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THE LICHTENBAUM-QUILLEN CONJECTURE FOR FIELDS 

J. F. JARDINE 

1. Preface. I want to say immediately that, despite the authoritative-sounding title, 
I am not claiming a proof of anything like the Lichtenbaum-Quillen conjecture. My in­
tent here is only to explain the conjecture in various special cases, but maybe from an 
idiosyncratic point of view. 

This paper is based on the text of the Coxeter-James Lecture given at the Winter 
Meeting of the Canadian Mathematical Society at Montreal in December, 1992.1 would 
like to thank the Society for awarding me the honour of giving this talk. 

2. KQ, K\ and K2. Suppose that R is a commutative ring with 1. In the beginning, 
there was Grothendieck's group KQ(R). This group is the group completion of the abelian 
monoid of isomorphism classes of finitely generated projective /^-modules under direct 
sum. In more prosaic terms, this means that Ko(R) is the free abelian group on the iso­
morphism classes [P] of finitely generated projective R-modules P, modulo the relation 

[Pl®P2\ = [P\] + lP2l 

Another way of saying the same thing would be to assert a relation 

[Q] = [Pl] + [P2] 

in the presence of an exact sequence 

0 — > P { — • Q — > P 2 — > 0 

of projective/?-modules, because every such sequence splits. 
Some examples are easy to compute: KQ(Z) = Z since every finitely generated pro­

jective abelian group is free; similarly KQ(F) = Z for any field F. Others are more inter­
esting: if A is the ring of integers in a number field F, then the kernel of the map 

K0(A)-^K0(F)^Z 

induced by the inclusion i:A C F can be identified up to isomorphism with the ideal 
class group C1(A). We have explicitly used the functorial structure of KQ(R) here. Any 
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LICHTENBAUM-QUILLEN CONJECTURE 427 

ring homomorphism/: /? —> S induces a base change homomorphism/*: Ko(R) —> Ko(S), 
which is defined by [P] i—> [5 (8)/? /*]. Tensor product also determines a ring structure on 
K0(R), which is respected by base change. 

The notation/* has been used here, along with the term "base change", because it's 
not a big secret that Ko is a contravariant invariant on the category of schemes. Projec­
tive modules on a ring R are vector bundles on the associated scheme Sp(/?), meaning 
that they're locally free finitely generated sheaves. This latter definition simultaneously 
makes sense for both schemes and topological spaces, as does the exact sequence de­
scription of the relation that is used to construct Ko, and so we get KQ(X) for schemes X 
and topological spaces X. 

In the topological setting, an isomorphism class [a] of complex vector bundles of 
rank n on a finite CW-complex Y has a homotopy classification in the sense that [a] may 
be identified with a homotopy class of maps Y —-> BUn, where BUn is the classifying 
space of the unitary group Un, obtained by your favourite construction. The canonical 
inclusions Un

 c-^ Un+\ induce maps of classifying spaces BUn —-> BUn+\, and so we are 
entitled to a space 

BU = lim BUn. 
n 

There is a natural isomorphism 

[Y,BU] ^ K0(Y) = kcr{rk: K0(Y) —> Z}, 

where rk is the rank homomorphism. The main calculational theorem in this area (at least 
for the purposes of this talk) is the complex Bott periodicity theorem: 

THEOREM 1 (BOTT PERIODICITY). There is a homotopy equivalence 

Çl2BU ~BUxZ. 

The space Q2BU is the second loop space of BU, so that 7Ti+2BU = TX^BU. The 
space BU x Z is a disjoint union of copies of BU, indexed over the integers. Thus, there 
are isomorphisms 

7Ti+2BU ^ 7TiQ2BU = 7Ti(BU X Z) 

for / > 0. In particular, low degree calculations of the homotopy groups of the unitary 
group itself imply that there are isomorphisms 

7Ti(BU x Z) ^ I 
Z if / is even. 

