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Abstract 

Manually exploring the solution space for different variants of a product for a given set of requirements is 

ineffective regarding product development time and adaptation to dynamic customer requirements. Variant 

generation coupled to optimization algorithms offers possibilities to search the solution space in an automated 

way. This paper provides a framework to build a generative parametric design environment for functional 

assemblies by implementing analysis as well as synthesis methods in computer-aided tools. The procedure is 

presented using the example of a coffee machine. 

Keywords: generative design, knowledge-based engineering (KBE), design optimisation, computer-
aided design (CAD) 

1. Introduction 
Over the last two decades Computer-aided development environments have increasingly found their 

way into product development. Especially in development of product variants for different use cases 

and requirements, they aim to partially or fully automate the design process. With increasing product 

complexity target group specific products are required in even shorter development cycles (Eigner et 

al., 2014). This results in a high number of variants, which increases the product development effort at 

all. Generating new conceptual changes or variants for existing products is time and cost-intensive. Even 

small changes to a different individuals needs can lead to high number of necessary analysis routines 

and model changes, which is often performed manually by design engineers with the help of adaptation 

and variant design methods. Challenges in the creation of automated design environments lie in the 

formalizability of analysis-synthesis routines as well as in building of complex product models and 

corresponding inference mechanisms robustly in order to avoid instability problems in case of 

parametric and topological changes to the geometric model (Li et al., 2019; Amadori et al., 2012). With 

the generation of explicit models by parametric modelling (Kim and Han, 2007), the manipulation by 

feature-based modelling (Yin and Ma, 2012) and knowledge-based engineering (Hirz et al., 2013; Boyle 

et al., 2011), several methods have already been proposed to meet these challenges. However, quick 

customizing of products depends on structured knowledge of design engineers, the degree of automation 

in design tasks as well as the usage of knowledge-based engineering methods. In this paper we discuss 

the use of generative design methods to realize an automated exploration of solution spaces in the 

concept phase of product development. Therefore after a snapshot of existing design automation 

methods in literature, a framework is presented to embed existing product models into automated design 

environments. The approach is then applied to the use case of coffee machine as a benchmark problem 

and the results are discussed. 
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2. Methods to support the design automation process 
The following chapter presents some methods and tools frequently used in the literature to support 

partially and fully automated product design process. For this purpose, a focus is given to parametric 

modeling, knowledge-based engineering systems as well as generative design approaches. 

2.1. Parametric modeling 

In parametric modelling, properties and dependencies of product models are described by using variable 

quantities (parameters) in model description. The changes of parameters directly lead to changes in the 

model. Parameters can have a range of values or relationships among themselves, which are defined 

according to certain rules (arithmetic, logical or geometric dependencies). Through these rules, the 

product and design logic can be stored in the model (Vajna et al., 2019). This creates a generic model 

in which relationships between parameters are defined. Thus parametric modelling offers potentials in 

rapid generation of design solutions with respect to changing geometrical requirements, since the 

geometrical models are not static due to predefined values as in conventional CAD. This distinguishes 

parametric modelling from variant design (Vajna et al., 2019; Hoffmann, 2005). By changing the system 

parameters, not only the design structure is updated but also the geometric consistency of the model is 

checked (Eigner, 2014). Parametric modelling not only defines the geometry of part files, but also 

parametrizes at assembly level. In a CAD model, assembly files are responsible for grouping and 

positioning parts. Accordingly, the implementation of assembly level parameters is divided into three 

different categories. In the absolute positioning concept, all objects in the CAD model are defined with 

their positions based on the original coordinate, without creating any dependencies between geometry 

elements. This method is time consuming if adjustments are needed. Relative position is a multilayer 

dependency network and it connects objects relative to each other using a geometric constraint method. 

Compared to absolute positioning this procedure is a more automated method that relies on position 

updating. The third method is the design skeleton, which is a combination of the two methods mentioned 

above. The flexibility of a parametric model depends on the predefined dependencies between the 

parameters as well as the set of boundary conditions. Once these are set, the model loses flexibility 

because the solution space cannot be extended afterwards. Therefore, the design task must be studied 

beforehand in order to define which component variants are to be represented and which sequence of 

operations is necessary for this (Li et al., 2019). 

