

⋃
BẇP/P into B-stable affine subschemes (cells). We denote by X(w)P the

closure of the cell BẇP/P in G/P. These are the Schubert varieties of G/P. When
P = B is a Borel subgroup, we simply use the notation X(w) = X(w)B.

Let M ∈mod(P). The variety G ×P M is naturally a vector bundle over G/P. We
denote this vector bundle byL(M). The most important case is when P = B and M = kλ
for λ ∈ X(T ), in which case L(M) is a line bundle on G/B. If J ⊂ ∆ and λ satisfies
(λ, α∨) = 0 for all α ∈ J, then there is a line bundle L(λ)P on G/P, where P = PJ .
This bundle pulls back to L(λ) on G/B under the quotient map G/B→G/P, which
is locally trivial. Therefore, by [12, Section I 5.17], there is a canonical isomorphism
H0(G/B,L(λ)) � H0(G/P,L(λ)P).

The cohomology groups Hi(G/B,L(M)) are naturally G-modules. For each
y ∈WP, the inclusion X(y)P ↪→G/P induces the restriction map Hi(G/P,L(M))→
Hi(X(y)P,L(M)).

The schemes X(y)P admit resolutions of singularities φ : X→ X(y)P, which are
equivariant with respect to B and depend on a reduced decomposition of ẏ, a minimal
length coset representative of y in W (see [12, Section II 13.6]). The resolution X is
defined as a subset of a variety Z that is a fiber bundle over G/B.

X //

φ̇
��

Z

��
X(ẏ) � � //

πP
��

G/B

πP
��

X(y)P
� �

ι
// G/P

(2.1)

In the diagram, πP is the natural projection G/B→G/P, which is birational when
restricted to X(ẏ), and the resolution φ is φ = πP ◦ φ̇. We need the following well-
known geometric results on Schubert varieties and sheaf cohomology.

P 2.1 [12, Section II 14.15]. Let y ∈WP, let ẏ be a minimal length right
coset representative of y in W and let w ∈W. Then the following hold.

(1) X(y)P is a normal, closed subscheme of G/P.
(2) For every vector bundle V on G/P and i ≥ 0, Hi(X(y)P, V) � Hi(X(ẏ), π∗PV) �

Hi(X, φ∗V).
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(3) For all λ ∈ X(T )+, Hi(X(w),L(λ)) = 0 for i > 0.
(4) Given λ ∈ X(T )+ such that (λ, α∨) = 0 for all α ∈ J, where J ⊆ ∆, the restriction

map Hi(G/P,L(λ)P)→ Hi(X(y)P,L(λ)P) is surjective and moreover

Hi(X(y)P,L(λ)P) = 0

for all i > 0, where P = PJ is the standard parabolic subgroup associated to J.

We also need the identification of the G-module Hi(G/P,L(M)P) with induction
from P to G.

P 2.2 [12, Section I 5.12].

(1) For any P-module M and i ≥ 0, there is a canonical isomorphism

Ri indG
P M � Hi(G/P,L(M)).

(2) Let H ⊂ K be k-group schemes such that K/H is noetherian (for example, K is
reductive and H is a parabolic, or H ⊂ K ⊂G are both parabolic in a reductive
group) and let M be a rational H-module. Then

Ri indK
H M = 0

for i > dim K/H.

3. Support varieties over Pr

In this section, let A be an arbitrary finite k-group scheme and mod(A) be the
category of finite-dimensional A-modules. We will consider maximal ideals in the
commutative part of the cohomology ring, so set

R := H(A, k) =

H2•(A, k) if char k , 2,

H•(A, k) if char k = 2.

Friedlander and Suslin [10] proved that R is a finitely generated k-algebra [10]. Let
VA denote the variety associated to the maximum ideal spectrum of R. Given M, M′ ∈
mod(A), we define the relative support variety VA(M, M′) = Maxspec(R/JM,M′),
where JM,M′ is the annihilator of the action of R on Ext•A(M, M′). The action (Yoneda
product) of R = Ext•A(k, k) on Ext•A(M, M′) is given by taking an extension in R,
applying − ⊗k M′ and then concatenating the new class with an extension class in
Ext•A(M, M′) (see [3, Section 2.6]).

The ordinary support variety of M ∈mod(A) is VA(M) :=VA(M, M). In general,
VA(M, M′) is a homogeneous closed subvariety contained in VA =VA(k) for any
M, M′ ∈mod(A). For the basic properties of support varieties for finite k-group
schemes, we refer the reader to [9, Section 5] and [14, Section 2.2].

Let H be a closed subgroup of a finite k-group A of height at most r. Suslin et
al. [17, (5.4)] proved that the image of the restriction map res : H(A, k)red→ H(H, k)red
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contains all prth powers xpr
of elements x ∈ H(H, k)red, and the induced morphism

res∗ :VH →VA mapsVH homeomorphically onto its image as a closed subvariety of
VA. In this paper, we will identify the image ofVH with res∗(VH) inVA. Under this
map, we have the following naturality property.

P 3.1. Let H be a closed subgroup of A. ThenVH(M) =VH ∩VA(M).