This is an old result (late 1950's), and there are many proofs. The one I like currently is 
due to Bruno Harris [7]; his method is to show that the nerve B(UnBUn) of the topological 
monoid UnBUn (with monoidal structure given by direct sum) has the homotopy type of 
the unitary group U. 
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428 J. F. JARDINE 

The group K\(R) of a ring R was originally defined in a paper by Bass, Heller and 
Swan [1] as a type of universal determinant. Explicitly, they defined K\(R) to be the 
quotient of the AVgroup J^ofAut P(R) ) on the category of automorphisms of finitely 
generated projective/^-modules, by the relation \fg] — [/"]+[#]. An element of the general 
linear group G\n(K) is, by definition, an automorphism of the free ^-module Rn, and so 
there is a canonical map 

tn.GUR)—^iW-

Furthermore, the identity map goes to 0 G K\ (R) by the extra condition that we have 
imposed, and so the 0n's respect the canonical inclusions G\n(R) C G\n+\(R), and there­
fore give a homomorphism <f>\ G\(R) —> K\{R). A result of Bass asserts that </> induces an 
isomorphism 

G1(#)/[G1(R),G1(#)] ^ KX(R). 

The proof of this result uses the Whitehead theorem: 

THEOREM 2 (WHITEHEAD). Let EiR) be the sugbroup ofG\(R) which is generated 
by elementary transformations. Then E(R) coincides with the commutator subgroup of 
G\(R). 

K\(R) is often called the Whitehead group. One also says that there is an isomorphism 

*i (*)^Hi(Gl(*) ,Z) . 

In the cases where E(R) coincides with the special linear group S\(R) (e.g. R is a local 
ring, a field, or R has a Euclidean algorithm), one sees an isomorphism 

(1) K{(R)^R\ 

where R* is the group of units in R. 
The Whitehead theorem is proved by observing that every elementary transformation 

matrix is a commutator, since there are relations 

[etj(a), ejrk(b)] = eik(ab) if ij, k are distinct. 

In particular, E(R) is a perfect subgroup of G\(R). On the other hand, every commutator 
is a product of elementary transformations, by the relation 

ABA-lB~l = 

and the Chevalley group relations 

"A 0 
0 A~[ 

B 0 
0 B~x 

(SA)'1 

0 
0 

BA 

f 

< 

0 A 
-A" 1 0 
A 0 n 

0 A"1 

1 A 
0 1 
0 A" 

-A"1 0 

1 
.-A'1 

0 
1 

0 
1 

- 1 
0 

1 A 
0 1 
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The group K2(R) was defined by Milnor [17] to be the Schur multiplier 

H2(E(K),Z) 

of the group E(R). Presumably, the original motivation for the definition was to extend 
the six term exact sequence 

KX{I) -^ KX(R) — KX{R/I) - ^ Ko(l) — K0(R) — K0(R/D 

which is associated to an ideal ofR. In the case where R is a field k, the Schur multiplier 
H2(E(R), T) was characterized by Matsumoto: 

THEOREM 3 (MATSUMOTO). There is an isomorphism 

K2(k)^ k* ®k* / {x®{\ - x)). 

This group K2(k) is an interesting and important arithmetic invariant. Suppose that £ 
is a prime which is distinct from the characteristic of k. Then the composite 

k*®k* —>k*/(k*)e ®k*/(k*)' -^+H\Kiif ) 

induces a map 
K2(k)/£K2(k)^H2(k,iif) 

taking values in degree 2 Galois cohomology, called the norm residue homomorphism. 
The following is the celebrated theorem of Merkurjev and Suslin [15]: 

THEOREM 4 (MERKURJEV, SUSLIN). Suppose that k is any field and that £ is a prime 
which is distinct from the characteristic ofk. Then the norm residue homomorphism 

K2(k)/£K2(k) - ^ H2(k, fif) 

is an isomorphism. 

The notation H2(k, /j,f2) means the second Galois (or étale) cohomology group of 
k with coefficients in the 2-fold Tate twisted sheaf \xi 0 /i^, which is constructed by 
tensoring the sheaf \xt of £-th roots of unity with itself. If k contains a primitive £-th 
root of unity, then fii and all of its Tate twists are isomorphic to the cyclic group Z/IZ, 
and then H2(k, Z/ £T) can be identified with the ^-torsion subgroup t Br(&) of the Brauer 
group of the field k. 

EXAMPLE 5 (^(Q)). An explicit calculation (see [17] again) using generators in the 
Steinberg group St(Z) shows that the group K2(T) is isomorphic to the cyclic group Z/2, 
with generator given by the "symbol" {—1,-1}. This symbol is a type of cocycle which 
measures the failure of the elements in St(Z) corresponding to the diagonal of G1(Z) to 
be multiplicative in units of Z. Furthermore, this symbol maps to the generator 

[-1] U [-1] G H2(R, Z/2) ^ Z/2 
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under the composite 
K2(l) —> K2(R) - ^ H2(R, Z/2). 

