
THE EQUIVALENCE OF QUADRATIC FORMS 
G. L. WATSON 

1. Introduction. The main object of this paper is to find the number of 
classes in a genus of indefinite quadratic forms, with integral coefficients, in 
k > 4 variables, distinguishing for even k two cases, according as improper 
equivalence is or is not admitted. (Two forms are in the same genus, according 
to the classical definition of Minkowski, if either is equivalent, for every 
positive integer m, to one identically congruent to the other modulo m.) 
Meyer (5) considered this problem, but obtained only a very incomplete 
result, included in Theorem 4 below. Otherwise little was known till recently. 
The results I prove could perhaps be obtained by suitable specialization of the 
very deep work of Eichler (2); but it seems worth while to give a more elemen­
tary treatment of the case when the coefficients and variables are in the ring 
of ordinary integers. 

The present paper may be regarded as a sequel to (3), which gives the result 
for k = 3. It is, however, independent of (3) in so far as the results for k > 4 
are concerned. It turns out that the formula giving the exact value of the 
class-number (in either sense) for an indefinite form with k > 3 gives a lower 
bound for that of any form with k > 3. The forms considered are not therefore 
assumed to be indefinite unless so stated; nor (since the proofs are partly by 
induction on k) to have k > 4. 

2. Notation. Small letters denote rational integers unless otherwise 
stated, p being a prime and (n\p) (p ^ 2) the Legendre symbol, (m, n) denotes 
as usual the greatest common divisor of m, n. The set of all square-free integers 
(v, Vi, . . . ) constitutes, with the operation 

2.1 Vi-v2 = Viv2 (vi, v2)~
2, 

a group, denoted by T. Any subset of V closed under this operation is a sub­
group; so in particular is Td, the subset with (v, d) = 1. 

Latin capitals denote square matrices, of rank k unless otherwise indicated, 
with rational elements, / being the identity matrix. By the denominator of a 
matrix is meant the least common multiple of the denominators of its elements, 
and the determinant is denoted by modulus signs. The notation [mi, . . . , mk] 
is used for a diagonal matrix; and similarly for a matrix made up of diagonal 
blocks. Transposition is indicated by an accent. Column vectors, or k X 1 
matrices, are written x = {xi, . . . , xk} and have integral elements unless 
otherwise stated. 
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Congruences, vector or scalar, in which either side is fractional, but with 
denominator prime to the modulus, are to be interpreted in the usual way. 
m\n, m K n, pa\\n denote respectively that m divides n, m does not divide n, 
pa divides n but pa+1 does not. 

3. The matrix and discriminant of a form. These are defined (see, for 
example, Brandt, 1) without putting in the Gaussian binomial coefficients. 
That I S , &ij — CLji IS the coefficient of x iX j m /(x) = /(xi, . . . , xk), and with 
the form / we associate the matrix 

( d2/(*) ) 
\ dXidXj / fdX j 

with elements 2ati and atj (i 5* j). This gives /(x) = \x'Ax in place of the 
"classical" x'Ax. Since/is assumed to have integral coefficients, A has integral 
elements, those on its diagonal being even. It is thus congruent (mod 2) to a 
skew matrix, which for odd k is singular. The discriminant of/, defined by 

d = d(f) = / ( - 1 )**MI f o r * e v e n 

4 ( - l)èU_1)M| for k odd 

is therefore always integral ; and we assume always that / is not degenerate, 
that is, that d ^ 0. 

If p& is any power of a prime p not dividing d, then by a suitable integral 
unimodular transformation we may suppose (1) that, for odd k, 

3.1 /(x) = xix2 + . . . + xk-2xk-i + dxk
2 (mod pfi), 

or for even k, 

3.2 /(x) = xix2 + . . . + XJC-ZXJC-2 + <f> (mod pfi), 

where <t> is any binary form, with discriminant d, in xk-i, xk. Similarly we may 
suppose (6) for any odd pP, whether or not p divides d, that 

3.3 f(x) s X pu<nxt* (mod/) , p K ai a?c, 

where the exponents X* may be supposed arranged in ascending order. For 
p = 2 we must replace 3.3 by (6, 35, Lemma 3) 

v k 

3.4 /(x) = 2 2M>, (x2p_i, x2p) + £ fa*? (mod 2^). 
p = l î = 2 y + l 

Here 0 < v < J&, the â  are odd, and the binary forms <£p have odd discrimin­
ants dp. The properties of such a form depend on the residue (1 or — 3) of 
dp (mod 8) ; but we shall see that this distinction is irrelevant for our purpose. 

From 3.1, 3.2 we see that the arithmetical properties of / to a modulus prime 
to d are trivial; they are given uniquely when k and d are known. The proper­
ties of / to any modulus may thus be studied by means of 3.3, 3.4, with p 
ranging over the divisors of d; and it is convenient to replace this system of 
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congruences by a single one, with a power of d as modulus; we shall see that 
the fourth power of d is high enough. Combining the results 3.3, 3.4 (for p\d) 
we see that we may suppose 

V 

3.5 fix) = 2 {g.2P-in2p-i (x2p-i — i x 2 p ) 2 + lq2pn2px2p
2} 

P=I 
k 

+ 2Z QiKiXi2 (modd4). 
i=2v+l 

Here the nt are products of primes dividing d, while the qt may without loss 
of generality be taken to be in r2rf; v is as in 3.4 if d is even, 0 otherwise; and 
for p = 1, . . . , v we must have 

2Mp||n2p = — q2P-iq2pn2p-i (mod2Mp+2), 

the expression in { } being a binary form with odd discriminant, multiplied by 

2M>. 

Alternatively, we might obtain 3.5 by the same elementary method (essen­
tially completing the square) which gives 3.3, 3.4. 

We see from 3.5 that 

3.6 d s ( - 4)m4T\qi ...qk)(nk... nk) (mod d*), 

whence 4c[lk]~vfii . . . nk is a divisor of d; so since the qt are prime to d we 
must have 
3.7 qi. . ,qk = db 1 (mod dz). 

4. The groups and automorphs of a form. We define 

4.1 U(t) = U(t,f) = U(t,A) = I - t t ^ / / ( t ) , 

for t with / ( t ) 7e- 0. This matrix (which is — £/(t) in the notation of (3)) is 
well known, and may be immediately verified, to be an automorph of/, or of 
A. That is, we have identically f(U(t)x) = / (x ) . The first two of the following 
formulae are immediate consequences of 4.1, and as they show that U(t) has 
linearly independent characteristic vectors with characteristic roots — 1, 
1, . . . , 1, the other two follow: 

4.2 U(t)t = - t ; U(t)x = x, if t'Ax = 0; 
|£7(t)| = -l;U\t) = I. 

Since 4.1 gives U(nt) = U(t) for nf(t) ^ 0, we may allow fractional t, and 
then we have for all non-singular R 

4.3 U(R'\ R'AR) = IClU(t, A)R; 

that is, any linear transformation takes U's into U's. 
On the other hand, if we take t to be integral and primitive, that is, assume 

that the greatest common divisor of h, . . . , tk (all integers) is 1, then some 
linear combination of the rows tit'A of the matrix tt'^4 = (tit3)A is t'A. 
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Hence if n is the greatest common divisor of / ( t ) and the k elements of t'A, 
then n~lf{t) is the denominator of U(t). We are interested in U(t) with 
denominator prime to d. The residue modulo dz of the denominator of U(t) 
will be considered first. 