2.2. Knowledge-Based Engineering Systems 

Knowledge-Based Engineering Systems (KBES) can be understood as a collective term for computer 

aided problem solving tools (Milton, 2008). They provide knowledge-based support for the design 

process by reusing predefined methods, algorithms or results and integrate specific tasks or workflows 

involved in the design process to achieve a partially automated design of product models based on 

requirements and restrictions (Hirz et al., 2013; Verhagen et al., 2012). In most cases parametric 

modelling is used as a single tool. In order to perform an automation of the design process by means of 

KBES, these must have the ability to draw conclusions from existing problem descriptions and thus to 

eliminate the degrees of freedom in a product model by setting parameter values (Gembarski et al., 

2020; Sabin et al., 1998). KBES contains domain and process knowledge (Schreiber et al., 1994). The 

domain knowledge represents the solution space and the process knowledge specifies the solution 

exploration approach by e.g. parameter constraints, formulas or design rules (Gembarski et al., 2016). 

For the solution space exploration and accessibility, domain knowledge need to have a formalized and 

structural representation. This can be done by means of rule-based, case-based or model-based reasoning 

mechanisms (Bellemare, 2017). Once the knowledge about the technical problem is collected and stored 

in a generic, knowledge-based CAD, designers can modify existing design by changing the models input 

specifications to quickly create and evaluate different design variants (Li et al., 2019). In general the 

goal of KBES is to minimize time and costs of product development by automating repetitive, non-

creative design tasks, supporting multidisciplinary design optimization at all stages of the design process 

and thus providing support for solution space exploration (La Rocca, 2007). One well-known 

methodology to support a structured development of KBES is MOKA (Methodology and Tools Oriented 
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to KBE Applications). MOKA describes the capturing of engineering knowledge and the integration of 

it into KBE applications in six phases (Stokes, 2001):  

Identify: Determination of objectives and assessing technical feasibility. 

Justify: Evaluating commercial and technical aspects. 

Capture: Collecting and structuring of knowledge in informal models. 

Formalize: Transforming structured data into product/process models 

Package: Converting formalized models into code to be used in KBE. 

Activate: Distribution and installation. 

2.3. Generative Design Approaches 

Generative modelling is a method in which a components shape is iteratively adapted using existing 

input data. For this purpose rules from existing engineering knowledge are used to autonomously 

generate a high number of alternative solutions that meet specific requirements as well as restrictions 

([Li et al., 2019;  Sabin et al., 1998). Generative modelling usually starts by expressing design ideas 

through a set of algorithmic rules. Generative inference mechanisms allow design solutions to be 

automatically generated and visualized as outputs (Schreiber et al., 1994). Most of the generative design 

approaches uses graph grammar and spatial grammar to generate CAD Models. These have the potential 

to create structural components that can be used directly in a CAD environment (Gembarski et al., 2016). 

Graph grammar has a vocabulary of graphs and a set of rules to build a CAD model through a network 

of graphs. The set of rules has mechanisms that can identify structures within the graph network and 

replace them with another (Li et al., 2019; Cui and Tang, 2017). The spatial grammar uses a geometry 

representation and a vocabulary consisting of geometric parameters instead of graph network (Krish, 

2011). Currently, it is still a challenge to formalize engineering knowledge via rules. This is due to the 

large number of geometric dependencies and the geometric complexity in case of many sub components. 

CAD models can be represented by engineering languages, but the questions of how to many rules are 

needed and how to develop these rules and vocabulary based on existing knowledge need still to be 

investigated (Chakrabarti et al., 2011). According to Kris et al. the generative design process can be 

categorized in three main elements: A design scheme, a means of creating variations and a means of 

selecting desirable outcomes. (Krish, 2011). In addition, deep learning methods are increasingly being 

used for generative design as well. Oh et. al describe the application of generative adversarial networks 

for generating different design solutions with regard to the optimization of topologies (Oh et al., 2019). 