For infinitesimal group schemes of height 1, one can make the descriptions of
support varieties quite explicit. Let H be an affine algebraic group scheme defined over
Fp, H1 = ker(F|H) and h = Lie H (which is a restricted Lie algebra with [p] operator).
Let N1(h) be the closed subvariety of nilpotent elements in h of H defined by

N1(h) := {x ∈ h : x[p] = 0}.

We have the following identification of varieties.

P 3.2 [16, (1.6), (5.11)]. VH1 is homeomorphic to N1(h).

Finally, we can use the identification in Proposition 3.1 to identify VH1 (M) as a
closed subvariety of N1(h).

P 3.3 [8, Theorem 1.3]. VH1 (M) is homeomorphic to

{x ∈ N1(h) : M is not x-projective} ∪ {0}.

For the purposes of this paper, we need to analyze the relationship of support
varieties over Br versus Pr, where P is a parabolic subgroup of G. The following
result is a generalization of [8, Theorem 1.2] and [2, Proposition 4.5.2].

T 3.4. Let J ⊆ ∆, let P = PJ be the associated parabolic subgroup and let
M ∈mod(P). Then

VPr (M) = P · VBr (M).

P. The proof follows along the same line of reasoning as in [8, Theorem (1.2)].
We will indicate what modifications are necessary. Let Ψ = res∗ :VBr (M)→VPr (M)
be the map on varieties induced from the restriction map res : H•(Pr, k)→ H•(Br, k).
According to [16, (1.6), (5.11)], we can identifyVBr (M) with Ψ(VBr (M)) inVPr (M).
SinceVPr (M) is invariant under P, we have

P · VBr (M) ⊆VPr (M).

We need to show that the reverse inclusion holds.
Following the proof of [8, Theorem 1.2], set

IM = ker{H•(Br, k)→ Ext•Br
(M, M)},

JM = ker{H•(Pr, k)→ Ext•Pr
(M, M)},

KM = {x ∈ H•(Pr, k) : p · res(x) ∈ IM , ∀p ∈ P}

LM = {x ∈ H•(Pr, k) : p · res(x) ∈
√

IM ∀p ∈ P}.
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In the proof, if one replaces ‘G’ by ‘P’, removes the ‘symmetric algebras’ and uses
the fact that Hm(P/B, −) = 0 for m > dim P/B, then one can conclude that KM ⊆

√
JM .

Thus,VPr (M) ⊆ P · VBr (M). �

For M a rational B-module, the relationship between the (relative) Br support
variety of a module induced from M and the Gr support variety is described in [14,
Theorem 5.4.1]. We generalize this result to the parabolic case as follows.

T 3.5. Let M be a rational B-module and P be a parabolic subgroup of G that
contains B. Suppose that t is a fixed integer and that Rm indP

B M = 0 for all m , t. Then

VPr (R
t indP

B M) = P · VBr (R
t indP

B M, M).

P. The proof of [14, Theorem 5.4.1] is formal and carries over after replacing G
by P. The main issue involves the use of a spectral sequence, which in our case is

Em,n
2 = Rm indP/Pr

B/Br
ExtnBr

(Rt indP
B M, M)⇒ Extm+n−t

Pr
(Rt indP

B M, Rt indP
B M),

and an increasing filtration whose finiteness depends on a vanishing result,

Rm indP/Pr

B/Br
= 0 ∀m > dim P/B.

This vanishing result holds by Proposition 2.2(ii). �

4. G-saturation

We are interested in determining the support varieties VB1 (H0(X(w),L(λ))) for all
w ∈W and λ ∈ X+. In particular, we want to understand the inclusion relations among
support varieties for different w and λ of particular interest. In some instances we will
use H0(w, λ) := H0(X(w),L(λ)) as a shorthand notation. In the following theorem, we
prove that for a fixed weight λ, the inclusion relation on the G-saturation of support
varieties for Demazure modules respects the Bruhat order on W.

T 4.1. Let λ ∈ X+ and w1 < w2 in the Bruhat order on W. Then

G · VBr (H
0(w2, λ)) ⊆G · VBr (H

0(w1, λ)).

P. By induction on `(w2) − `(w1), it suffices to prove the result when w2 = sαw1

and `(w2) = `(w1) + 1. Let P{α} be the minimal parabolic subgroup corresponding to
α. By Theorem 3.4,

V(P{α})r (H
0(w2, λ)) = P{α} · VBr (H

0(w2, λ)). (4.1)

Since H0(w2, λ) � indP{α}
B H0(w1, λ), Theorem 3.5 implies

P{α} · VBr (H
0(w2, λ)) = P{α} · VBr (H

0(w2, λ), H0(w1, λ))

⊆ P{α} · VBr (H
0(w1, λ)).

(4.2)
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T 1. Support varieties for Demazure modules in type A2 with highest weight (p − 1)ρ.

w VB1 (H0(w, (p − 1)ρ))

e u

sα u{α}

sβ u{β}

sαsβ u{α} ∪ u{β}

sβsα u{α} ∪ u{β}

w0 {0}

Combining (4.1) and (4.2), we have

V(P{α})r (H
0(w2, λ)) ⊆ P{α} · VBr (H

0(w1, λ)),

so acting by G on both sides we certainly have

G · V(P{α})r (H
0(w2, λ)) ⊆G · VBr (H

0(w1, λ)).