It follows that, in the 'localization sequence", 

K2(l) - ^ K2(Q) - ^ 0 Kx {Vp) —* 0, 
p>3, p prime 

the map /* which is induced by the inclusion Z C Q is a split monomorphism, and so 
there is an isomorphism 

K 2 ( Q ) ^ Z / 2 ® © F;. 
P>3,P prime 

OTHER EXAMPLES 6. It is known from several points of view that K2 vanishes on 
finite fields. It is also known that K2(F) is uncountable if F is uncountable, and is uniquely 
divisible if F is algebraically closed. In particular K2(C) of the complex numbers C is a 
very large uniquely divisible group that nobody plans on computing. 

3. Higher AT-groups. It is a basic contribution of Quillen's [19] that the groups 
Ko(R), K\(R) and K2(R) are homotopy groups of a space BQP(R) which is canonically 
associated to a certain category QP(R), which everybody calls the g-construction of 
the category P(R) of finitely generated projective /^-modules. The category QP(R) is 
constructed from exact sequences of projective modules: its objects are the projective 
modules themselves, and a morphism from P\ to P2 is an equivalence class of pictures 

p m 

Px«-Q^ P2, 

where p is an epimorphism appearing in some exact sequence of P{R), and m is a mono­
morphism appearing in an exact sequence of P(R) (meaning that m is split). The equiv­
alence relation on such pictures is determined by isomorphisms Q = Qf making the ob­
vious diagram commute, and composition is defined by pullback. The associated space 
BQP(R) has a simplicial structure (in fact, is more properly thought of as a simplicial 
set), with vertices corresponding to the objects of QP(R), 1-simplices corresponding to 
its morphisms, 2-simplices given by commutative triangles, and so on. The space BQP(R) 
is connected; its fundamental groupoid is the free groupoid on the category QP(R) (the 
free groupoid construction makes every morphism invertible in the most economical 
way), and this can be used to show that the fundamental group TT\BQP(R) is isomorphic 
to K0(R). 

The "<2 = +" theorem asserts that the loop space Q.BQP(R) has the homotopy type of 
the space 

K0(R) x BG1(#)+, 

where Ko(R) is discrete, and BG1(#)+ is an //-space having the homology of the classi­
fying space BG1(Z?) of the general linear group Gl(/?). In particular, 

Tri BG\(R)+ ^ //i(Gl(/?), Z) ^ Ki(R). 
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The "+" notation reflects one of the ways that BG1(7?)+ can be constructed, which involves 
attaching 2-cells and 3-cells to BG1(#) in such a way that integral homology is preserved 
at the same time as the perfect subgroup E(R) is killed in the fundamental group. One 
can apply the same procedure to the classifying space BE(R) of the group of elementary 
transformations, and the space BE(R)+ is the universal cover of BGl(/?)+. It follows that 
there are isomorphisms 

7T2 BGl(R)+ ^ ir2BE(R)+ ^ H2(E(R\ Z) ^ K2(R\ 

at the level of the second homotopy group. 

The algebraic ^-groups Kt(R), i > 0, are defined to be the homotopy groups of the 
loop space QBQP(R) of the "g-construction" BQP(R). I emphasized the fact that the 
category QP(R) is constructed from exact sequences, because an analogous construction 
can be made for any additive category having a suitable calculus of exact sequences. 
Such categories are called exact categories, and the category of vector bundles P(X) on 
a scheme X is an example: the (higher) algebraic Â'-groups Ki(X) of a scheme are defined 
to be the homotopy groups iri£lBQP(X), i > 0. This theory is contravariant in maps of 
schemes; the definition of the induced map uses the observation that vector bundles are 
preserved by pullback. Similar considerations apply to coherent sheaves (aka. finitely 
generated modules) on Noetherian schemes, and the resulting theory is either called G-
theory or K'-theory, depending on what you read. 

There hasn't been much in the way of successful characterizations of the higher K-
groups. It is known [6] that Ki(R) is isomorphic to the homology group 

//3(St(/?),Z) 

of the Steinberg group, but it's hard to know what to do with this. The most striking early 
calculational success was Quillen's computation of the ^-theory of finite fields [18]. 

THEOREM 7 (QUILLEN). Suppose that Fq is a finite field with q elements. Then there 
are isomorphisms 

f 0 ifn = 2k,k>l, and 
AnWq) - | ij^k _ 1} ifn = 2ifc - 1, jfc > 1. 