3. Generative Parametric Design Approach (GPDA) 
GPDA has been introduced for optimization of structural components (Li et al, 2019). To achieve 

efficient design solutions, GPDA combines the generative aspects of automatically replacing parts of a 

product model with the advantages of parametric modelling and thus leads to dynamic and robust 

product models. The basic idea of GPDA is to reduce global dependencies in CAD models, as these 

limits the flexibility. This can be accomplished by separating the model structure from the product 

structure of a component or assembly. Thus individual components no longer have to be a single CAD 

model but rather can be combination of several. Regarding assemblies the interfaces of the individual 

components are no longer where they are located in a physically existing product, instead they are at 

those points where the lowest dependencies for the overall model occur. The areas between interfaces 

are called design zones. These serve as placeholders for design elements that represents the individual 

solution variants of the design zone. Crucial in the design zone is the definition of reference interfaces, 

where reference geometry in the form of planes or curved surfaces is defined using a skeleton within 

the CAD model. The reference interfaces connect two design zones and ensure a continuous geometry 

transition. In addition to these interfaces, the dimensions and arrangements of the design zones are also 

defined by global parameters. The skeleton thus represents the highest level in the dependence chain, 

which is why its geometric stability must be guaranteed in any case. Within a design zone, design 

elements can be exchanged. This allows the GPDA to cover a larger solution space compared to purely 

parametric modelling, since topological changes can be made to the product shape in addition to scaling 

adjustments. (Li et al., 2019; Herrmann et al., 2021). In order to automatically generate an optimized 
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geometry through the above described model structure, a computer-aided development environment is 

required. This adapts the component geometry iteratively by alternating synthesis and analysis steps 

until the requirements are met, e.g. with an evolutionary algorithm. As design variables of the 

optimization algorithm the parameters of the design zones or design elements are used. As objective 

functions can requirements as well as certain user-based characteristics of the product can be 

implemented. In a previous work we introduced an overall architecture for GPDA environments (Figure  

1) in order to adapt the idea of GPDA to other domains besides structural engineering (e.g. functional 

assemblies) (Herrmann et al., 2021).  

 
Figure 1. Design environments according to the GPDA 

4. Problem analysis and scope of research 
The need for methods and development environments for automated design of products and variants is 

still a research topic of many scientific publications (Holder et al., 2019; Bursac, 2016; Schleich et al., 

2015). Generative design environments offer great potentials with regard to the possibility of virtual 

testing of different variants for given requirements before introduction to the market. Being able to 

compare and evaluate different variants and concepts for given usage scenarios with computer-aided 

tools accelerates the design process and increases its sustainability. For the integration of computer-

aided tools in the structure of such design environments, a representation of analysis and synthesis 

methods is necessary. In particular the implementation of synthesis methods is a challenge regarding 

the formalization. Approaches like graph-based languages go as far as to implement geometric 

properties into formalized modeling languages like UML or SysML and build-up a complex network of 

dependencies. These modeling languages either mainly focus on the product structure or only abstractly 

link sub-assemblies or parts with actual functional outcome or they are based on a discrete network 

which is rather inflexible upon changes. GPDA is a promising concept, because it offers many 

advantages to design engineers compared to other modelling approaches mentioned in section 2., which 

are listed below: (Li et al. 2019, Wolniak et al., 2020) 

Reduction of interdependencies by distinguishing modeling structure from assembly structure.  

Design elements are themselves parametric and can be developed independently. 

More robust solutions by establishing the relationship between functional and physical 

representations. 

Reusability of individual design elements stored in libraries for new product usage scenarios. 

Enlargement of the solution space by adding new design elements 

Automated comparability of conceptual changes. 
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While the effort for setting up a GPDA environment is higher compared to manual or knowledge-based 

design, the design effort for a new variant is lower in comparison (Figure 2) (Hermann et al. , 2021).  In 

manually design process, a few variants are evaluated to find a solution. In knowledge-based design, a 

higher number of variants can be generated semi-automatically by means of reasoning mechanisms.  

Coupling generative parametric models to numerical optimizers leads to a further solution space 

restrictions, but offers the potential to vary parameters of a geometric model as design variables in 

smaller steps and thus to evaluate more variants and concepts.    

 
Figure 2. Evaluation of concepts within a solution space 

In this work we investigate the transfer of GPDA to assembly level with a focus on functional 

assemblies. Functional assemblies are defined here as technical systems where the mass and energy flow 

between sub components of an assembly plays a significant role to satisfy the customer needs. The goal 

is to provide a framework that supports design engineers in creation of automated design environments 

for such assemblies and thus to help design engineers to identify the optimum for a variant/concept of a 

product faster than through manual iterations. Therefore engineers could apply the framework to their 

product portfolio and can react to new requirements through automated customization. The research 

questions to be answered here are following one: 

How to create a design environment, which automatically optimizes functional assemblies with 

respect to defined use cases and target functions? 