Finally, by Proposition 3.1,VBr (M) ⊆V(P{α})r (M) for all M ∈mod(P{α}). Thus,

G · VBr (H
0(w2, λ)) ⊆G · VBr (H

0(w1, λ)),

as required. �

We should remark that the result above is rather subtle in the sense that inclusion of
the B1-support varieties of Demazure modules need not be preserved under the Bruhat
order. This can be seen in the following example.

E 4.2. Let p ≥ 3, λ = (p − 1)ρ (the Steinberg weight) and G = SL(3). Let u{α}
and u{β} be the unipotent radical of the Lie algebras of P{α} and P{β}. The computation in
Section 6 gives the support varietiesVB1 (H0(w, (p − 1)ρ)) for all w ∈W, see Table 1.

In particular, the pair sβ and sαsβ illustrates that w1 < w2 does not necessarily imply
that VB1 (H0(w2, λ)) ⊆VB1 (H0(w1, λ)). Note, however, that the saturations in these
two cases agree:

G · u{β} = G · u{α} = G · (u{α} ∪ u{β}).

Fix a dominant weight λ. The subset

Φλ,p = {α ∈ Φ+ : (λ + ρ, α∨) ∈ pZ}

is a subroot system of Φ, which, when the prime p is good relative to Φ, is conjugate
under the Weyl group to a root system ΦI spanned by a subset I ⊆ ∆ of simple roots,
see [5, Proposition 24, p. 165]. The weight λ is called p-regular if Φλ,p = ∅.

P 4.3. Let λ be a p-regular weight in X+. ThenVB1 (H0(w, λ)) =VB1 .
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P. If w0 denotes the longest element of the Weyl group, then w ≤ w0, so
Theorem 4.1 gives us an inclusion of the saturated supports:

G · VB1 (H0(w0, λ)) ⊆G · VB1 (H0(w, λ)).

Since X(w0) = G/B, H0(w0, λ) is a G-module and

VG1 (H0(w0, λ)) =VG1 (H0(G/B,L(λ))).

Moreover, by [8, Theorem 1.2], VG1 (H0(G/B,L(λ))) = G · VB1 (H0(G/B,L(λ))).
Putting these results together, we have

VG1 (H0(w0, λ)) ⊆G · VB1 (H0(w, λ)). (4.3)

Since λ is p-regular,VG1 (H0(w0, λ)) =VG1 by [14, Proposition 4.1.2] and thus

VG1 ⊆G · VB1 (H0(w, λ)) ⊆VG1 .

Therefore, we must have
G · VB1 (H0(w, λ)) =VG1 .

Since λ is p-regular, we have p ≥ h (see [12, Section II 6.2(10)]), and VG1

identifies with the nilpotent cone in g. Therefore, the closed conical B-stable variety
VB1 (H0(w, λ)) must contain a regular nilpotent element. It follows that

VB1 (H0(w, λ)) = u =N1(u) =VB1 ,

as required. �

We conclude this section by illustrating Proposition 4.3 in the situation when the
root system Φ is A1 (that is, for the group G = SL(2)).

Let G = SL(2) and λ be a dominant integral weight (represented by a nonnegative
integer). In this case, G/B � P1 and W = {e, sα}.

Let w = e. We have X(e) = eB/B, which consists of a single point. It follows that
dim H0(w, λ) = 1 and so by the rank variety description, VB1 (H0(w, λ)) = u, which is
independent of λ.

If w = sα is the long element of W, then X(sα) = G/B. Now the weight λ is p-
regular if and only if p - λ + 1. So, by Proposition 4.3, VB1 (H0(sα, λ)) =VB1 = u

unless p|λ + 1. When p|λ + 1, a simple application of [14, Theorem 6.2.1] gives

VB1 (H0(w, λ)) = {0}.

We summarize the situation for type A1 in Table 2.

5. Calculation of support varieties

In this section, we determine the support varieties of Demazure modules for
arbitrary reductive groups G when the underlying Schubert scheme corresponds either
to the longest element in WI (for any I ⊆ ∆) or to the longest element in W J (for certain
subsets J ⊆ ∆).
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T 2. Calculation of support varieties for all Demazure modules in type A1.

w p - λ + 1 p|λ + 1

e u u

sα u {0}

Let λ ∈ X+ and define
Jλ = {α ∈ ∆ : 〈λ, α∨〉 = 0}.

For any subset J ⊆ ∆, let w0,J denote the Weyl group element of maximal length in
W J .

P 5.1. Let λ ∈ X+, let P = PJλ and let w = w0,Jλ . Then there is an
isomorphism of B-modules

H0(X(w)P,L(λ)) � H0(G/B,L(λ)).