We consider the n, t, q satisfying 

4.41 w|/(t), 
4.42 n\t'A, 
4.43 n\d, 
4.44 q G T„ 
4.45 f(t) = qn ( m o d / ) , 
4.46 gw/ > 0 if / is definite. 

4.46 means that qn has the sign of / if / is a definite form; otherwise qn may 
be either positive or negative. These conditions 4.4 will be studied further in 
§5; meanwhile we define certain groups. 

Definition of r(f) , T+(f). T(f) is the subgroup of Td generated by the set 
of q for which, for suitable integral n = n(q), t = t(g), conditions 4.4 can be 
satisfied. r+(/) is the subgroup (of index 1 or 2) of r ( / ) generated by the 
products in T of pairs of such q. 

There is a connection, which we shall investigate in §5, between conditions 
4.4 and 
4.51 p*\\f(t), 
4.52 p\t'A, 
4.53 p*% 
4.54 / ( t ) s b (modp8+d). 

Definition of T(p,f). T(p,f) is the subgroup of T generated by the set of v 
given by 
4.6 Ô1Ô2 = u2v, u integral, v G I\ 

where b\, b2 range independently over the set of b for which, for given p and 
suitable 5 = d(b) > 0, and integral t = t(p), 4.5 can be satisfied. 

When p \ d, 4.53 gives 5 = 0, while 4.54 is soluble (unless k = 1) for every 
b not divisible by p, as may be seen from 3.1 or 3.2; hence 

4.7 T(p,f) = Tpiip \ d. 

Here Tp (see §2) is the subgroup of T defined by {v, p) = 1. 
All these groups are clearly unaltered if / is replaced 
(i) by any equivalent form, or 
(ii) by any form congruent to / (mod dA), and with the same signature and 

discriminant. 
(To deduce (ii), note that 4.53 gives pb+z\d* if p\d, and use 4.7 if p Jf d.) 

It follows from the Minkowski definition that the groups are all invariants of 
the genus of/. We can now state our main result: 
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T H E O R E M 1. Let f be a non-degenerate quadratic form, with integral coefficients, 
in at least three variables. Then (i) the number of classes in the genus of f is not 
less than the order of the factor group Td(f)/T(f) or Td(f)/T

+(f), according as 
improper equivalence is or is not admitted] 

(ii) r ( / ) = T+(f) is a necessary condition for f to be improperly equivalent 
to itself] 

(iii) if f is indefinite, then there is equality in (i) and the necessary condition 
in (ii) is also sufficient. 

I t is clear t h a t the value, or lower bound, given by this theorem for the 
class-number, in either sense, is always a power of 2 

5. R e l a t i o n s b e t w e e n t h e g r o u p s . We show first t ha t , for primit ive t , 
4.41 and 4.42 imply 4.43; whence, if p \ t , 4.51 and 4.52 imply 4.53. We m a y 
suppose, by an integral unimodular t ransformation, t h a t t = {1,0, . . . , 0 } . 
Then 4.41, 4.42 reduce to 

n\an, n\{2alhau, . . . ,au}. 

And the subst i tu t ion x —» Z7(t)x reduces to 

xi —» — Xi — an" (auX2 + . . . ) • 

T h e leading element 2a n of A is divisible by 2n, and its first row and column 
by n, so \A\ is divisible by (2n, n2) = n or 2n according as n is odd or even, 
giving n\d = ± \A\ or ±^\A\. 

I t follows now t h a t when 4.4 holds U(t) has denominator n~lf(t) = q 
(mod d3). For if not, then 4.41, 4.42 would hold also with np, p~lq for n, q, 
p a prime not dividing d, whence np \ d. I t also follows t h a t the possibilities 
for q are the same whether or not t in 4.4 is restricted to be primit ive. Similarly, 
it does not m a t t e r whether or not we allow t in 4.5 to be divisible by p] the 
possibilities for b are the same in either case, up to a square factor, which in 
view of 4.6 does not mat te r . 

T o reconcile the definition of T(p,f) with t h a t given, for k = 3, in (3), we 
show tha t , for odd k, 4.6 m a y be replaced, in the definition of T(p,f), by 

5.1 ( - if^'^db = uv, u integral, v Ç r . 

For p \ d this is clear from 4.7. If p \ d, we note t h a t the numbers qtni of 
3.5 are admissible values of b] the corresponding t are the vectors making all 
bu t one of the squares in 3.5 vanish. I t is clear t h a t in 4.6 we m a y allow b2 

alone to vary , and replace bi by a fixed product of an odd number of b. Using 
the b jus t found, 3.6 gives the desired result . 

Similarly we show t h a t 

5.2 T(f) = T+(f), £ o d d . 

Since every / is trivially equivalent to itself by x —> — x, which is an improper 
equivalence for odd k, 5.2 shows t h a t the assertions of Theorem 1 simplify 
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as they should for odd k, the distinction between proper and improper equi­
valence disappearing. 

T o prove 5.2, note t h a t the nu qt of 3.5 satisfy 4.4, with the same t as used 
in connection with 5.1. Their group product, together with r+( f ) , obviously 
generates T(f). Hence 5.2 follows if we show tha t this group product , which 
by 3.7 is either a quadra t ic residue modulo ds or the negative of such a residue, 
is in r + ( / ) . Now r + ( / ) contains — 1, since we may pu t — n, — q for n, q in 
4.4; it also contains all quadrat ic residues modulo dz, as we see by keeping n 
fixed in 4.4 and put t ing rat for t , m prime to d, and q' = m2q modulo dz for q. 
5.2 follows. 

T h e relation between T+(f) and the groups T(p,f) is given by 

L E M M A 1. q is in T+(J) if and only if, for suitable w = w(q) in I \ 

5.31 q É Td, 
5.32 w\d, 
5.33 wq e H ' T(p,f). 

where the accent denotes the exclusion of negative values of wq in case f is definite. 

Proof. We note first t ha t the set of q for which 5.3 can be satisfied is a 
group, say r + ( / ) ; for if wi, q\ and w2, qi satisfy 5.3 then so do Wi-w2 and <Zi-g2. 

Now note t h a t 4.4 implies 4.5 (with b = qn) for every p dividing d. For 
p\d and p8\d together imply £5+3 |d4 . Hence, writ ing n = wc2, w\d, in 4.4, we 
see t ha t the "only if" of the lemma, t ha t is, T+(f) C T+(f), follows from the 
definitions of T + ( / ) and T(p,f). (Note t ha t the product of evenly many qn, 
or qw, of the same sign is always positive.) 

Now to prove the "if," t h a t is, T+(f) Ç T+(f), we consider integers v in 
r with the proper ty tha t , for each p\d and suitable up, up

2v is an admissible 
value of b in 4.5, while vf is positive if/ is definite. I t is clear t ha t products of 
pairs of such v generate the group on the right of 5.33, while the corresponding 
products of pairs of values of ± (v, d)~lv generate r + ( / ) . I t suffices therefore 
to show t h a t to each such v there is a « such t ha t 4.4 can be satisfied with 
qn = u2v. Now the condition t ha t 4.5 can be satisfied with b = uv

2v is obviously 
satisfied, if a t all, with uv a power of p. So we suppose uv is a power of py 

and write u = Upup; clearly u2v is an admissible value of b in 4.5 for every 
p dividing d. This is still t rue, by elementary properties of quadrat ic residues» 
if the exponent ô + 3 in 4.54 is replaced by /3 such t h a t p^\\dA. Compar ing 
4.5, as thus modified, with 4.4 we see easily tha t , with q = =b (y, d)~lv, 
qn = n2v, we can satisfy 4.41 to 4.45. And as 4.46 is satisfied (if applicable) 
by our choice of the sign of v, the proof is complete. 

