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EXTENSIONS OF CONTRACTIVE MAPPINGS 
AND EDELSTEIN'S ITERATIVE TEST 

BY 

JACK BRYANT AND L. F. GUSEMAN, JR, 

To Professor E. C. Klipple on his sixty-fifth birthday 

1. Introduction. A mapping / f rom a metric space (X, d) into itself is said to be 
contractive if x^y implies d(f(x),f(y))<d(x,y). Theorems of Edelstein [2] state 
that a contractive selfmapfofa metric space X has a fixed point if, for some x0, the 
sequence {fn(x0)} of iterates at x0 has a convergent subsequence; moreover, the 
sequence {fn(x0)} converges to the unique fixed point off Nadler [3] observes that, 
from the point of view of applications, it is usually as difficult to verify the con­
dition (for some x0 • • •) as it is to find the fixed point directly. He introduces the 
following terminology: the iterative test (for contractive maps) is conclusive (ITC) 
for (X, d) provided for each contractive selfmap/, i f /has a fixed point, then the 
sequence {fn(x)} converges for each x (necessarily to the fixed point). 

Nadler proves [3, Theorem 1] that if(X, d) is locally compact and connected then 
ITC for X. Since finite dimensional Banach spaces are locally compact and con­
nected, it is natural to ask for what subsets of a finite dimensional Banach space is 
ITC. If Fis a dense subset of a metric space Xîov which each contractive selfmap 
/ : F-> Y has a contractive (instead of the expected nonexpansive) extension to all 
of the metric space X, we say Y has the contractive extension property (CEP). A 
subset D of a linear space X is called line segment dense (LSD) if for each x,yinX 
the line segment between x and y contains a point of D distinct from x and y. If X 
is a dense subset of a finite dimensional Banach space, then LSD=>CEP=>ITC 
(Theorem 2 and Theorem 3 of [3]). Nadler poses the following problems: 

A. For what spaces is ITC a topological invariant? That is, if under every metric 
for X with the given topology, X has ITC, what can be said about XI 

B. If the iterative test is conclusive for a dense subset A of a finite dimensional 
Banach space X, then is A line segment dense in XI 

C. Is the iterative test conclusive for the planar set Q21 
In §2, we give an example of a selfmap of the subset Q2 of E2 which shows that Q2 

does not have ITC, and subsequently show that ITC is not a topological invariant 
of the space Q of rationals (with the usual topology). In §3, we give a negative 
answer to Problem B. The methods introduced there furnish a slight extension of 
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Nadler's Theorem 2 and Theorem 3 to spaces which need not be subsets of finite 
dimensional Banach spaces. In §4, two problems which are suggested by our solu­
tion of Nadler's Problem B are stated. 

2. A selfmap of Q2. We construct a contractive selfmap of the set Q2 of points in 
E2 with both coordinates rational (Q2 having the relative metric) with a fixed point 
and without the sequence of iterates converging at each point. 

(2.1) THEOREM The iterative test is not conclusive for Q2. 

Proof. Before giving the construction, we describe in a general way how the 
function is defined and what has to be done to show it works. Consider three 
half-infinite lines Ll9 L2, Lz in the first quadrant with one endpoint 0 and with 
slopes 0<s1<s2<sz, respectively. The fundamental unit in the construction is a 
mapping/defined as follows: letzi be any nonzero element of Lv Letz2=cos 0Letaz1 

(a the angle between Lx and L2) be the projection of zx onto L2 and let z3 be the 
projection of z2 onto Lz. If z is between L± and L2, write (uniquely with real a, b) 
z=azx+bz2 and define f(z)=az2-\-bzz. This definition seems to make/depend on 
zl9 but actually/depends only on the lines. We will see that, if the slopes s{ are 
rational, then/takes Q2 into Q2 (as far as it goes). The first part of the construction 
is to pick lines which tend to a line with irrational slope and define the map piece-
wise as above. We then pick lines from the other side which tend to the limiting line 
and finally extend this function to the whole plane. 