This result was proved by identifying the space BGl(F^) up to homotopy with the 
homotopy fixed points of the Adams operation x¥q: BU —» BU, for then the map ^ — 1 
induces multiplication by the integer qk — 1 in the homotopy group 7r2kBU. The method 
of proof was a homology calculation that actually led to the introduction of the plus 
construction and the higher algebraic A'-groups. 
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4. The Lichtenbaum-Quillen conjecture. We shall assume henceforth that k is a 
field containing a primitive £-th root of unity Q, and that £ is a prime which is distinct 
from the characteristic of k. We shall also assume that I > 3, because of a homotopy 
theoretic gotcha concerning Moore spectra. Finally, suppose that k has finite Galois co-
homological dimension with respect to i-torsion sheaves. Since we've chosen to avoid 
I — 2, this last assumption is not a big deal from a number theoretic or algebraic geo­
metric point of view. 

On account of phenomena like the bad experience with K2(C) that was referred to 
above, all modern attempts at calculating algebraic AT-groups have concentrated on de­
termining their torsion subgroups. The main tool for investigating this torsion is mod n 
algebraic £-theory, as introduced by Browder [2] some years back. On the space level, 
the mod n algebraic ^-groups Kt(R, T/n) can be defined as homotopy classes of maps 

K (P 1 U\ - I [ r ' ^~lBQP(R)] if i > 1, and 
Ki(R>Z/n)-\K0(R)®Z/n ifi = 0. 

The space Y1 is the Moore space, which is defined to be the cofibre of the multiplication 
by n map 

S{-^Sl 

on the circle. The resulting cofibre sequence gives rise to a long exact sequence in ho­
motopy groups, in which one finds short: exact sequences of the form 

0 —> Ki(R) (g) 1/n —> Ki(R., T/n) —> Tor(Z/n,Ki-i(RJ) —> 0. 

In particular Ki(R, Z/ri) maps onto the /i-torsion in Ki-\(R), for all /. 
If you think that the space level definition of mod n AT-theory looks ad hoc in degree 0, 

you're right. It makes much more sense to define the invariant on the spectrum level, once 
you know that the space Q.BQP(R) is the 0-th space of a connective spectrum K(R) which 
arises from the symmetric monoidal structure on the category QP(R) which is given by 
direct sum. This last sentence means that the stable homotopy groups of the spectrum 
K(R) naturally have the form 

WK(K\-\K^ i f ; > 0 , a n d 

You can think of a spectrum Z as a generalized space, if you like, with homotopy groups 
7T/Z indexed by / G Z instead of just the non-negative integers. Spectra have a notion of 
addition up to homotopy, so one can form a cofibre sequence 

K(R) - ^ K(R) > K/n(R) 

which defines the mod n /^-theory spectrum K/n(R), and the mod n AT-groups Ki(R, T/n) 
are its stable homotopy groups. 
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Now let's take the field k and the prime number t as above, and analyze the lower 
dimensional mod t ^f-groups for k. Remember in particular that k contains a primitive 
t-th root of unity. First of all, there are isomorphisms 

K0(k,Z/t)^Z/t^H°(k,Z/t), 

since k contains a primitive t-th root of unity. Secondly, in the exact sequence, 

0 > Ki(k) <g> Z/t > KX(K Z/t) y Tor(Z / t,K0(k)) y 0, 

one sees that the Tor term is 0, because K0(k) = Z, so that there are isomorphisms 

Ki(k,Z/t)*<Ki(k)®Z/e 

*k*/(k*)xi 

^Hl(k,Z/t). 

Next, the Merkurjev-Suslin theorem says that the defining exact sequence for K2(k, Z/t) 
can be written in the form 

0 —y H2(K I/O —> K2(k, Z/l) —y H°(k, Z/t) —> 0. 

Finally, a more recent theorem of, separately, Levine [14] and Merkurjev-Suslin [16] 
says that, with respect to a ring structure on K*(k9 Z/l) that is somehow determined by 
tensor product, there is an isomorphism 

K3(k,2/l)ind^H\k,l/0 

which relates the indecomposable part of Ks(k, Z/l) (i.e., quotient by the image of Mil-
nor ^-theory) to mod t Galois cohomology. 

Therefore, in all cases that anybody has been able to compute, the mod t ^-theory of 
a field k is controlled by its Galois cohomology. The intuition behind the Lichtenbaum-
Quillen conjecture is that this should be true for all of the mod t A'-theory oik. 