From 5.1 and Lemma 1 it follows t ha t the group y(f) of (3) coincides with 
r ( / ) and with T+(f) when k = 3 and fis indefinite. 

Theorem 1 is t rue for imprimitive forms, and we shall later need to be free 
t o exclude such forms or not, as convenient. So we prove t ha t the factor groups 
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of Theorem 1 are unaltered up to isomorphism if f is replaced by mf, m ^ 0. 
We do this by showing that on so doing each of T(f), T+(f), Tdif) is replaced 
by a subgroup of itself of index 2°, a being the number of primes dividing m 
but not d. As far as Td(f) is concerned this is clear. For the other two groups 
it suffices to show that on the one hand a can satisfy 4.4 and have all or any 
of these p as divisors (which is trivial), while on the other hand if 4.4 holds 
with (q, m) = 1 it also holds with mn, q, mf for n, q, f. This last assertion 
depends on modifying the choice of t so as to satisfy 4.45 to a higher modulus; 
this is done as in the proof of Lemma 2 below, and is straightforward. 

A similar argument gives 

5.6 T(p, mf) = T(p,f) for m ^ 0. 

6. Construction of automorphs. To obtain an upper bound for the class-
number, we need to construct automorphs, of the special type 4.1, with 
convenient properties; in particular, with equality in 4.45. We prove: 

LEMMA 2. Suppose that f is indefinite, k > 4, 4.4 holds, and also f(t) = qn 
(mod q2). Then there exists z satisfying 

6.1 z == t (mod dq),f{z) = qn. 

Proof. With the present hypotheses, and d ^ 0, it suffices, by the result 
proved in (7), to show that a solution of 6.1 is not excluded by congruence 
considerations. In other words, we need only show that 

6.2 z = t (mod dq ) , / (z) = qn (mod m) 

can be satisfied for any prescribed m ^ 0, and suitable z. 
Suppose first (m, dq) = 1; then since k > 2 there is at least one product 

term in 3.1 or 3.2 (for any prime power factor of m) and so 6.2 is trivial. Next 
suppose m — ds, s > 5. We can find r = 1 (mod dz) so that qn = rf(t) 
(mod ds). Then we can solve h2 = r (mod ds) ; and it suffices to put z = ht. 
We may therefore suppose m = qs, s > 3. Proceeding by induction on s, 
suppose z = x satisfies 6.2 with m = q8'1. Put z = x + gs_1y; then 6.21 holds, 
and 6.22 with m = qs reduces to 

/ (z ) - / (x) + q-^'Ay s / (x) + qs~lt'Ay = gn (mod <z<) 

This reduces to a linear congruence of the type t'Ay = / (mod g), which is 
soluble for y unless some p dividing q, hence not dividing d, by 4.44, divides 
tfA, and also, by hypothesis, fit). If so, then with n = p 4.41 and 4.42 hold 
and 4.43 fails, which as shown at the beginning of §5 is impossible. 

We deduce the 

COROLLARY. Suppose f is indefinite, k > 4, and 4.4 holds. Then there exists 
z with / (z) = qn such that U(z) has denominator q and satisfies 

6.3 qnU(z) = tffaph, . . • , P^-u &) 
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with integral f *, for every p dividing qfor which 

6.4 p2\an, p\aij, I < j < k. 

Proof. We apply the lemma with a suitable t . If p divides q bu t does not 
satisfy 6.4, any solution of f(t) = qn (mod p2) will do, and some solution 
clearly exists, by 3.1 or 3.2. If p divides q and satisfies 6.4, we require a solution 
of f(t) = qn (mod p2) which also satisfies 

6.5 t = {1 ,0 , . . . , 0,q6} (modp2), 

for some 6. The congruence f(t) = qn (mod p2) reduces, by 6.4, 6.5, to aikqd 
= qn (mod p2), which is soluble since p \ a,\k. For p\a,\k would with 6.4 give 
p\d, (q, d) > 1, contradict ing 4.4. 

Now 6.3 follows from 4.1, 6.4, 6.5 by a simple calculation. 

7. R a t i o n a l t r a n s f o r m a t i o n s . Denote by R a matr ix, with de te rminant 
± 1 and denominator prime to d(f), which takes / into fR = f(Rx) with in­
tegral coefficients. Impose for the moment , in case d(f) is odd, the additional 
restriction t h a t the denominator of R be odd. Then it is well known tha t every 
form in the genus of / is expressible as fR, and conversely. (This is equivalent 
to saying t ha t the Eisenstein-Smith definition of the genus by rational t rans­
formations is equivalent to t ha t of Minkowski, which we have used.) T h e 
additional restriction on the denominator of R is easily removed, as we shall 
see. 

Among the matrices R are included all automorphs 5 o f /whose denominators 
are prime to d(f), and also all products SR, since fSR = fR. For given R, 
we shall construct 5 so t ha t if possible SR is simpler, in a sense to be defined, 
than R. The construction r e q u i r e s / to be indefinite, and k > 4. 

I t is not difficult to express R as 

7.1 R = T[rlSr\ . . . , rksk-
l}X, \T\ = 1, \X\ = \R\, 

where the matrices T,X are integral, and the positive integers ru st satisfy 
{ru st) = 1 and 
7.2 1 = r1\r2\ . . . \rk, 1 = sk\sk-i\ . . . | si. 

T h e proof t h a t this is possible is similar to the proof t ha t 7.3, below, is possible, 
and so we omit it ; bu t we note t ha t the ru st depend only on R and not on 
T, X. For firstly, risr1 is the largest positive rational fraction such t h a t 
r{~lsiR has integral elements. Next , rir2Si~lS2~l is the largest fraction such 
t h a t all the 2 X 2 submatrices of R have de te rminants which are integral 
multiples of rir2/sis2; and so on. 

Similarly, we can for any p express R as 

7.3 R = M[pe\ . . . , p'*]N, \M\ = 1, \N\ = \R\, 
01 < 02 < • • • < 0k, 

where M, N have denominators prime to p, and the integers 6f = di(R, p) 
depend only on i, R, p and not on M, N. The sum of these integers is obviously 
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zero, and they all vanish if p does not divide the denominator of R. To prove 
that R can be expressed in the form 7.3, suppose for the moment that M 
satisfying 7.32 has been suitably chosen. Then 0i, . . . , 6k and N may be chosen 
so that 7.31 holds, by simply taking out from each row vector of M~lR the 
highest possible power of p so as to leave a vector with denominator prime 
to p. If now 7.33 fails, then p must divide \N\, and we see that a higher power 
of p can be taken out from one of the rows after a suitable row operation on 
M~lR, equivalent to a suitable modification of the choice of M. 

Definition. We define q(R) to be the product of all primes p for which the 
sum of the positive ones among the numbers Oi(R, p) is odd. 

LEMMA 3. The integers 6t = dt {R, p) of 7.33 satisfy 

7.4 St = - ek+i-u 1 < i < k 

and the ru st of 7.1 satisfy rt = sfc+i_<, whence rt — 1 for i < \k, and 7.1 may 
be rewritten 

7.5 R = Tlsr1, . . . $ r \ 1, sh . . . , si]X, 

where T, X are integral, I = [\k], and the 1 is to be omitted for even k. 

Proof. We use for the first time the hypothesis that fR is integral. We 
suppose p \ d; otherwise the dt are all zero and 7.4 is trivial. It suffices to 
prove 7.4 since the remaining assertions follow easily. Suppose 7.4 false and 
let h ( < \k) be the least i for which it fails. Suppose also 0h + 9k+i-h < 0; 
for otherwise we may replace/, R, dt by/7 2 , R"1, — 0jt+i-*. 