The difficult part of the construction is to select the angles so that the map/will 
be contractive. To motivate the rather complex induction, let a1? a be a 
decreasing sequence (which we actually define recursively below) with 2 a t < 2 ; 
let z 1 = l , zfc+1=cos afc e

ia%. Let ^ = 0 , 0 f c = 2 t î «*• If On<d<dn+l9 z=reid, r > 0 , 
write (with real s and t) z=szn+tzn+1, and define/(z)=szn+1+tzn+2; note s>0 and 
/ ^ 0 . Let w=uzm+vzm+1 and suppose m>n. Direct calculation gives 

| z -w|*H/ (z ) - / (w) | 2 

= s2An+2stAn+1+tzAn+l-2suBn m-2svBn m+l-2tuBn+1 m 

~2tvBn+lm+1+u2Am+2uvAm+1+vzAm+l9 

where (with (z | w) denoting the inner product of complex numbers z and w) 

An = \zn\
2-\zn+1\

2 

n 
= sin2 <xn J I cos2 a; 

4=1 

Bnm — (zn \ zm)~~(Zn+l \ zm+l)-

(We note Bn n+1=An+1 since (zn | zn+1)=\zn+1\
2.) To show/is contractive, we must 

https://doi.org/10.4153/CMB-1973-033-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-033-9


1973] EXTENSIONS OF CONTRACTIVE MAPPINGS 187 

An 

^ n + l 

-^n m 

~~Bn m+1 

An+1 

An+i 

"n+1 m 

"n+1 m+1 

D 
JDn m 

~~Bn+l m 

Am 

^4 m+1 

"n m+1 

~" "n+1 m+1 

Am+1 

Am+i 

show that the quadratic form 

Fn m(s, t, u, v) = \z-w\*-\f(z)-f(w)\* 

is positive when s, t, u, v>0 and not all are zero. Let # = (s, t, u, v)T{T= transpose) 
and note Fn m(s, t, u, v) = (x\ 3IW mx), with 

31 = 
**"n rn 

The best thing that can happen to this matrix is that all its elements be positive. 
However, that is not always possible, the impossible cases corresponding to 
values of m=n, m=n+l, and m=n+2. Our choice of the angles at- will make every 
element of 3tw m positive when m>n+2. The case n=m is easier and is taken care 
of by requiring the sequence {ocw} to be decreasing. The cases m=n+l and m=n+2 
require special treatment and account for most of the complication that follows. 

Let (when the ocf involved are defined) 

W = An+1 — An+1jAn 

Dn = An+2{Cn—An+2)ICn. 

Let (beginning the construction of the at-) ^=77/4 and choose a2 so that tan 03= 
tan 62+2~2=l+2~2. Letp2=2. Let 7r/2>a, /9>0 and consider the function 

g(8) = cos(a+/?)—cos a cos ô cos((5+j8). 

Since g(0)= —sin a sin /?<0, g(<5)<0 if (3 is sufficiently small (depending on a and 
p). Note also that, since A2<.Al9 we have Q X ) . Choose a3 so that 

(i) ^3=cos2 ax cos2 a2 sin2 a 3 <Ci ; 
(ii) 0 < a 3 < a 2 ; 

(hi) tan 04=tan dz+2~ks, wherep3>2p2; 
(iv) cos(a1+a2)—cos ax cos a3 cos(a2+a3)<0. 

By (i), D 1>0. By (ii), C2>0. Choose a4 so that 
(i) AA<C2andAA<D1 

(ii) 0 < a 4 < a 3 

(hi) tan 05=tan d^+2~Vi where/?4>2/?3 

(iv) for « = 1 , 2 

cos I 2 a * I ~~C0S an C0S a4 C0S I 2 a* I < 0. 
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Continuing by induction, we obtain a sequence {aj such that for &=1, 2, 
(the k=l case being directly above) 

(i) Ak+3 < Ck+1 and Ak+Z < Dk, 
(ii) 0<ocfc+4<afc+3, 

(iii) tan 0fc+4=tan dk+z+2-p*+z, pk+B>2pk+1, 
(vi) for w = l , . . . , k+\ 

cos ( fc+2 \ / fc+3 \ 

2 <*; I —cos oc„ cos â +a cos I 2 a i I < °-(The induction is straightforward, taking into account the fact about g(o)<0 noted 
above and the formula ^fc+3=sin2 afc+3 2?=i c o s 2 a ; which shows Ak+3 can be made 
small.) Note the series 2£U ai=^oo converges and tan 0*, = 1+2*12 2~Vi is irra­
tional. Let W= {re6:0 < 0 < 0 ro} and let / : PF-> W be defined as outlined above. Since 
m—tan 6{ is rational for each /, zi has both (rectangular) coordinates rational, for 
xi+1=(l+mi w t+1)x î/(l+mf+1), yi+1=mi+1 xi+1. Thus a point z with both coordi­
nates rational has its representation as z=szn+tzn+1 with s and / both rational. 
Thus / ( z ) e g2 . Note fn(zj)=zn+l9 and clearly {zn} does not converge in Q2. We note 
that each point of the line z=re1,9°0

9 r > 0 , is a fixed point of the extension/ - o f / t o 
the closure W~ of ^ . We now show/is contractive. 