P. The resolution diagram (2.1) induces a diagram involving cohomology groups.

H0(X(ẇ),L(λ)) H0(G/B,L(λ))
j∗oo

H0(X(w)P,L(λ)P)

(πP|X(ẇ))∗
OO

H0(G/P,L(λ)P)
i∗oo

π∗P

OO

By Proposition 2.1, (πP|X(ẇ))∗ is an isomorphism. Also, the choice of w implies that
X(w)P = G/P, hence i is the identity and i∗ is an isomorphism. By local triviality
(see [12, Section I 5.17]), the map π∗P is an isomorphism. The diagram commutes and
so j∗ is an isomorphism. �

The proposition and [14, Theorem 6.2.1] allow us to identify the support variety of
H0(X(w)P,L(λ)P) in this special case. Choose x ∈W such that x(Φλ,p) = ΦI for some
subset I ⊆ ∆.

T 5.2. With J = Jλ, w = w0,J and P = PJ as above,

VB1 (H0(X(w)P,L(λ)P)) = (G · uI) ∩ N1(u).

P. By [14, Theorem 6.2.1], VG1 (H0(G/B,L(λ))) = G · uI . The isomorphism of
Proposition 5.1 along with naturality of supports, see (3.1.1), implies that

VB1 (H0(X(w)P,L(λ)P)) = VB1 (H0(G/B,L(λ)))

= VG1 (H0(G/B,L(λ))) ∩ N1(u)

= (G · uI) ∩ N1(u),

as claimed. �
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Theorem 5.2 implies that the B1 support varieties of certain Demazure modules are
unions of the closures of orbital varieties. Recall from the introduction that the B1

support varieties of induced modules H0(G/B,L(λ)) are also unions of orbital variety
closures. It remains an interesting open problem whether or not the support varieties
of all Demazure modules are unions of orbital variety closures and whether one can
realize all such closures as support varieties of certain modules.

Let I ⊆ ∆ be an arbitrary subset and let w = wI ∈WI be such that wI(α) < 0 for all
α ∈ I. The element wI is the long element in the group WI . First, note that in this case
by [12, Section II 13.3 (4)]

H0(X(w),L(λ)) � indPI
B λ.

Consequently, H0(X(w),L(λ)) is a PI-module with UI acting trivially. The following
theorem describes the support variety of H0(X(w),L(λ)) as a (PI)1-module by
reducing to the case of [14, Theorem 6.2.1] for the Levi subgroup LI .

T 5.3. Let I ⊆ ∆ with uI = Lie UI , and w = wI . Then

V(PI )1 (H0(X(w),L(λ))) = [V(LI )1 (H0
I (λ)) + uI] ∩ N1(pI).

P. Set lI = Lie LI and uI = Lie UI . First observe by [7, Examples 4.2] that

indPI
B λ|LI � indLI

LI∩B λ := H0
I (λ).

Let z = x + y, where x ∈ lI , y ∈ uI and z ∈ N1(pI). Then, by [6, Proposition 5.2(a)],
x ∈ N1(lI). Since uI acts trivially on H0

I (λ),

z · H0
I (λ) = x · H0

I (λ).

In particular, H0
I (λ) is z-projective if and only if it is x-projective. By the

realization of the support varieties in terms of rank varieties, we can conclude that
z ∈ V(PI )1 (H0(X(w),L(λ))) if and only if x ∈ V(LI )1 (H0(X(w),L(λ))).

Therefore,

V(PI )1 (H0(X(w),L(λ))) = [V(LI )1 (H0
I (λ)) + uI] ∩ N1(pI),

as desired. �

Using [14, Theorem 6.2.1], we obtain the following description of the support
variety. Recall that when the prime p is good there exists x ∈W such that x(Φλ,p) = ΦJ

for some subset J ⊆ ∆.

C 5.4. Let w = wI as above, let λ ∈ X(T )+ and suppose p is a good prime for
Φ. Let x ∈WI be such that x((ΦI)λ,p) = (ΦI)J for some subset J ⊂ I. Let uI,J be the
nilradical of the parabolic in lI corresponding to J. Then

V(PI )1 (H0(X(w),L(λ))) = (LI · uI,J + uI) ∩ N1(pI)

= (LI · (uI,J + uI)) ∩ N1(pI)

= (LI · uJ) ∩ N1(pI).
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The explicit calculation of Corollary 5.4 and the inclusions among saturated
support varieties in Theorem 4.1 give upper and lower bounds on the saturation
G · VB1 (H0(w, λ)) for arbitrary w ∈W and λ ∈ X(T )+. To state the bounds obtained,
we introduce some notation. For v ∈W, let v = sγ1 · · · sγn be a reduced expression.
Define the support of v by S (v) = {γ1, . . . , γn}. This definition is independent of the
reduced expression chosen (see [4, Theorem 3.3.1]). As in the previous section, wI

denotes the long element of WI for a subset I ⊆ ∆.

L 5.5. If v ∈W, then v ≤ wS (v). Moreover, v ≤ wI implies that S (v) ⊆ I and
wS (v) ≤ wI .