Suppose further that T = I in 7.1; for if not we may replace/, R by fT, 
T~lR. Then it easily follows that we can take M = I in 7.3. It is easily seen 
that 

fRN~l 

is also integral, so we may suppose 

R = IP61 P6"]. 

The coefficient of »v jX j 111 fR is now pQi+eJ a if, so we must have 

p\atj if di + Oj < 0. 

By 7.34 and our hypotheses regarding the 6U this gives 

p\atj for i < h, j < k + 1 — h. 

This shows that the matrix A$ derived from A by replacing by zero every 
element 2au or atj (i 9e j) with p\atj has rank < k. For the submatrix of 
Ao consisting of its first h rows has rank < h. 

Thus \Ao| = 0 . If p ?* 2, this gives the contradiction \A\ = \A0\ = 0 
(mod p), p\d. If p = 2, we may have \A\ = ± 2d, so we need to prove 
\A\ = \AQ\ (mod 4). If we consider the terms in the expansion of \A\ that 
vanish in that of \A0\, we see that they are all even, and either occur in pairs 
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(because of the symmetry of A) or contain factors 2au or a^aa = a if = 0 
(mod 4). This completes the proof. 

COROLLARY. We may assume T = / in 7.5 and simultaneously that 6.4 
holds for every p dividing the denominator of R. 

Proof. We have seen in the proof of the lemma that we may assume T = I, 
and that then 6.41 holds since by hypothesis 0i < 0. Further, we have 6.42 
for every j for which 6\ + dj < 0. This is true by 7.34 and 7.5 unless 
j>i(k + 2). 

We consider for simplicity the case in which aitk-i and a,\t1c are the only 
a,\j not divisible by p; in this case, 61 = 62= — 6k~\ = — 6k. We can transform 
/ so that 6.4 holds by a suitable matrix V~1, where 

\o w) 
W being a 2 X 2 matrix. But then we have to put T = V instead of T — I 
in 7.5. We thus have R = VDX, where D denotes the diagonal matrix in 7.5. 
We may write instead R = D(D~1VD)X if D^VD is integral. Now 

D~lVD = (Ik~2 ° ) ' 
\ 0 WJ 

where W\ is derived from W by multiplying the second row, and dividing the 
second column, by 51/52. 51/52 is an integer by 7.22, divisible exactly by 

p~Gl+e* = p'*-i-9* = p\ 

Hence W\ can be integral, and W = I (mod m) for any assigned m prime to p> 
without restricting W in any way modulo p. The result follows. 

When R is an automorph U(z), the numbers 5* are easily found. By 4.3, 
with a suitable integral unimodular matrix in place of R, we may suppose 
z = {1,0, . . . , 0}. The positive and zero 6t are determined by 7.4 when the 
negative ones are known, and the latter are clearly the same for U(x) as for 
/ — Z7(z) = zz'A/f(z), which has only one non-zero row. Thus 6t is zero for 
1 < i < k, st = 1 for i 9e 1, 5i is the denominator of C/(t), and p~dl\\s\, as is 
easily seen. 

Now we consider the effect on the 6t of replacing R by U(z)R, with suitable 
z. I t is convenient to write 

6i = 6i(R,p), 6\ = 6t(U(z),p), 67 = 6t(U(z)R,p), 

and desirable to choose z so that 

7.6 q(U(z)R) = q{U(z)).a{R). 

We prove: 

LEMMA 4. (i) For suitable z, Z7(z) has denominator prime to d, 7.6 holds, and 
for each p dividing the denominator of R we may as we choose have either 
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(a) 0/ = 0, 0 / ' = 0t (1 < i < k) or 
(b) (0/, . . . , 0/) = ( - 1,0, . . . , 0,1) and (0i", . . . , 0/0 w a permutation 

of (0! + 1,02, . . . , 0 * _ i , 0, - 1). 
(ii) If f is indefinite and k > 4 we may further have any positive a for which 

4.4 caw 6e satisfied as the denominator of U(z), provided only that if p divides 
the denominator of R then p\q if and only if alternative (b) is chosen in (i). 

Proof. It is convenient to assume throughout t h a t / is indefinite and k > 4, 
and use the Corollary to Lemma 2. In other cases, when only (i) is to be 
proved, a suitable congruence condition may replace the Diophantine equation 
6.12. 

Suitable congruence conditions modulo d4, and modulo p for every p for 
which we wish to satisfy (a), will clearly give U(z) with denominator prime 
to d and to every such p, so that for each such p all the 0/ vanish. Then 
6" = dt for each such p, as we see on premultiplying 7.3 by C/(z). 

For the p for which we have to satisfy (b), we use the corollaries to Lemmas 
2, 3. Multiplying 6.3 and 7.31, with T = I, the result easily follows. 

For the p which divide the denominator of £/(z) but not that of R, we 
have all the 6t zero, and 0 / ' = 0/ is proved just like (a). Thus for every p 
to be considered we see that the sum of the positive 0 / ' is congruent modulo 2 
to the sum of the positive 6t and 0/. Plainly this gives 7.6. 

Assertion (ii) is now trivial on choosing a suitably in the corollary to 
Lemma 2. 

8. Upper bound for the class-number. We prove: 

THEOREM 2. Every form fR, with R satisfying the conditions of the last section, 
is in the genus off. 

If f is indefinite and k > 4, then the class of fR, in the wide sense, depends 
only on the coset of T(f), in Td, to which q(R) belongs; thus in particular fR is 
equivalent to f if q (R) is in V (/). 

If \R\ = 1 similar results, but with T+(f) for T(f), hold for proper equivalence. 

Proof. The first assertion is classical for R with odd denominator. If R has 
an even denominator (which is possible only if d is odd) then the following 
argument gives/72 = fv for some V with denominator odd and prime to d. 

Now let / be indefinite, and k > 4. Note that, since the square of every 
element of r is 1, q\ and q<i are in the same coset of r ( / ) in Td if and only if 
qi.q2 is in T(f). 

Denote by Q a matrix satisfying the conditions imposed in §7 on R, and in 
addition 
8.1 Sl(Q) = q e Td,Si(Q) = 1 if i * 1. 

8.1 is equivalent, by 7.4, 7.5, to 

8.2 Bl{Q,p),...,ek{Q,p) = - 1,0, . . . , 0 , 1 , 
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for each p dividing the denominator of Q. We have seen in the proof of Lemma 
4 that every Z7(z) with denominator g in Tdis a, Q with q(U(z)) = q. 

Now apply Lemma 4 repeatedly. At each step the sum of the positive 0* 
may be made to decrease for any p for which it exceeds 1 ; and since we always 
take U(z) to be a Q, the sum in question does not exceed 1 for any prime 
factor newly introduced into the denominator. Thus after sufficiently many 
steps we see that we have SR = Q, for some S = . . . U{z2) U(zi) which is an 
automorph of/. We have by 7.6 

q(Q) =q(SR) = ...q2.qi.q(R), 

where q\ = q(U (Zi)), . . . . The numbers gi, q2, • • • may after a certain stage, 
when we have already cancelled out all unwanted factors from the denominator 
of R, be arbitrary positive numbers that are admissible values of q in 4.4. 
Their product in r may thus, by the definition of r ( / ) , be any element of 
r ( / ) . We thus have SR = Q with any q(Q) in the coset of r ( / ) , in Tdj to which 
q(R) belongs. 