The standard method for turning this intuition into a conjecture is to compare the 
mod t ^-groups K*(k, Z/t) to another list of invariants Kf(k, Z/t), collectively called 
the mod t étale K-theory of k, which is determined by the Galois cohomology of k. 

The étale AT-groups do not have an elementary construction. The original method for 
defining them (due to Friedlander [4]; see also [3]) is to take the ordinary mod t non-
connective complex A'-theory spectrum KU/ £, and let it represent a cohomology theory 
on the étale homotopy type of k, the étale homotopy type itself being constructed from 
path components of hypercovers for k with respect to the étale topology. 

The construction that will be used here starts with the assertion that the assignment 

(2) U^Sp(k)^K/t(U) 

defines a contravariant functor on any category of k- schemes after invoking a suitable 
theory of categorical coherence, and the resulting presheaf of spectra Kj t represents 
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a generalized étale (or Galois) cohomology theory on the field /c, whose cohomology 
groups coincide with the Dwyer-Friedlander étale Â'-groups of k in degrees —1 or more. 

In slightly more detail, the assignment (2) restricts to a definition of the mod £ K-
theory presheaf of spectra Kj £ on an étale site for k (of whatever size). There is a homo-
topy theory for such objects which arises from a Quillen closed model structure, which 
structure has weak equivalences computed stalkwise. This homotopy theory is a descen­
dant of Joyal's closed model structure for simplicial sheaves [11], later bootstrapped 
to simplicial presheaves and presheaves of spectra [9], [10]. The presheaves of spectra 
which are fibrant for this homotopy theory are said to be globally fibrant. Then, from this 
point of view, the mod £ étale (or Galois) K-group Kf (/:, Z/£) is defined to be the i-th 
stable homotopy group TTIGK/ £{k) of the global sections spectrum of a globally fibrant 
model a: Kj £ —> GKj £ for the mod £ AT-theory presheaf of spectra. 

Explicitly, when I say that the map a is a globally fibrant model, it means that a is a 
stalkwise stable equivalence of presheaves of spectra, and that GK/ £ is globally fibrant. 
The stable homotopy groups of its global sections spectrum are independent of the choice 
of the stalkwise weak equivalence a. Then the comparison map 

a*:Ki(k,Z/e)—>K^\k,l/£) 

is induced by the global sections map a(k): Kj £(k) —• GK/ £(k). 
The map of spectra a(k) is not a stable equivalence in general—see Example 13 below. 

The globally fibrant model GK/ £ should rather be thought of as a generalized injective 
resolution for the presheaf of spectra K/1, with sufficiently good formal properties that 
the stable homotopy groups of the global sections spectrum GK/ £{k) can be recovered 
from Galois cohomology. There is also technical sense to the assertion that the G in 
GK/ £ should stand for "Godement", in that the Godement resolution for K/ £ (suitably 
defined as a homotopy inverse limit of some cosimplicial gadget) is a globally fibrant 
model for Kj i under standard hypotheses (see [22], [9]). 

In general, presheaves of spectra represent generalized étale cohomology theories. 
There are essentially two reasons for this: 

( 1 ) Let F be a presheaf of spectra, and let a: F —> GF be a globally fibrant model for 
F. Then there are isomorphisms 

[IT*S,F] ^ [IT*S, GF] ^ nnGF(k), 

for n G Z, where S is the sphere spectrum, and T*S is it associated constant 
presheaf of spectra. The square brackets means morphisms in the homotopy cat­
egory associated to presheaves of spectra. The stable homotopy groups ixnGF{k) 
are therefore analogous to the cohomology of a point in ordinary stable homo­
topy theory. The "point" is Sp(fc) from a topos theoretic point of view, and so 
these groups can naturally be interpreted as the étale cohomology of k with co­
efficients in F. In particular, the way I've defined it, mod £ étale ^-theory is the 
theory represented by the AT-theory presheaf of spectra Kj £. 
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(2) This is a true generalization of sheaf cohomology : the Eilenberg-Mac Lane object 
H(A) associated to a sheaf of abelian groups gives rise to ordinary étale cohomol­
ogy, in the sense that there is an isomorphism 

TTiGH(A)(k) * H-\k,A), for each i <G Z. 