How can the knowledge transfer between a simulation domain, a geometrical domain and an 

optimization domain be realized? 

5. Procedure to create a GPDA environment for automated 
exploration of the solution space 

In order to transfer the GPDA concept to a designers own product model, the architecture of a GPDA 

design environment presented in chapter 3 (Figure 1) must be supplemented by a methodical approach 

broken down into individual steps. This section presents an approach to support the designer during the 

development of the GPDA environment and focuses on functional assemblies as defined in chapter 4. 

Therefore for the analysis domain a numerical optimization tool and for the synthesis domain a 

functional block simulation has been chosen.  As already mentioned, the approach proposed here focuses 

on the concept phase of product development. It can therefore be assumed that the product architecture 

is known as well as partial solutions for particular functions can be captured morphologically. Additional 

to the GPDA components mentioned in chapter 3 it is needed to distinguish the design elements of an 

assembly as following: 

Continuous design elements: A continuous design element is parameterized both within itself 

and relative to the associated design zone. These are components of the assembly that are 

variable in their geometric dimensions and can be alternated through optimization algorithms. 

Discrete design elements: Discrete design elements are components that are parameterized only 

in their positions relative to the design zone. They are standard components or purchasing 

components and stored in libraries (databases) to be alternated through optimization algorithms. 
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The procedure for developing the GPDA development environment is shown in Figure 3. 

 
Figure 3. Procedure to create a GPDA environment for functional assemblies 

6. GPDA environment of a coffee machine 

6.1. Generative parametric geometry model 

To illustrate the idea of GPDA for functional assemblies this chapter focuses on an application example 

of a coffee machine. Based on the analysis of the products function structure, eleven design zones are 

defined, which are shown in Figure 4(a). Each design zones contains design elements (1 element to n 

elements). For example the design zone drawer contains some discrete design elements pump, heating 

element and elements for the transport of water/coffee such as tubes and hoses. Design zone brewing 

chamber consists of two continues design elements, which are the brewing chamber (Figure 4 (c), yellow 

component) for coffee itself and a surrounded one for waste storage (Figure 4 (c) red component). 

   

 

Figure 4. Geometry domain of the GPDA – (a) Design zones of the coffee machine; (b) Example 
of variants of discrete design elements within the design zone drawer; (c) Example of variants 

of the continuous design element brewing chamber 

2 

(a) (b) 

(c) 
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Once the design zones are identified and design elements are assigned, parameterization begins. 

Therefore the overall boundaries of the solution space has to been defined (maximum size of the coffee 

machine). In a next step, the design zones are parameterized relative to each other using the design 

skeleton in three axis (Figure 5). The skeleton is represented through the reference interfaces, which 

will be drawn on the planes of the skeleton depending on the design elements located at the interface. 

 
Figure 5. Design skeleton of the coffee machine 

Afterwards the design elements are described with the parameters of the design zones. I.e. for the design 

zones the design skeleton provides the leading parameters, for the design elements the design zone 

provides the leading parameters. The design elements are parameterized both in itself and in relation to 

their position within the associated design zone. Once the parametrization is done, the logic is 

implemented rule-based in the CAD software. In order to be able to compare different solutions for a 

design element in an optimization environment, the desired variants for the design elements are stored 

in libraries (e.g. different types of pumps shown in Figure 4). The individual design elements are rule-

based assigned to values in the CAD Software which are later used as design variables in the 

optimization environment. This is how the exchange of design elements can be realized.  

6.2. Functional simulation model and optimization environment 

The next step is to set up a simulation model in which the essential functions of the coffee machine can 

be simulated. For this purpose, a function block simulation is set up in Matlab/Simulink. Here, the 

performance of the coffee machine is expressed in functions with the help of the geometric parameters 

of the GPDA model (e.g. diameter of brewing chamber) and the performance values of the functional 

components such as pumps and heating elements. The functional model must be able to calculate 

objective-function relevant variables. In the case of the coffee machine, variables such as operating time 

for a certain number of cups and water consumption could be used. Depending on the size and variant 

of the design elements, these customer-relevant quantities will change. Furthermore, the implementation 

of a user scenario in the function block simulation is required in order to be able to represent the time-

based consumption behavior at the coffee machine. For this purpose, look-up tables can be used in 

Simulink such as shown in Figure 6. 