Now if q(R) is in r ( / ) we take q(Q) = 1, which by 8.1 makes Q integral, 
so that fR = fSR = fQ is equivalent to / . This proves the third assertion. 

To prove the second assertion, take any two forms 

fBljR2 

which have qÇR1) -q(R2) in T(f), which are to be proved equivalent. Express 
them, by the foregoing construction, as 

fQiJQ* 

where q(Qi)-q(Ri) and q(Q2) -q(R2) are in r ( / ) , whence q{Qi)-q{Q2) is in Y(J). 
We prove the second assertion by applying the third with fQl, Qi~1Q2 for 
/ , R. SincefQl is in the genus of/, it has the same groups a s / , and we need only 
show that q{QrlQ2) is in T(/). 

It is easily seen that we may take q(Q2) to be prime to q(Qi); for q(Q2) 
can be any positive integer in the same coset of T(J) in Td as q(R2). 8.1 with 
7.5 shows that <2i-1 is also a Q, with denominator g(Qi_1) = ç(Qi) prime to 
q(Q2). Hence as in the proof of Lemma 4 we see that 

« ( C r 1 Qt) = q(Qr1)-q(Q2) = q(Qi)-q(Qt), 

which is in T(/), as was to be proved. 
To prove the result for proper equivalence we proceed in the same way. 

But since the matrices U(z) have determinant — 1 by 4.23, we must pre-
multiply by evenly many of them ; the corresponding products of evenly many 
q given 4.4 generate T+( / ) . 

If k > 3, transform / so that 3.1 or 3.2 holds, with /3 = 2, for each p\q, 
for suitable q in Td. Then 

Q= [q, q~\ 1, . . . , 1] 
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takes / into fQ in the genus of / , and in a class determined by the coset of 
T(f) or T+(J) in Td to which q(Q) = q belongs. Theorem 2 shows that this 
construction, with q ranging over a set of representatives of the cosets in 
question, yields a representative of each class in the genus of / , provided 
k > 4 and / is indefinite. 

9. Lower bound for the class-number (preliminary). We shall deduce 
Theorem 1 from Theorem 2 and 

THEOREM 3. Let S by an automorph of f with denominator prime to d(f). 
Then q(S), defined in §7, is in Y(f) in any case, and in T+(f) if and only if 
either T(f) = T+(f) or \S\ = + 1. 

It is difficult to prove this theorem directly. We shall deduce it for |5| = + 1 
from Lemma 7; and we note here that the result for |5| = — 1 then follows 
on considering U(z)S, for suitable z, and using 7.6. 

Deduction of Theorem 1 from Theorems 2,3. We consider first assertion (ii). 
Suppose/ has an integral automorph S with \S\ = — 1. Then obviously q(S) 
= 1 6 r+(f). So by Theorem 3 we have T(f) = r+(f). This shows that 
assertion (i) need only be proved for unrestricted equivalence. 

Now consider the forms fQ constructed in §8, with q ranging over a set of 
representatives of the cosets in Td of T(f). Theorem l(i) follows if we prove 
that these forms are all inequivalent. As in the proof of Theorem 2 this can 
be reduced to proving that fQ, with q(Q) = q, is not equivalent to / unless 
q is in V(f). Now if fQ T = / , T integral, then QT is an automorph of/ and so 
q(QT) e r ( / ) , by Theorem 3. But clearly q(QT) = q(Q). 

Theorem 1 (iii) now follows for k > 4 (and/indefinite), as far as unrestricted 
equivalence is concerned, since by Theorem 2 every form in the genus is 
equivalent to one of t h e / 0 . For proper equivalence, we modify the construc­
tion of the set of forms fQ by making q range over a set of representatives of 
the cosets of T+(f). (For k = 3, see 3, Theorem 1.) 

10. The groups T (p, / ) . We shall see, in Theorem 4, that Theorem 2 is 
in most cases (when / is indefinite) sufficient to prove that the class number 
is 1. Theorem 2 also tells us whether two given forms in the same genus are 
equivalent, provided that we can find an R by which they are related (which 
is not very difficult) and determine the groups T(/), T+(/) . In §5 we have seen 
how to find a g in V(f) which, adjoined to T+(/), generates T(f). Lemma 1 
then determines T+(/) , if we can determine the groups T(p,f). In so doing, 
we shall throughout this section assume 3.3 or 3.4, with a suitable sufficiently 
large p. 

We may thus replace the A in 4.52 by 

if p 9* 2, and by 
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if p = 2. For the matrix of a form </>p has odd determinant, and so may be 
replaced by the 2 X 2 identity matrix without affecting 4.52; and the au 

prime to p, may be cancelled out in any case. 4.52 thus reduces for p ^ 2 to 

10.1 p8\pXiti, implying ph+l\pXit%
2 if X, ^ Ô, 

for i = 1, . . . , k. And for p = 2 4.52 reduces to 

10.2 2ô|2/Xp/2p_1, 2
Mp/2p, implying 2 5 + 1 | 2 % p if MP ^ 5, 

for p = 1, . . . , v, and 

10.3 20\2Xi+1tiy implying 2
5-1+lô-x-1l |2x7,2 , 

for i = 2v + 1, . . . , k. 
We now prove (see 3, Lemma 3, 598 for the case k = 3): 

LEMMA 5. (a) If p 9e 2 then Y(p, f) is generated by adjoining the integers 

aiajp
u+x\ i,j= 1 , . . . , * . 

each with its square factor removed, to the group of quadratic residues given by 
(v\p) — 1 or to the group Yv given by (v, p) = 1 according as \ t = Xt does or 
does not imply i = j . 

(b) In case v 9^ 0, r (2 , / ) = V if the exponents \ u nP are not all of the same 
parity, or if for any i, j we have 

10.4 \ t = A;, at = aj (mod 4), 2v < i < j < k; 

Otherwise r ( 2 , / ) = T2. 
(c) If v = 0, then r ( 2 , / ) is generated by the subgroup of T with v = 1 

(mod 8), together with the integers 

aiaj2
Xi+h, 

each with its square factor removed, and also, if the stated conditions hold, the 
following integers, each with square factor removed: 

(i) 1 + did], if 10.4 holds for any i, j \ 
(ii) — 3, if any two exponents differ by 0, 2 or 4; 

(iii) 1 + 2a#;-, if \j — \ t = 1 or 3; 
(iv) — 1, if there are three exponents no two of which differ by more than 3. 

Proof. It is convenient to write 

b = p*b',p K V; 

and to note that we are concerned only with the parity of ô and the value of 
(b'\p), or the residue db 1 or ± 3 of V modulo 8 if p = 2. For if (v\p) = 1, 
or v = 1 (mod 8), it is obviously possible to take b2 = biv in 4.6; and so all 
such v are in T(p,f). 

(a) Using 10.1, we write 4.54 as 

bf = X) aili (jnodp). 
\i=8 
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T h e sum mus t not be empty , or p\b'', so 8 is equal to some X*. If the sum con­
ta ins two terms or more we can have (b'\p) = ± 1 as we choose; bu t other­
wise (bf\p) = (di\p). Pu t t ing in 4.6 the values of b so found, we clearly obtain 
the s ta ted result. 

(b) We can choose tu t2 so t h a t 0i (ti, t2) has any desired odd residue modulo 
8; then with t% = . . . = tk = 0 we have d = m and any desired b'. Similarly, 
8 can be taken equal to any of the /xi, or, as shown below, to any of the X*. 
I t is therefore sufficient to consider whether , if the fxp, \ t are all of the same 
par i ty , 8 can be of the opposite par i ty . If so, then 10.2, 10.3, 4.54 give 

10.5 E 2Xia1fi
i = 2i (mod2 5 + 1 ) , 

8—2<X»<5 

and this sum contains only te rms with X* = ô — 1. Th is is easily seen to be 
impossible unless 10.4 holds. 