(1) m=n: It is better in this case to analyze the form directly. If ZT^W, then 

Fn m(x) = (s-uf(An-An+1)+((s-u)+(t^v)yAn+1 > 0 

(2) m=n+\ : Consider the matrix 

(
a b -b 0 

b b -b - c 
-b -b b c 
0 -b c c 

where a=An, b=An+1, c=An+2. 
An elementary calculation gives 2I*=93r23 where 

Vtf b/y/a b\sa 
* ' 0 0 0 

0 0 0 
where 

e = (J-i*/fl)i/« and / = (c-c2/e*y'\ 

If 23 is real, then 91* is nonnegative i.e. (x | 5t*x):>0 for each x e Ei. But b—bz/a= 
Cn>0, and, using An+2<Cn, we obtain ce2—c2=An+2(Cn—An+^>0. Hence S is 
real. But still more calculation shows that 

(* | %n „*) = (* | %*X)-2SV Bn m+1 

> -2sv Bn n+2. 
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We will see below that Bn w+2<0- If ^=0 or v=0 then z and w are in the same 
"wedge" {0n<0<dn+1}, which is Case 1. Hence (x |9I w m x)>0, which finishes 
Case 2. 

(3) m=n+2: Consider the matrix 

21+ 

where a, b, and c are as above and d=An+z. We have %+=(£T£ where 

£ = 

/Va 6/Vfl 0 
0 e —c\e 
0 0 / 
0 0 0 

cos | ^ 

with e a n d / a s above and g={d~d2jf2)112. We already saw e a n d / a r e real; we 
have, by the definition of Dn, df2—d2=An+z(Dn—An+z)>0 by condition (i).Thus 
(£ is real and so 2t+ is nonnegative. We have 

(* | #» «*) = (* I 2 I + ^ ) - 2 ^ £w n+2-2sv Bn n+z-2tv Bn+1 n+3. 

Below we see the three B9s are negative, giving (x | 2tw wx)> -—2^ Bn n + 3 >0 since 
sv^O (otherwise we are in Case 2). 

(4) m>n+2: Here we show each Bt s in %n m is negative, so that each element of 
the matrix is positive. Lety>£+2 and compute: 

£<* = (*<K)-(*<+iK+i) 

J ( 2 a n ~ C 0 S a i C 0 S ^ C 0 S ( 2 an)|-
\w=i / \n=t+l / j 

By condition (iv) of the induction, the term in curley brackets is negative when 
there are at least two terms in the sum, i.e. w h e n ; > / + 2 . Thus 2?, , < 0 when 
j>i+2. This completes the proof tha t / i s contractive in W. 

We turn now to the problem of extending/ Reflect the region W about the line 
LO0 = {rei9^:r>0}. Denote by Lk the reflection of the line {reidk:r>0}; note that 
the angle between Lk and Lk+1 is afc+1, and that the slope of Lk is tan (6^ + 2 £ * <**) = 
tan(20oo — dk). (Thus L0 has negative slope.) To be sure, none of the lines Z^ has 
rational slope. We modify the angles afc so that all the slopes are rational and such 
that the inequalities ^ w + 2 < C w , ^ n + 3 < D w , ^ w < 0 when ra>«+2 and 0<ocn+1<aw 

are true. Then/defined in the same way will be contractive and map Q2 into Q2. 
We note first that An+2<Cn if and only if sin2 aw sin2 an+1—sin4 an+1 cos4 aw— 
cos2 aw+1 sin2 an+2 sin2 aw>0. This condition only involves an, an+1 and an+2. A 
similar but more complicated continuous function of aw, an+1, an+2, and an+3 is 
positive if and only if An+2<Dn. The significance of these observations is that the 
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truth of, e.g., An+2<Cn is independent of the value of aik for k<n or k>n+2. 
Consider now the inequalities Bn m < 0 when m>n+2. The sign of B1 m is the same 
as that of 

cosCai+jSJ-cos ax cos am cos(/3+aJ = g(a l5 ft, a j , 

where/3=2I^21 <**• It is easy to see that 

g(oc, 0, (5) = - s i n a sin pQ+O(d)+O(P-fl0) 

as /?->jS0, (5->0, uniformly in a e [.9al9 1.1%]. Using this, we see we need only 
modify ax to satisfy a finite number of inequalities, each one true for sufficiently 
small change in OLV Consider now n=k>l. Here we change afc and oik+1 keeping the 
sum oLk+oik+1 constant (thereby not changing the slope of any line but Lk). The 
only real difference is in the uniform estimate on Bk m in which —sin ak sin /?0 is 
replaced by —sin ct!k sin(<4+1+j80), uniformly for cck near onk, ak+1 near <x.k+1. (Here 