P. This is a consequence of [11, Theorem 5.10]. The expression v = sγ1 · · · sγn

implies that v ∈WS (v) and hence v ≤ wS (v), since the latter is the unique longest element
of WS (v). Similarly, v ≤ wI implies that the generators of WS (v) are contained in WI and
hence wS (v) ≤ wI . �

The lemma gives us a precise characterization of the least upper bound by elements
of the form wI , where I ⊆ ∆. In general, there is no unique greatest lower bound, as
Example 5.6 shows.

E 5.6. Let W be the Weyl group of type A3 generated by simple reflections
sα1 , sα2 , sα3 such that sα1 and sα3 commute.
• The element w = sα1 sα2 has support S (sα1 sα2 ) = {sα1 , sα2} and its unique

parabolic upper bound in the Bruhat order is w{α1,α2} = sα1 sα2 sα1 . On the
other hand, w has maximal lower bounds w{α1} = sα1 and w{α2} = sα2 which are
incomparable.

• The element w = sα1 sα2 sα3 has support S (sα1 sα2 sα3 ) = ∆, so its unique upper
bound is w0 = sα1 sα2 sα3 sα1 sα2 sα3 . The set of all parabolic elements bounded
above by w is {e, sα1 , sα2 , sα3 , sα1 sα3}.

As an application, the explicit description of supports given by Corollary 5.4 implies
the following explicit upper and lower bounds on the G-saturated support variety of a
Demazure module.

P 5.7. Let v ∈W and λ ∈ X(T )+. Then

G · VB1 (H0(wS (v), λ)) ⊆G · VB1 (H0(v, λ)) ⊆
⋂
wI≤v

G · VB1 (H0(wI , λ)),

where the intersection may be taken over the set of wI ≤ v which are maximal with
respect to that property.

Recall that the varieties of the form VB1 (H0(wI , λ)) are explicitly determined in
Corollary 5.4.
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T 3. B1-support varieties for A2 when `(w) , 2, p ≥ 3.

w VB1 (H0(w, λ)) λ

e u All λ
sα u{α} p|λ1 + 1

u p - λ1 + 1
sβ u{β} p|λ2 + 1

u p - λ2 + 1
sαsβsα VG1 (H0(λ)) ∩ u All λ

6. Support varieties of Demazure modules for the root system A2

In this section, we present explicit calculations of the support varieties for
Demazure modules when the group G has a root system of type A2. We proceed
by applying our results from Section 5 in the case when the prime p is good. For type
A2, this means that p ≥ 3. We return to the case when p = 2 at the end of the section.

Let G = SL(3) with p ≥ 3, and let λ = (λ1, λ2) be a dominant integral weight
expressed in terms of the fundamental weights. Let us identify ∆ = {α, β} and W =

{e, sα, sβ, sαsβ, sβsα, sαsβsα}. The cases where `(w) , 2, that is, w ∈ {e, sα, sβ, sαsβsα},
are covered by Corollary 5.4. For such a w, set V =VB1 (H0(w, λ)). We summarize
this in Table 3.

In the w = sαsβsα case, J ⊂ ∆ depends on λ and p as in the discussion before
Corollary 5.4.

For the cases where `(w) = 2, we analyze the regularity of λ with respect to the
prime p and p-divisibility of the dimension of H0(w, λ). We treat the case w = sαsβ,
the other case being symmetric upon switching α, β and λ1, λ2. For convenience,
denote by M(λ) = M(λ1, λ2) the B-module H0(sαsβ, λ), which we also identify with
indP{α}

B indP{β}
B λ.

In the root system of type A2, a weight λ is p-regular if and only if
p - λ1 + 1,

p - λ2 + 1,

p - λ1 + λ2 + 2.

(6.1)

We may apply the Demazure character formula (see [1]) in this situation to conclude
that dim M(λ) = (λ2 + 1)(2λ1 + λ2 + 2)/2. Thus, p does not divide dim M(λ) if and
only if p - λ2 + 1,

p - 2λ1 + λ2 + 2.
(6.2)
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T 6.1. Let p ≥ 3. The B1-support variety V =VB1 (M(λ)) is u if either (6.1)
or (6.2) hold. Otherwise,V is a proper subvariety of u given by the conditions below:

VB1 (M(λ)) =

u{α} if λ = (np − 1, 0), where n ≥ 1,

u{α} ∪ u{β} if λ2 , 0 and neither (6.1) nor (6.2) hold.
(6.3)

The rest of the section is devoted to proving Theorem 6.1. First, if either (6.1)
or (6.2) holds, then we conclude that V = u by Proposition 4.3 or the rank variety
description ofV, respectively. For the rest of the section, we assume that neither (6.1)
nor (6.2) holds and calculateV, which will turn out to be a proper subvariety of u.

Our analysis uses the B-stability of support varieties in a crucial way, in particular
the action of positive root subgroups and certain one-parameter groups in the maximal
torus. The nilradical u is spanned by root spaces u = kXα ⊕ kXβ ⊕ kXα+β. There is a
one-parameter subgroup k∗ ⊂ T ⊂ B such that

t · Xγ = tht(γ)Xγ

for all t ∈ k∗ and γ ∈ Φ. This group is generated by the element usually denoted by Hρ,
where ρ is the half sum of positive roots (ρ = α + β in this case).