(c) Pu t t ing ti = 1 and t} = 0 for j ^ 1, we see t h a t we can satisfy 4.54, 
which by 10.2, 10.3 reduces to 

10.6 £ 2 X W = 2 V (mod 2Ô+3), 
5-4<Xi<6+2 

with 8 = \i, b' = di. T h u s we can have bib2 = aidj 2X*+XJ in 4.6. 
If 10.4 holds, we take i, j = 1 ,2 for convenience, and pu t t\ = 1, t2 = 1, 

2, t3 = . . . = tk = 0. 10.6 is satisfied with 

ô = Xi + 1, Xi; V = i ( a i + a2) , ax + 4a2. 

Pu t t i ng these values of 6, and also 2Xlai, in 4.6, we find t h a t r ( 2 , / ) contains 
v congruent to 1 + aia2 , — 3 (mod 16), as asserted in clauses (i), (ii) of pa r t 
(c) of the lemma; and for clause (ii) 10.42 is not needed. 

T o prove t h a t T(2, / ) contains — 3, if X2 — Xi = 2 or 4, or — 1 or 3 = 1 
+ 2aia2 (mod 8), if X2 — Xi = 1 or 3, wri te 

X2 - Xi = 1 + e + 2T7, e = 0 or 1, 77 = 0 or 1. 

P u t h = 2\ h = 1, and all other tt = 0. W e find t h a t 10.6 holds with 
8 = Xi + 2?7, b' = a i + 2 1 + e a2- Using this b and 2Xlai in 4.6, we have v = 1 
+ 21 + 6aia2 (mod 8) in r ( 2 , / ) . 

Clause (iv) of pa r t (c) is easily seen to be r edundan t unless the three 
exponents in question, which for convenience we take to be Xi,X2,X3, are all 
of the same par i ty . If so, clause (ii) applies and we need only find a v with 
v = — 1 (mod 4). This is trivial if the at have not all the same residue (mod 4) . 
Tak ing therefore 

Xi = X3 — 2e, X2 = X3 — 2rj, e = 0 or 1, rj = 0 or 1, 
and 

t\ = 2 , ti = 2 , £3 = 1, t4 = . . . = h = 0, 

we see t h a t 10.6 holds with 

8 = X3, V = a\ + a2 + #3 = — «3 (mod 4) , 

which gives the desired result. 

https://doi.org/10.4153/CJM-1957-061-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-061-4


EQUIVALENCE OF QUADRATIC FORMS 541 

I t remains to be seen whether we have missed any of the possibilities for 
è (mod 2) or for b' (mod 8). As far as ô is concerned, the argument of (b) still 
holds. Considering the residue of b' modulo 8, suppose first t ha t no two of 
the exponents A* differ by 0, 2, or 4. Then if the sum in 10.6 contains three or 
more terms, t h a t in 10.5 is either empty or contains a single term with ex­
ponent 8 — 1 ; in either case 10.5 is impossible. If on the other hand the sum 
in 10.6 contains a t most two terms then the number of possibilities to be 
considered is very small, and it can easily be seen tha t b' has always a residue 
modulo 8 previously obtained with the same ô (mod 2). 

Suppose now t h a t there are two exponents whose difference is 0, 2, or 4. 
Then we have already proved — 3 G T ( 2 , / ) , and so need only consider br 

(mod 4), t ha t is, we may reduce 10.6 (mod 2Ô+2). This means, using 10.3, t h a t 
the terms with exponents h — 4, 5 + 2, go out. We may now suppose t h a t 
no two exponents differ by 1 or 3 ; for if such a difference occurs we already 
know t h a t a v in r ( 2 , / ) can be = — 1 (mod 4), so t h a t the residue of V 
modulo 4 need not be considered. For a similar reason, we assume tha t no 
three exponents have differences all < 2, by (c) (iv) of the lemma. Now the 
number of possibilities to be considered is again very small, and we omit the 
remaining details. 

COROLLARY. If p ^ 2 and Tp is not included in T(p, f) then p^k{k-l)\d. 
If T2 is not included in r ( 2 , / ) then 4^ ( * - 1 ) | d ; and if — 3 is not in r ( 2 , / ) , 

then S^^-^ld. 

Proof. For odd p, the present hypothesis, with par t (a) of the lemma, shows 
t h a t the exponents X* are all unequal . Their sum, say 0, is thus a t least 
§&(& — 1); and obviously pe\d. 

For p = 2, either hypothesis, with par t (b) of the lemma, gives v = 0. 
Now with 0 as above we have 

2d'\d, e' = 0 + 2 [i&]. 

If r ( 2 , / ) contains no v = — 1 (mod 4 ) , o r n o z i = — 3 (mod 8), then clauses 
(iii) and (iv), or (ii), of pa r t (c) of the lemma show tha t 

0 > O + O + 4 + . . . , o r 0 > O + l + 6 + . . . . 

By a simple calculation, this gives | 0 ' or §0 '> \k(k — 1), which completes 
the proof. 

We deduce: 

T H E O R E M 4. Suppose that f is indefinite, k > 3, and let dx be the greatest 
integer whose \k{k — l ) t h power divides d. Suppose also that d\ = 1,2,4, p or 
2p, p = — 1 (mod 4). Then the class-number of f, in the strict sense, is 1. 

Proof. I t is sufficient, by Theorem l( i i i ) , to show tha t T+(f) = Td. We 
know (since n, q in 4.4 may be replaced by — n, — q) t h a t — 1 is in T+(f). 
So it suffices to find a subgroup of T+(f) which either coincides with Td or is a 
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subgroup of index 2 of Tdt not containing — 1. W e obtain such a subgroup by 
pu t t ing w = 1 in 5.3, dropping the accent s i n c e / is indefinite. This subgroup 
is 

n jrfei)nrf) = j n r(p,f)\ nrd, 
by Lemma 5, Corollary. By the present hypotheses this reduces to Td if 
di = l o r 2 , and if di = 4 to T(2,f) C\ Tdj including, by the corollary, all 
q = 1 (mod 4) in Td. If d\ = p or 2p, p = — 1 (mod 4), then the subgroup in 
question is T(p, f) P\ Td, wi th (— l\p) = — 1, whence it does not include 
— 1, if it is proper. 

11. F a c t o r i z a t i o n of a u t o m o r p h s . We prove: 

L E M M A 6. Every automorph S of f is expressible as a product of automorphs of 
the special type 4 . 1 ; that is, we may write 

11.1 S = U(U) . . . U(th), \S\ = ( - 1)*, h > 0, 

for suitable t u i = 1, . . . , h, with fit i) not zero. If p is odd and does not divide 
the denominator of 5 , then we may choose the t* so that p does not divide the 
denominator of any of the U(ti). 

Proof. I t suffices to prove the second pa r t ; the first is well known. W e 
proceed by induction on k; for k = 1 the lemma is trivial since 5 can only be 
± / , and U(t) can only be — I. 

Consider first, for k > 2, the special case 

11.21 / = anXi + g, 
11.22 A = [2an, B], 
11.23 S = [1, T], 

T being necessarily an au tomorph of the (k — l ) - a ry form g = g(x2, . . . , xk). 
For s u c h / , consider the U(t) with t\ = 0; we see from 4.1 t h a t 

11.3 U(t,A) = [1, U&B)], i f t = {0,Ç} 

and 11.2 holds. T h e induct ive a rgument thus gives the result a t once. No te 
t h a t if 11.21 holds and the first column of 5 is {1,0, . . . , 0}, then the first 
row of 5 mus t be (1,0, . . . , 0), so t h a t 11.23 holds for sui table T. 