Spectra have Postnikov towers, which are towers of fibrations with Eilenberg-Mac 
Lane objects in the fibres, and so it's not much of a step within the ambient homotopical 
machinery to see that the Postnikov tower for a presheaf of spectra F gives rise to a 
spectral sequence, with 

(3) E™ = IP(K W ) => *q-pGF{k). 

The notation fq(F) stands fpr the sheaf associated to the presheaf 7rq(F) of stable ho-
motopy groups of F. This spectral sequence converges if F has £-torsion presheaves of 
stable homotopy groups, and k has finite Galois cohomological dimension with respect 
to f-torsion sheaves. This is the étale, or Galois cohomological descent spectral sequence 
for the generalized étale cohomology theory that is represented by F. 

Now here's what I mean by the Lichtenbaum-Quillen conjecture for fields: 

CONJECTURE 8 (LICHTENBAUM-QUILLEN). Suppose that k is afield, and that I is a 
prime which is distinct from the characteristic ofk, as above (in particular, k contains a 
primitive t-th root of unity). Suppose that k has finite Galois cohomological dimension d 
with respect to ^-torsion sheaves. Let œ.Kj'I —>• GKJI be a globally fibrant model for 
the K-theory presheaf K/ L Then the global sections map induces isomorphisms 

Kt{k, Z/1) - ^ K?(k, l/t)°* 7nGK/ l(k) 

fori>d-\. 

I want to explain a bit about what the conjecture means in terms of the descent spectral 
sequence, and address the question of why the bound d — 1 appears in the statement. 

The first step is to talk about the Gabber rigidity theorem [5]; it's one of the most 
important algebraic ^f-theory results of the past ten years. The following is really only a 
special case: 

THEOREM 9 (GABBER). Suppose that O is a Henselian local ring containing 1/ £, 
and let K denote the residue field. Then the residue map O —> K induces isomorphisms 

Ki(0,Z/l)-^Ki(K,Z/e) 

in mod t K-theory for i > 0. 

The consequences of this result are legion. Perhaps the most striking application to 
date is Suslin's calculation of the mod I ^-theory of algebraically closed fields [20], [21]. 
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THEOREM 10 (SUSLIN). Suppose that k is an algebraically closed field of character­
istic prime to L Then there are isomorphisms 

; 7 (0 if j = 2n + 1, n > 0. 

The proof of this result can be encapsulated [8] as follows. The Gabber rigidity theo­
rem implies that the canonical comparison map 

e:PBGl(fc)—> BG1 

induces an isomorphism of mod I homology sheaves, on the big étale site of smooth k-
schemes. In effect, if x is a closed point of some smooth /c-scheme X, then the map in 
homology sheaves associated to e at the stalk corresponding to x specializes to the map 

f*: //*(BGl(fc), Z/t) —> tf*(BGl(Of ), Z/£), 

induced by the ^-structure map /: k —> Ox
sh, where Ox

sh is the strict Henselization of 
the local ring Ox for JC, and this map is an isomorphism by Gabber rigidity. A universal 
coefficients spectral sequence argument then implies that e induces an isomorphism 

i/*t(BGl,Z/7) ^//*t(r*BGl(Jfc),Z/£). 

The simplicial sheaf associated to the constant functor T* BG\(k) is represented by a dis­
crete simplicial ^-scheme consisting of a disjoint union of copies of Sp(&) in each sim­
plicial degree. The algebraically closed field k is acyclic in the eyes of étale cohomology, 
and so there is a canonical isomorphism 

//*t(r*BGl(fc),Z/£) s* H*(BGl(k)9Z/t). 

Finally, composing these maps gives a canonical isomorphism 

(4) //*t(BGl,Z/£) ^ H*(BG\(k),Z/e), 

relating the étale cohomology of BG1 to the cohomology of the simplicial set BG\(k). 
In particular, by comparing dimensions of vector spaces, one sees that the comparison 

map 
BG1(C) —> BU 

is a mod I cohomology isomorphism, giving Suslin's result for k — C. But the coho-
mological isomorphism (4) also implies a "Lefschetz principle" for K*(k, Z/ £), and the 
Gabber result itself (applied to extensions of Witt rings) implies that K*(FP, Z/1) is iso­
morphic to #*(C, Z/1). 