As a preliminary step, we classify the (B, k∗)-stable subvarieties of u. Let v =

aXα + bXβ + cXα+β be an arbitrary point of X ⊂ u, an irreducible B-stable subvariety
of u. Here, rank v denotes the rank of a matrix representative for v. The claim is
that X is equal to one of the following (B-stable) subspaces: u, B · Xα = kXα ⊕ kXα+β,
B · Xβ = kXβ ⊕ kXα+β, B · Xα+β = kXα+β or {0}. There are five mutually exclusive cases.

(1) Suppose that a, b , 0. Then rank v = 2 and the B-orbit through v is dense in u.
Thus, X = u.

(2) Suppose that a , 0, b = 0. Using the action of k∗, we see that the element
v′ = aXα is in the closure of B · v. Hence, Xα ∈ X and so B · Xα ⊂ X.

(3) Suppose that a = 0, b , 0. Then, as in the previous case, we conclude that
B · Xβ ⊂ X.

(4) Suppose that a, b = 0 and c , 0. In this case, B · Xα+β ⊂ X.
(5) Suppose that a, b, c = 0. Then v = 0 and {0} ⊂ X.

Therefore, every B-stable, irreducible subvariety X ⊂ u is a union of the five subspaces
above; thus, it must equal one of them.

Now we treat a number of cases depending on λ and p to determine which root
vectors are in the support variety. By the analysis of the previous paragraph, this
suffices to determine the variety as a union of B-stable subvarieties.

First, suppose λ2 = 0. In this case, indP{β}
B λ � λ as a B-module and so M(λ1, 0) �

indP{α}
B (λ1, 0). Thus, by the `(w) = 1 calculation in Table 3,

VB1 (M(λ1, 0)) =

u{α} if p|λ1 + 1,

u if p - λ1 + 1.
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This proves the first part of (6.3). Note that if p and λ are such that p - λ1 + 1 and
λ2 = 0, then they satisfy both (6.1) and (6.2).

Now suppose λ2 , 0. M(λ) is induced from H0(sβ, λ) as a P{α}-module and as an
L{α}-module we have

M(λ)|L{α}�
λ2+1⊕
i=1

indL{α}
B∩L{α}

(λ1 + i),

where the right-hand side is a direct sum of irreducible L{α}-modules indexed by the
integers λ1 + 1, . . . , λ1 + λ2 + 2. The assumption that λ2 , 0 implies that M(λ) has at
least two L{α} summands whose dimensions differ by 1 and so it cannot be projective
over 〈Xα〉. Therefore, Xα ∈ V and by the analysis above of the B-stable, conical
subvarieties of u, we get B · Xα ⊂V. Thus, Xα+β ∈ B · Xα ⊂V. Using the fact that
V is P{α}-stable, we can conclude that Xβ ∈ P{α} · Xα+β ⊂V. Hence, independent of p,
we have

B · Xα ∪ B · Xβ = u{α} ∪ u{β} ⊆V.

Suppose that p|(λ2 + 1). In this case, λ2 is a Steinberg weight for L{β} and we have
VB1 (H0(sβ, λ)) = u{β}. By Theorem 3.4,

V(P{α})1 (M(λ)) ⊆ P{α} · VB1 (H0(sβ, λ)) = P{α} · u{β}.

Now, observe that the right-hand side is contained in the subvariety

R1 := {v ∈ g : rank v ≤ 1}.

Since rank(Xα + Xβ) = 2, we have that (Xα + Xβ) <V, so V is a proper subvariety of
u. We conclude in this case that

V = u{α} ∪ u{β}.

We continue the proof of Theorem 6.1 with all the prior assumptions; in particular,
w = sαsβ. Now assuming that λ2 , 0 and p - λ2 + 1, we reduce to two families of
modules which also satisfy neither (6.1) nor (6.2).

L 6.2. If λ = (λ1, λ2) satisfy λ2 , 0, p - λ2 + 1, and neither (6.1) nor (6.2), then
either

λ1 ≡ −1 mod p, λ2 ≡ 0 mod p (i)

or
λ1 ≡ 0 mod p, λ2 ≡ −2 mod p. (ii)

P. First, if λ and p violate condition (6.2) and p - λ2 + 1, then p|2λ1 + λ2 + 2.
Since the pair also violates (6.1), there are two possibilities.

First, suppose that p|λ1 + 1. Then p|(2λ1 + λ2 + 2) = 2(λ1 + 1) + λ2 if and only if
p|λ2. This is case (i) above.

Otherwise, suppose that p|λ1 + λ2 + 2. Then p|(2λ1 + λ2 + 2) = (λ1 + λ2 + 2) + λ1

if and only if p|λ1. Hence, p|λ2 + 2. These two conditions are equivalent to case (ii)
above. �
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To complete the proof, we make two reductions. First, we prove that if the support
varieties for all modules of type (i) in Lemma 6.2 are proper, then the support varieties
for all modules of type (ii) are proper, and vice versa. Next, we show by induction
that it suffices to prove the properness of the support varieties for modules of the form
M(np, p − 2) for n ≥ 0. These are modules of type (ii). Finally, we analyze the support
of M(np, p − 2) using filtrations on the tensor product M(np, mp − 2) ⊗ L(0, 1)(1),
where L(0, 1)(1) denotes the G-module L(0, 1) (with highest weight µ = (0, 1)) twisted
once by the Frobenius morphism.