Now make the weaker hypothesis t h a t 5 has first column {1,0, . . . , 0} and 
p K #ii- T h e subst i tu t ion 

xi —*xi — ai2x2 — . . . — aikxk, xt —> 2auXi (i > 1), 

has a mat r ix P wi th de te rminan t (2an)1c~1 pr ime to p. I t t a k e s / into a form 
fp of the type 11.21, with an au tomorph P~*S P which has denomina tor 
prime to p and first column {1,0, . . . , 0}. So by 4.3 with R = P we have the 
desired result in this less special case. 

Now in the general case (using 4.3 again, wi th suitable integral R wi th 
de te rminan t 1) we m a y suppose p \ an ( s i n c e / m a y be taken to be pr imi t ive) . 
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The result will follow from what we have already proved if we can find t such 
that U(t) has denominator prime to p and U(t)S has first column {1,0, . . . , 0} ; 
that is, if 

U(t)Sy = y where y = {1,0, . . . , 0 } . 

For if so, we have U(t)S = Si, S = [7-1(t)Si = U{t)Si, for an Si for which 
the result has been proved. It will also suffice if we can make U(t)Sy = — y; 
for the denominator of U(y) is a divisor of an = / (y) , and so we may intro­
duce a factor U(y) (see 4.21). 

It suffices therefore to find t such that 

U(t)Sy = ± y , y = {1,0, . . . , 0}, p f / ( t ) ; 

for the last of these conditions ensures that p does not divide the denominator 
of U(t). We take t = y ± Sy, and it suffices to prove that, with proper choice 
of the ambiguous sign, we have 

11.41 U(y±Sy)Sy = ± Sy, 

11.42 / ( y d = 5 y ) ^ 0 (modp), 

for y such that p \ / (y) . 11.42 is clear from 

/ ( y db Sy) = h (y' ± y'S') A (y =fc Sy) = f(y) +f(Sy) ± y'ASy = 2/(y) ± y ^ 5 y . 

For if 11.42 fails for both choices of the sign, then p\4f(y). Now (with either 
sign) U(y db Sy) takes y ± Sy into — (y db Sy) by 4.21, and leaves y + 5y 
invariant, by 4.22; for 

(y' ± y'S')A (y ± Sy) = 2/(y) - 2/(5y) = 0. 

Hence 11.41 holds; and this completes the proof. It is of interest to note that 
we cannot always take the U(tt) in 11.1 to have odd denominators when 
the denominator of 5 is odd. That is, the second part of the lemma fails for 
p = 2. To show this, take k = 4, 

/ = Xl + ^1^2 + %2 + #3 + #3^4 + X4 , 

and let 5 be the matrix interchanging xi and x3, x2 and x±. If U(t) has odd 
denominator, then, by 4.1, 4.5 must hold, with 5 = 0 since d = 9 is odd. That 
is, / ( t ) must be odd. This gives that ti, t2 are both even and t%, t± not both 
even, or vice versa. Then a simple calculation shows that the {i, j) element 
of U(t) must be even for i < 2, j > 2 or vice versa. Any product of matrices 
with this property has the same property; but S1 has not. 

12. Definition and properties of v(A, S). We define v(S) = v(A, S) 
by 11.1 and 

12.1 u2v(S) =Tlf(Xi),u integral, v(S) g T. 

Although the factorization 11.1 is not unique, it is known (see 2, Sâtze 4.4, 
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4.5; and 4) that v(A, S) depends only on A and 5. It is essentially the spinor 
norm of S as defined by Eichler (2). Clearly 

12.2 v(S1S2) = w(S2Si) = »(5i)-»(52). 

From 4.3 (with \R\ ?* 0), 

12.3 v(R'AR, R-'SR) = v(A, S). 

In case 11.2 holds, we take the factors in 11.1 to be of the type 11.3, and so 

12.4 v(A,S) = v(B, T). 

The property of v (S) that we need to prove Theorem 3 is given in the first 
assertion of the following lemma; the second assertion is put in to simplify the 
proof. 

LEMMA 7. Let S be any automorph of f with denominator prime to p. Let Vi 
be any element of T such that, for suitable u, 4.5 can be satisfied with b = u2V\. 

Then v(S) is in T(p,f) if \S\ = 1, in vx. T(p,f) if \S\ = - 1. 

Proof for p ^ 2. First suppose S = U(t). The hypothesis that p does not 
divide the denominator of 5 shows, using 4.1, that t must satisfy 4.51, 4.52, 
implying as we have seen 4.53, for some 5; whence b = f(t) satisfies 4.54. 
Taking in 4.6 bi = / ( t ) , b2 = u2Vi, we find an element of T(p, f) which is 
clearly Vi-v(U(t)). Hence v(U{t)) is in v\. T(p,f), since Pi-Pi = 1. This gives 
the result in the special case when h = 1 in 11.1 ; it follows generally by Lemma 
6. 

The case p = 2 is much more difficult since we cannot use Lemma 6. We 
shall proceed by induction on k; the case k = 1 is trivial as noted in the proof 
of Lemma 6. We shall also assume (see 5.6) t h a t / is primitive; but an imprimi­
tive (k — l)ary form may have to be considered in the induction. The argu­
ment used in the case p 9e 2 shows that the hypotheses and conclusion of 
the lemma are unaltered, except for interchange of the two cases, if 5 is 
replaced by SU(t) or by U(t)S, the denominator of U(t) being odd. We 
devote the next section to a preliminary simplification of the problem. 

13. Proof of Lemma 7 for p = 2 (preliminary). We prove first: 

LEMMA 8. Write for brevity y = {1,0, . . . , 0}. Then Lemma 7 (with p = 2) 
is true in the following three cases (assuming the inductive hypothesis) : 

(i) /(y) ^ 1 (mod 2), 2 | y'A, Sy = ± y; 

(ii)/(y) = 1 (mod 2), 2 \ y'A, Sy = ± y; 

(iii)/(y) s 4 (mod 8), 2 \ y'A, Sy = ± y. 

Proof, (i) We begin with the still more special case 11.2. Taking h = 0 
in 4.5, we see that all the values of b that are possible with g in place of / 
are also possible wi th/ ; hence r (2, j ) ç r (2,/) . Moreover, the vi of Lemma 7 
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may be taken to be a value of b arising from 4.5 with t\ = 0. Hence this special 
case can be dealt with as in Lemma 6, using 12.4, instead of factorizing the 
matrix T, to apply the inductive hypothesis. 

In the general case, we have an odd and ai2, . . . , a\k all even. As in the 
proof of Lemma 6, it suffices to remove the product terms involving X\ by a 
transformation with integral coefficients and odd determinant, and then 
apply 12.3. The required transformation is 

%i —>x — |ai2x2 — . . . — \uxk, xi —>anXi {i > 1). 

(ii) The transformations needed to make / satisfy 3.4 can be chosen so as 
to leave an and y invariant. We may therefore assume 3.4, with /zi = 0 since 
2 \ y'A means that one of ai2, . . . , a\k (necessarily a i2 in 3.4) is odd; and we 
write 3.4 for brevity as 

13.1 / = anXi2 + auXiX2 + a22x2
2 + yp (mod 2 )̂ (an odd). 