Consider now z e W, w e W* (the reflection (modified as above) of W on the 
other side of L^), and note that since each point of L^ is fixed and since 

l/-(')-/(*)l < \s-z\ 
for s E 1 ^ , we have/contractive over W U W*. Since the slope of L0 is negative, 
W U ^ * contains the points in Q2 which are in the first quadrant. If h(x, y) (using 
E2 notation again) is defined by h(x,y)—({\x\+x)j2, ( | j |+j)/2), then h is nonex-
pansive and takes Q2 into the points of Q2 in the first quadrant. Thus the composition 
/ o h (which we denote again by / ) takes Q2 into Q2, is contractive, has fixed point 0, 
but with {/w(zi)} not convergent in Q2. 

It is well known that the space Q of rationals is homeomorphic to the space 
Q2. We may thus move (2.1) down to Q and obtain the following result: 

(2.2) COROLLARY. The iterative test is not conclusive under some equivalent 
remetrization of Q. 

(Since the iterative test is conclusive for Q in its usual metric, this means that 
ITC is not a topological invariant for Q.) 

Proof. Let h\Q-+Q2 be a homeomorphism and l e t / b e the contractive selfmap 
of Q2 constructed in the proof of (2.1). For x, y e Q define d(x, y)—\h{x)—h(y)\. 
The metric d is equivalent to the usual one since h is a homeomorphism. Define 
g>Q-*Q by g—h~x o/o h. We have 

d(g(x),g(y)) = \h(g(x))-h(g(y))\ = \f(h(x))-f(h(y))\ 

<\h(x)-h(y)\ = d(x,y), 

so that g is contractive. Clearly g has a fixed point and {gn(x)} fails to converge for 
many x. 
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3. Extensions of densely defined contractive maps. A subset S of a metric space 
(X9 d) is said to be metric segment dense (MSD) if for each pair x9 y in X there 
exists z in S such that d(x9 z)+d(z9 y)=d(x9 y). If X is a strictly convex Banach 
space (i.e. if ||w|| = |MI = 1 and uj±v implies ||w+u|| <2), then every MSD subset is 
LSD. 

(3.1) THEOREM Ifg:S->S is a contractive selfmap of a metric segment dense sub­
set ofX then the continuous extension f: X~>X of g is contractive. 

Proof. Let x9y e Xand get z9w e S such that d(x,y)=d(x9 z)+d(z9 w)+d(w,y). 
We have 

d(f(x),f(y)) < d(f(x)9f(z))+d(f(z)9f(w))+d(f(w),f(y)) 

< d(x, z)+d(z, w)+d(w, y) = d(x9y). 

(3.2) COROLLARY. If the iterative test is conclusive for X then the iterative test is 
conclusive for each metric segment dense subset ofX. 

Proof. In view of (3.1), this is exactly Nadler's Theorem 2 and Theorem 3 
restated for metric (instead of Banach) spaces. 

We return now to Problem B, stated in §1, and note that if the finite dimensional 
Banach space X is not strictly convex, the possibility exists that a subset may be 
metric segment dense without being line segment dense. This idea leads us to the 
following negative answer to Problem B : 

(3.3) THEOREM There is a finite dimensional Banach space X and a dense subset S 
of X such that the iterative test is conclusive for S but S is not line segment dense. 

Proof. Let X be the plane with \\(xl9 x2)\\=
s\x1\ + \x2\' Let S denote the set of 

lines with slope 1 passing through points (r, 0) with r rational. The dense subset S 
is not LSD, (for example, no point on the line joining (TT9 0) to (TT+ 1, 1) is in 5), 
but S is MSD. (In fact, for this space X we completely characterize the metric 
segment dense subsets S as those for which S n L is dense in L for each line L 
parallel to the coordinate axes.) Since S is MSD, (3.2) applies and the iterative 
test is conclusive for S. 

4. Problems. Let S be a dense subset of a finite dimensional Banach space. 
The implications (between properties of S) 

LSD => MSD => CEP :=> ITC 

follow from Nadler [3], (3.1) and (3.2) above. The proof of (3.3) shows that the 
first implication is not reversible. (For strictly convex spaces, the first two are 
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equivalent.) We expand Nadler's Problem B as follows (for dense subsets of finite 
dimensional Banach spaces) : 

PROBLEM I. Does CEP imply MSD? 
PROBLEM II. Does ITC imply CEP? 

Added in proof. The solution of Problem II is "no" (J. L. Solomon, Proc. Amer. 
Math. Soc., (to appear)). 
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