L 6.3. The support VB1 (M(λ)) is a proper subvariety of u (and hence equal to
u{α} ∪ u{β}) for all λ of type (i) if and only if the same holds for all λ of type (ii).

P. Consider the B-module M(np, mp − 1) for some n ≥ 0, m > 0. This module
has proper support by the argument given for the case p|λ2 + 1. Let L(1, 0) denote
the irreducible G-module with highest weight (1, 0) and consider the tensor product
M(np, mp − 1) ⊗ L(1, 0). The G-module structure on L(1, 0) allows one to use the
tensor identity [12, Section I 4.8] to identify

M(np, mp − 1) ⊗ L(1, 0) = [indP{α}
B indP{β}

B (np, mp − 1)] ⊗ L(1, 0)

� indP{α}
B indP{β}

B [(np, mp − 1) ⊗ L(1, 0)].

Now, L(1, 0) has a filtration as a B-module as follows:

L(1, 0) =



(1, 0)

(−1, 1)

(0, −1)

, which induces (np, mp − 1) ⊗ L(1, 0) =



(np+1, mp−1)

(np−1, mp)

(np, mp−2)

.

Let F(·) denote the functor indP{α}
B indP{α}

B (·). Since the weights in the filtration for
(np, mp − 1) ⊗ L(1, 0) are all dominant, Kempf’s vanishing theorem implies that
R1F(·) vanishes on each of the subquotients (see [12, Section I 4.4]). Thus, there
is an induced filtration

M(np, mp − 1) ⊗ L(1, 0) =



M(np+1, mp−1)

M(np−1, mp)

M(np, mp−2)

.

Let N denote the quotient (M(np, mp − 1) ⊗ L(1, 0))/M(np, mp − 2). We have an
exact sequence

0→ M(np, mp − 2)→ M(np, mp − 1) ⊗ L(1, 0)→ N→ 0.
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The support variety of the middle term M(np, mp − 1) ⊗ L(1, 0) is proper. Now, N sits
in an exact sequence:

0→ M(np − 1, mp)→ N→ M(np + 1, mp − 1)→ 0.

The support variety of the last term in this sequence, M(np + 1, mp − 1), is proper by
the p|λ2 + 1 case.

Thus, if the support of M(np, mp − 2) is proper, then the same holds for N and
hence, by the second sequence, the same holds for M(np − 1, mp). On the other hand,
if the support of M(np − 1, mp) is proper, the second sequence implies that the same
holds for N and, thus, by the first sequence, the same holds for M(np, mp − 2) (see [14,
(2.2.7)] for properties of support varieties and exact sequences). �

L 6.4. The support variety VB1 (M(np, mp − 2)) is proper for all n ≥ 0, m > 0 if
VB1 (M(np, p − 2)) is proper for all n ≥ 0.

P. The results follow by induction on m. Suppose that VB1 (M(np, kp − 2)) is
proper for all n ≥ 0 and all 0 ≤ k ≤ m. We prove that VB1 (M(np, (m + 1)p − 2)) is
proper. Consider the tensor product M(np, mp − 2) ⊗ L(0, 1)(1). As in Lemma 6.3, we
use the tensor identity and a filtration on L(0, 1)(1). We have

L(0, 1)(1) =



(0, p)

(p, −p)

(−p, 0)

=⇒ M(np, mp − 2) ⊗ L(0, 1)(1) =



M(np, (m+1)p−2)

M((n+1)p−1, (m−1)p−2)

M((n−1)p, mp−2)

.

Let N be the submodule such that

(M(np, mp − 2) ⊗ L(0, 1)(1))/N � M(np, (m + 1)p − 2).

The filtration on N has subquotients whose supports are proper by the induction
hypothesis, hence N has proper support. It follows that M(np, (m + 1)p − 2) has
proper support. �

Finally, we prove that modules of the form M(np, p − 2) have proper support. This
will finish off the calculation for l(w) = 2 when Φ = A2 with p ≥ 3.

L 6.5. The support varietyVB1 (M(np, p − 2)) is proper. Hence,

VB1 (M(np, p − 2)) = u{α} ∪ u{β}.

P. We argue by induction on n. The base case is M(0, p − 2). This module has
proper support by Corollary 5.2, since Φλ,p = {α + β}. Assume that M(kp, p − 2) has
proper support for all 0 ≤ k ≤ n. We show that M((n + 1)p, p − 2) has proper support.
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As in the previous two lemmas, we consider a tensor product, in this case
M(np, p − 2) ⊗ L(1, 0)(1). The filtration on (np, p − 2) ⊗ L(1, 0)(1) now has socle the
one-dimensional B-module (np, −2), which is not a dominant weight, so we are forced
to consider the higher derived functors RiF, i > 0.