The Suslin theorem and Gabber rigidity together determine the mod £ étale Â'-theory 
sheaves for fields which are not algebraically closed: 
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COROLLARY 11. Suppose that the field k contains a primitive £-th root of unity, where 
£ is prime to the characteristic ofk. Then the mod £ étale K-theory sheaves ofk have the 
form 

f Z/ £ ifi = 2n, n > 0, and 
0 ifi = 2n+l,n>0. HiK/l 

We are then able to verify the Lichtenbaum-Quillen conjecture for fields of Galois 
cohomological dimension 0: 

COROLLARY 12. Suppose that k contains a primitive £-th root of unity, where £ 
is prime to the characteristic of k. Suppose further that k has Galois cohomological 
dimension 0 with respect to £-torsion sheaves. Then the Lichtenbaum-Quillen conjecture 
holds for k. 

PROOF. The Bott element (3 G Kiik, Z/ £)\s the element mapping to the primitive 
£-th root of unity Q under the isomorphism 

K2(k,Z/l) -=->Tor(Z/£,**)• 

The mod £ ^-theory of the algebraic closure k of k has a ring structure of the form 

K*(k,Z/O*Z/e[0], 

by comparison with mod £ homotopy groups of BU. All finite algebraic extensions of k 
have index prime to £ by the assumption on the cohomological dimension of k, so that 
the inclusion j : k C k induces a monomorphism 

K,(k,Z/£)—>K*(k,Z/i)9 

by a transfer argument. But ^(fc, Z/ £) contains /?, and 7* is a ring homomorphism, so 
y* is surjective as well. The descent spectral sequence implies that Kf{k, Z/ £) vanishes 
in negative degrees, as well as in all odd degrees. Finally, the calculation of K*(k, Z/ £) 
implies that there are commutative diagrams in even positive degrees of the form 

K2J(k,l/£) -

- I 
z/« -

- • n2jGK/£(k) 

' 1-
3-> H°(k,Z/t) 

The cohomological descent spectral sequence is so sparse that it collapses in cases of 
low Galois cohomological dimension. Here is how this works in a very specific example: 

EXAMPLE 13 (mod 5 ÉTALE ^-THEORY FOR Q(CS)). The following is a picture of the 
£2-term of the descent spectral sequence for Kf (Q(£s), Z/5): 
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0 

Z/5 
0 

Z/5 

0 0 

Q(<5)7(Q(<5)*)X5
 5Br(Q(<5)) 

0 
0 

0 0 0 

Q(6)7(Q(6)*)X 5 5Br(Q(Ç5)) 0 
0 1 2 3 p - > 

The field Q(£s) has Galois cohomological dimension 2 with respect to 5-torsion 
sheaves, so all groups to the right of those indicated in the above table are trivial. The 
differentials of the descent spectral sequence have the form 

dr:E
p/q—>Ep

r
+r-q+r-\ 

andthe£oo groups which calculate the group ̂ ( 0 ( 6 ) , Z/5) lie along the line n = q—p. 
The numbers dictate that all differentials for this spectral sequence are trivial, and so the 
spectral sequence collapses. In particular, there are isomorphisms 

v x 5 

X!î2(Q(C),Z/5)^5Br(Q« s)) , 

^,(0(6), z/5) s Q(c5r/(Q(c5r)> 

and there is a short exact sequence 

0 — 5 Br(Q(6)) — *?(Q&) , Z/5) — Z/5 - ^ 0. 

Furthermore, the groups ^ ( 0 ( 6 ) , Z/5) are periodic of period 2 in degrees greater than 
or equal to —1, and are trivial in degrees strictly less than —2, so we've completely 
computed the mod 5 étale AT-theory of this field. 

It is exactly this sort of calculation which makes one wish that the Lichtenbaum-
Quillen conjecture were true. 

Note that the ordinary K-groxxpKofQfa), ^ / ^ ) is acopy of Z/5, whereas the 5-torsion 

subgroup 5 Br(Q(^5)) of the Brauer group Br(Q((^)) sits in an exact sequence 

;Br(Q«5)) 
P finite 

'0, 

by classfield theory, and is therefore very big. It follows that the comparison map 

K0(Q(b),Z/5) -^K$(Q(&),Z/5) 

is not an isomorphism. 
More generally, Bruno Kahn has recently shown [13] that the descent spectral se­

quence for Kf(k, 1-11) collapses at the E^-level in the cases where one can verify Ka-
to's conjecture that the cohomology ring H*(k,l/£) is multiplicatively generated by 
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Hl(k, 1/1). The multiplicative structure of the descent spectra sequence is used to prove 
this: in the case at hand (k and I as above), the groups É^2 and E1^2 consist of permanent 
cycles (see [12]), essentially because they are images of ordinary A'-groups, and the Kato 
conjecture implies that they generate the entire £2-term as an algebra over Z/i = E%°. 