 
Figure 6. User-scenario in office environment 

Once the function block simulation is set up, the output of the simulation has to be coupled with an 

optimization algorithm. For example, the water consumption and the operating time are used as 

objective functions in a multi-objective optimization environment. In both cases a minimum is the 

objective. The geometric parameters of the design zones, which are relevant with regard to the objective 

function are used as design variables of the optimization algorithm. Furthermore, the use of different 
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solutions of design elements are also varied via design variables.  Figure 7 shows the optimization 

process. In Autodesk Inventor, the parameters of the design zones are described as user parameters. 

Relative to these, the design elements are parameterized as described above and also saved as user 

parameters. The design zone parameters are alternated via the optimization algorithm (top right of Figure 

7). These x values are alternated between 0 and 1, which leads to increasing and decreasing of the design 

zones. This in turn leads to specific design element dimensions, which are transferred back to 

Matlab/Simulink via the .Net interface. With the help of these values (e.g. diameter of the design element 

scalding chamber), the objective function-relevant variables are calculated (e.g. number of available 

coffee at a defined time period). Figure 7 further shows different expressions of the design zones during 

optimization. The "drawer" and "coffee buffer tank" design zones are also shown as examples with the 

different variants of the design elements during optimization. 

 
Figure 7. Optimization process and parameter transfer between GPDA domains 

6.3. Results of the multi-objective optimization  

For the optimization the non-dominated sorting genetic algorithm (NSGA-II) was used, which is a multi-

objective approach and performs reasonably in design problems (Liddicoat, 2016). The selected user 

scenario is a period of three hours in the morning where guest have to be served at several peak hours 

with a cup of coffee (Figure 6). As design variables normalized parameters of the design zones (top right 

of Figure 7) have been used as well as different types of heating elements and pumps. The alternation 

of the different pumps and heating elements in the simulation was enabled through assigned values 

between 0 and 1. The results of the multi-objective optimization are plotted in Table 1 and Figure 8. 

Each point in Figure 8 refers to different settings of the design variables and thus represents different 

geometric values of the product model in the GPDA model. For example, Figure 8 shows the values of 

the design variables by which pump and heater types are assigned in the geometric model. Also, each 

value of the water consumption-working time combination can be assigned geometric values of the 

design elements in the GPDA model. Thus, each point in Figure 8 represents a variant. The optimal 

variants are located on the Pareto front. Based on this information, it was determined that the 

accumulation of solution points on the right represents small pump scenarios. There is also another 

vertically clustered group on the far right of the graph. Here are the scenarios which belong to the beyond 
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of the specified simulation time. On the other hand, according to the multi-objective analysis, it can be 

seen that the pareto front points (the far-left cluster) that dominate the other solution points are provided 

by using the concept of flow heater (pipe). Both Figure 4 and Figure 7 show some different geometric 

representations during optimization. 

   
Figure 8. Objective value space 

7. Conclusion and Outlook 
In the context of this work, the applicability of generative design approaches, in particular GPDA, to 

functional assemblies has been investigated. After a basic motivation of generative design environments 

and their potential in rapid variant generation and mass customization, the GPDA approach for structural 

components has been transferred to functional assemblies. The necessary methods and tools have been 

discussed and recorded in a framework. The proposed generative development environment consists of 

three domains: an analysis tool, a synthesis tool and a generative parametric geometry model. The 

linking of a geometry model, an optimization and a simulation environment can enable the automatic 

search for optimal variants within a restricted solution space of a product. A methodical approach has 

been proposed for the application of such design environments in the concept phase of product 

development. The developed approach was discussed using an example of a coffee machine. The results 

show that with the help of a GPDA environment, which uses numerical optimization as a synthesis tool 

and parameters of a generative parametric geometry model as design variables, optimal variants can be 

identified for given user scenarios. The main advantage of this fully model-based design environment 

is that the libraries for design elements can be extended at any time and existing solutions can be reused 

for new requirements. The effort required to develop such GPDA environments may be high, but at the 

same time it offers the potential to react quickly to dynamic changes in the market. The developed 

framework needs to be investigated in future work on further application examples to ensure its 

generalizability. Future challenges are to guarantee the relative parameterization of moving parts within 

the GPDA when these parts move across several design zones and providing a methodical framework 

to identify optimal design zones. 
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