Write M = [1,4, • • . , 4]. 
It is clear that M~lSM, which is 

f ±1 4a'\ 

if 5 is 

V 0 5 2 2 / ' 

has the same odd denominator as S and satisfies M~lSMy = y (that is, has 
y = {1,0, . . . , 0} as its first column). M~l SM is an automorph of 

13.2 fM = anXi2 + 4auXiX2 + 16a22x2
2 + 16^ (mod 2^). 

fM satisfies the conditions of part (i) of the lemma, and so Lemma 7 is true 
with fM, M~lSM for / , S. It follows also for / , 5, using 12.3 with R = M, if 
we can prove that T(2,fM) = T(2 , / ) . 

Now from 13.2 we see t h a t / M goes, by a trivial unimodular transformation, 
into a form congruent modulo 2^ to 

13.3 anXi + 4a22'x2
2 + 16^, a22' = — an (mod 4). 

r ( 2 , / ) includes T2 by Lemma 5(b); as does T(2,fM), by Lemma 5(b) if 
applicable, or by Lemma 5(c), which shows that T(2, fM) contains — 3 
(clause (ii)) and also an integer congruent to aiia22' = — 1 (mod 4). To prove 
T(2,fM) = r ( 2 , / ) we therefore need only show that both or neither of these 
groups contains even v. Comparing 13.1 and 13.3, with \f/ in each case written 
out in full, we see that both or neither contain two exponents of opposite 
parity, and both or neither contain terms satisfying 10.4. This gives the 
result. 

(iii) This case can be reduced to case (ii). We use the same M, and cancel a 
divisor 4 from fM. The argument is similar but a little simpler. 
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We deduce 

LEMMA 9. Lemma 7 is true for p = 2 (assuming the inductive hypothesis) 
if there exist either y, b satisfying 

13.4 / (y) s 1 (mod2) ,2 | y^ ,2 5 | | / ( y ± Sy), 2 5 | ( y ' ± y 'S 'M, 

(zw% either sign) or z satisfying 

13.5 zMSz == 1 (mod 2). 

Note that 13.4 can be satisfied, if at all, with primitive y, so we may suppose 
y = { i , o , . . . , o}. 

Proof. From 4.1, 13.43, 13.44 we see that the denominator of U(y d= Sy) 
is odd. Hence we may, as noted at the end of § 12, replace 5 by U(y zb Sy)S 
= Si, say. As we saw in the proof of Lemma 6, S{y = ± y. Thus by assertion 
(i) of Lemma 8, 13.4 implies Lemma 7. 

Now assume 13.5, with /(z) odd. We have 

/ ( z + Sz) = 2/(z) + z'ASz = 1 (mod 2), 

so the denominator of U(z + Sz) is odd. Replacing 5 by U(z + Sz)S, Lemma 
8(h) with y = z gives the result. If / (z) = 4 (mod 8), we similarly apply 
Lemma 8 (iii). 

If 13.5 holds with/(z) = 2 (mod 4) or 0 (mod 8), we need only show that 
there exists y with y'ASy odd and /(y) odd or congruent to 4 modulo 8. We 
can find C with z'̂ 4< odd, since 13.5 gives 2 \ z'A. We put y = z + 2aÇ, 
with suitable a. Clearly 

y'ASy = z'ASz = 1 (mod 2), 

/(Y) = / ( z ) + 2 a z ^ C + 4a2/(C), 

whence /(y) = /(z) db 2, /(z) + 4 (mod 8) for a = ± 1, 2. Hence the result. 

14. Completion of proof of Lemma 7; proof of Theorem 3. Suppose 
first that HI = 0 in 3.4. Then Lemma 7 is true for p = 2 if we can satisfy 13.5. 
This is possible unless AS is congruent (mod 2) to a skew matrix. We suppose 
therefore that this is so; and further, since we may replace S by SU(t) if 
f(t) is odd, making the denominator of Z7(t) odd, that ASU(t) has the same 
property for every such t. We shall show that this leads to a contradiction by 
assuming 3.4, with fii = 0 and an odd, as we may since <£i represents odd 
integers. We take t = {1,0, . . . , 0}, so tha t / ( t ) = an is odd. A simple calcula­
tion shows that U(t) is congruent (mod 2) to the matrix with l's on its 
diagonal and in the (1, 2) position and 0's elsewhere. Then if Si, S2 are the 
first two column vectors of S, those of AS are, by 3.4, congruent modulo 2 
to s2, Si; and those of ASU(t) to s2,Si + s2. With AS and ASU(t) both skew 
modulo 2 we must have S2 = 0, \S\ = 0 (mod 2), which is impossible. 
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We may therefore suppose, since/ is assumed primitive, that in 3.4 we have 
Ai = 0 and all the /xp positive. We may also suppose that no /xp is 1, since 
otherwise Lemma 5(b) gives T(2, / ) = T, and we have nothing to prove. 

If three or more of the X* are 0, then 10.4 holds, and by Lemma 5(b) or 
(c) (i), (ii), (iv), we again have r (2 , / ) = T. We therefore assume that at most 
two of the A* vanish, and so rearranging the terms of 3.4 we may suppose 

14.1 A = [2,2 x ,+1, 0, . . . , 0] (mod 4). 

It suffices now to deduce from 14.1 that 13.4 can be satisfied with 
y = {1,0, . . . , 0}. This choice of y certainly satisfies 13.41 and 13.42. We 
choose the sign in 13.43 so that this condition holds with 8 = 1 or 2; for the 
•sum of the two numbers 

f(y ± Sy) = 2/(y) + y'ASy is 4/(y) ^ 4 (mod 8). 

Now 13.44 is certainly satisfied if Ô = 1. 13.43 holds with 5 = 1 if y^4Sy = 0 
(mod 4). If this is not so, then with 5y = £ = {£i, . . . , £*} we have £i odd. 
If so, then by 14.1 we have 

1 ^ f(j) - KSy) s 1 + 2X% (mod 2). 

Thus 2X2£2 is even, and this with 14.1 gives 13.44 with 5 = 2. 

Proof of Theorem 3. For the reason noted in §9, we may suppose \S\ = 1. 
Since no p dividing d divides the denominator of 5, we have v(S) Ç T(£, / ) 
for each such p, by Lemma 7. If/ is definite, then by 11.1 with h even since 
j5| = 1, we have v(S) > 0.. Hence if we write 

v(S) = wqu w\d, qx > 0, qi G Td, 

we have by Lemma 1 gi Ç T+(/). It suffices to prove q± = q(S). 
This is equivalent to showing that if p K d then p\v{S) if and only if p\q(S). 

We shall prove this for all S with denominators prime to d (without the 
restriction |5| = 1). For simplicity we shall assume that either p does not 
divide the denominator of S, or the numbers dt(S,p) defined in §7 are 
— 1,0, . . . , 0,1 (see 7.3, with R = S). It is clear from §9 that these are the 

only cases of Theorem 3 that are needed to prove Theorem 1. Other cases can 
however be dealt with similarly. In the second case, Lemma 4 shows that we 
can write 5 = U(z)Si, where p\\f(z) and Si has denominator prime to p. 

Now in the first case, when p does not divide the denominator of S, we have 
from Lemma 7, v (S) G T(p,f)\ that is, by 4.7, p \ v (5), and clearly p \ q(S). 
In the other case p divides q(5), and using 12.2 we have v(S) = z>(Z7(z)). 
v(Si), that is, v(S) is f(z)v(Si) with its square factor removed. Since p\\f{z) 
and, by what we have just proved, p \ v(Si), this gives p\v(S), and the 
proof is complete. 
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