The comparison map 
Kj(k,Z/0-^K?(k,Z/l) 

is an isomorphism in degrees j — 1,2 if the cohomological dimension of k is 2, and is 
an isomorphism in degrees j — 0,1,2 if k has cohomological dimension 1 (see Kahn's 
paper [12]). Note as well that 

K*{(k,Z/l)^k*/(k*)xl 

in the cohomological dimension 1 case. Thus, the lower bound d — 1 on degrees for 
the isomorphisms in the Lichtenbaum-Quillen conjecture is the best possible, as well as 
being consistent with all calculations that we know about. 

I want to finish by analyzing the relative cohomological dimension 1 case. Suppose 
that we have a diagram of field inclusions of the form 

KL 

(5) ksep = K L 

S Sj 
k, 

where k has cohomological dimension 1 and the compositum KL has cohomological 
dimension d. Suppose further that the Lichtenbaum-Quillen conjecture holds for KL. 
Then L has cohomological dimension d + 1, and we want to derive a condition for the 
Lichtenbaum-Quillen conjecture to hold for L. 

Choose a globally fibrant model a: Kj £ —> GKj i for Kj £ over L. We want to show 
that the induced global sections map 

K/l(L)^GK/£(L) 

of spectra induces an isomorphism in stable homotopy groups in degrees greater than or 
equal to d. 

Consider the induced map 

^KJl^UGKjl 

of direct images on the level of presheaves of spectra over k, and let the presheaf of spec­
tra X be the homotopy fibre ofy*a. Then evaluating stalkwise, one sees a fibre sequences 
of ordinary spectra of the form 

X(K) —> K/HKL) —• GKj £(KL\ 

https://doi.org/10.4153/CMB-1993-058-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-058-7


440 J. F. JARDINE 

and so the inductive assumption implies that nsX(K) = Oif s > d — 1. But then formal 
nonsense implies that 7tsGX(k) — Oif s >d — l,so that the global sections map 

Gj,K/£(k) -^ Gj*GK/t(k) 

induces an isomorphism in stable homotopy groups TTS for s > d. The map Gj*a is 
the "globally fibrant model" for the direct image map y*a, and there is a commutative 
diagram of maps of spectra of the form 

UK I t(k) ^ UGK/£(k) 

GUK/t(k) -T-> Gj*GK/£(k). 

The vertical maps are induced by choices of globally fibrant models for the spectra./*^/1 
and j*GK/£, respectively. But7* preserves global fibrations, so thatj*GK/ £ is globally 
fibrant, and any globally fibrant model of it induces a stable equivalence on (global) 
sections. 

The Lichtenbaum-Quillen conjecture will therefore hold for L if we can show that the 
map 

m:j,K/£(k)—>Gj*K/£(k) 

of spectra induces an isomorphism in stable homotopy groups irr for r > d. In other 
words, we want the # theory groups Kr(L, Z/£) to be recoverable in a suitable range of 
degrees from Galois cohomological descent over the cohomological dimension 1 subfield 
k. 

I am willing to believe that the condition r > d may have to be altered a little bit— 
perhaps d can be replaced by a smaller number. The alert reader will also notice that the 
method outlined above does not prove the Lichtenbaum-Quillen conjecture for number 
fields. To get at the cyclotomic extension case, and hence number fields, one would have 
to replace the extension kSQp/k in the diagram (5) by a more general Galois extension 
K/k of cohomological dimension 1. 

Note finally that this technique yields, and was derived from, the corresponding in­
ductive step in Thomason's argument for his descent theorem for Bott periodic K-theory 
[22]. The special case of it that is most relevant here can be stated as follows: 

THEOREM 14 (THOMASON). Suppose that k and I are as above, and for the presheaf 
of spectra K/ £(1/(3) by formally inverting the Bott element (3 G A (̂/c, Z/£). Then any 
globally fibrant model 

K/l(l/(3)-^GK/l(l/(3) 

induces a stable equivalence 

K/l(l/P)(k)^GK/l(l/p)(k) 

on the level of global sections. 

In particular, the spectrum K/ £(l/(3)(k) is a model for étale ̂ -theory, and has a Galois 
cohomological descent spectral sequence. 
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