The G-module L(1, 0)(1) has a B-filtration with sections of the form

L(1, 0)(1) =



(p, 0)

(−p, p)

(0, −p)

.

Tensoring with (np, p − 2) gives an exact sequence of B-modules:

0→ (np, −2)→ L(1, 0)(1) ⊗ (np, p − 2)→


(p, 0)

(−p, p)

⊗ (np, p − 2)→ 0.

Applying the induction functor F(·), we have a long exact sequence in cohomology:

0 // F(np, −2) // L(1, 0)(1) ⊗ F(np, p − 2) // F




(p, 0)

(−p,p)

⊗ (np, p − 2)


// R1F(np, −2) //// 0. (6.4)

The first term, F((np, −2)), vanishes since (np, −2) is not β-dominant, so (6.4) is
a short exact sequence. Also note that the second term has proper support by the
induction hypothesis. Now, we claim that the module R1F((np, −2)) has proper
support.

Recall that F(·) = indP{α}
B (indP{β}

B (·)). Consider the spectral sequence

Ei, j
2 = Ri indP{α}

B R j indP{β}
B (np, −2)⇒ Ri+ jF(np, −2).

Set E1 = R1F((np, −2)). The spectral sequence yields a five-term exact sequence of
the form

0 // R1 indP{α}
B (indP{β}

B ((np, −2))) // E1

// indP{α}
B (R1 indP{β}

B ((np, −2))) // R2 indP{α}
B (indP{β}

B ((np, −2))) // · · · .

Since indP{β}
B ((np, −2)) = 0, the first and last terms vanish, so we have

E1 � indP{α}
B (R1 indP{β}

B ((np, −2))).
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By Serre duality [12, Proposition II 5.2(c)],

R1 indP{β}
B ((np, −2)) � (np − 1, 0).

Consequently, from the l(w′) = 1 case, we can conclude that E1 � indP{α}
B ((np − 1, 0))

has proper support.
Now (6.4) implies that the module

F




(p, 0)

(−p, p)

⊗ (np, p − 2)


has proper support. We have an exact sequence

0 −→ F((n − 1)p, 2p − 2) −→ F




(p, 0)

(−p, p)

⊗ (np, p − 2)

 −→ F((n + 1)p, p − 2) −→ 0.

The middle term has proper support and we need to show that the last term has proper
support. Thus, it suffices to show that F((n − 1)p, 2p − 2) has proper support. This is
the other base case in our double induction.

We argue as in Lemma 6.4 with n replaced by n − 1 and m = 1. Now the B-
filtration on ((n − 1)p, p − 2) ⊗ L(0, 1)(1) has a nondominant weight in the middle layer
((n + 1)p, −2). Let N denote the quotient

N := (((n − 1)p, p − 2) ⊗ L(0, 1)(1))/((n − 2)p, p − 2),

so that N has socle consisting of ((n + 1)p, −2). We have an exact sequence

0 −→ F((n − 2)p, p − 2) −→ F[((n − 1)p, p − 2) ⊗ L(0, 1)(1)] −→ F(N) −→ 0 (6.5)

with first and middle terms having proper support; thus, F(N) has proper support.
Furthermore, N sits in a sequence

0 −→ ((n + 1)p, −2) −→ N −→ ((n − 1)p, 2p − 2) −→ 0

and applying F(·) we have

0 // F((n + 1)p, −2) // F(N) // F((n − 1)p, 2p − 2)

// R1F((n + 1)p, −2) // R1F(N) // 0.

The term F((n + 1)p, −2) vanishes and so does R1F(N) by extending the
sequence (6.5). As before, we identify

R1F((n + 1)p, −2) � indP{α}
B ((n + 1)p − 1, 0),

which has proper support. Thus, the term F((n − 1)p, 2p − 2) has proper support and
the proof is concluded. �
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T 4. B1-support varieties for A2 when `(w) , 2, p = 2.

w VB1 (H0(w, λ)) λ

e u{α} ∪ u{β} All λ
sα u{α} p|λ1 + 1

u{α} ∪ u{β} p - λ1 + 1
sβ u{β} p|λ2 + 1

u{α} ∪ u{β} p - λ2 + 1
sαsβsα VG1 (H0(λ)) ∩ (u{α} ∪ u{β}) All λ

If p = 2, then N1(u) = u{α} ∪ u{β}. One can apply results from Sections 4 and 5 to
give explicit descriptions of the B1-supports of H0(w, λ) when l(w) , 2. We summarize
the results in Table 4.

In the case where l(w) = 2, it suffices (by symmetry) to consider w = sαsβ. We note
that there are no p-regular weights and dim M(λ) is always divisible by 2. Moreover,
we do not need to show properness because all B1-support varieties are already
contained in u{α} ∪ u{β}. The following result summarizes the case where l(w) = 2.

T 6.6. Let w = sαsβ. The B1-support varietyV =VB1 (M(λ)) is given by

VB1 (M(λ)) =


u{α} if λ = (2n − 1, 0), where n ≥ 1,

u{α} ∪ u{β} if λ = (2n, 0), where n ≥ 0,

u{α} ∪ u{β} if λ2 , 0.
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