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Maximal real varieties from moduli constructions

Lie Fu

Abstract

A real variety whose real locus achieves the Smith–Thom equality is called maximal .
This paper introduces new constructions of maximal real varieties, by using moduli
spaces of geometric objects. We establish the maximality of the following real varieties:

– moduli spaces of stable vector bundles of coprime rank and degree over a maximal
real curve (recovering Brugallé–Schaffhauser’s theorem with a short new proof),
which extends to moduli spaces of parabolic vector bundles;

– moduli spaces of stable Higgs bundles of coprime rank and degree over a maximal
real curve, providing maximal hyper-Kähler manifolds in every even dimension;

– if a real variety has maximal Hilbert square, then the variety and its Hilbert cube are
maximal, which happens for all maximal real cubic 3-folds, but never for maximal
real cubic 4-folds;

– punctual Hilbert schemes on a maximal real surface with vanishing first F2-Betti
number and connected real locus, such as R-rational maximal real surfaces and some
generalized Dolgachev surfaces;

– moduli spaces of stable sheaves on an R-rational maximal Poisson surface (e.g. the
real projective plane).

We highlight that maximality is a motivic property when interpreted as equivariant
formality, and hence any real variety motivated by maximal ones is also maximal.
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1. Introduction

1.1 Background

A real structure on a complex manifold X is an anti-holomorphic involution, that is, a
diffeomorphism

σ : X →X,

satisfying σ2 = idX and σ∗I =−I, where I denotes the complex structure on X. In this paper, a
real variety (or R-variety) refers to a pair (X, σ) consisting of a complex manifold X and a real
structure σ on it. If there is no risk of confusion, we may omit the reference to σ in our notation.
The real locus of (X, σ), denoted by X(R), is defined to be the fixed locus of the involution σ.
When X(R) �= ∅, it is a differentiable submanifold of X, and its real dimension is equal to the
complex dimension of X. These concepts can be extended to the setting of complex analytic
spaces.

In algebraic geometry, a real form of a complex algebraic variety X is an algebraic variety
X0 defined over R such that X �X0 ×SpecR SpecC as C-varieties. For a quasi-projective complex
variety X, there is a natural bijection between the set of its real forms (up to R-isomorphism)
and the set of real structures on X(C) (up to conjugation); see [Har77, Exercise II.4.7]. In
this paper, we will use both perspectives interchangeably. Except in Section 11, X denotes the
complex space X(C).

As was included as the 16th problem in Hilbert’s famous list [Hil00], real algebraic geometry
has a central theme of studying the topology of the real locus X(R) and its relation to the com-
plex geometry of X. This subject predates complex algebraic geometry, as seen in the classical
Harnack theorem from 1876 [Har76], which states that a real plane curve of degree d has at
most d2−3d+4

2 connected components. In 1882, Klein [Kle82] found an intrinsic generalization of
this theorem to any genus-g compact Riemann surface equipped with a real structure, showing
that the real locus can have at most g+ 1 connected components (which are circles). This result
on curves is generalized to arbitrary dimensions through the Smith–Thom inequality ; see, for
example, [DIK00, §1.2] and [Man20, Theorem 3.3.6].

Theorem 1.1 (Smith–Thom inequality). Let (X, σ) be a real variety of dimension n. We have
the following inequality for the total F2-Betti numbers:

b∗(X(R), F2)� b∗(X, F2). (1)

Here for a topological space W , its total F2-Betti number is b∗(W, F2) :=
∑

i bi(W, F2) with
bi(W, F2) := dimF2

H i(W, F2).
When equality in (1) holds, we call (X, σ) amaximal real variety (orM-variety). Maximal real

varieties have attracted significant research interest over the decades. Intriguing properties are
uncovered for those real varieties, such as the Rokhlin congruence theorem for even-dimensional
maximal smooth projective real varieties: χtop(X(R))≡ sgn(X) mod 16; see [Man20, Theorem
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3.4.2]. On the other hand, providing a rich supply of examples of maximal real varieties has
always been an important task, but constructing them has proven challenging, particularly
in higher dimensions. For curves and surfaces, the construction problem has been extensively
studied, and for certain class of varieties (e.g. K3 surfaces) even a classification up to real defor-
mation is partially achieved; we refer to [Man20] for an account. However, the available methods
for constructing higher-dimensional maximal real varieties have been somewhat limited. Viro’s
combinatorial patchworking for hypersurfaces [IV07] is currently the most powerful method. We
refer to [BS22, §3] for a recent summary.

1.2 Results

The main objective of this paper is to present a new type of construction that produces new
maximal varieties from existing ones. Our approach can be loosely described as ‘taking moduli
spaces of objects on a maximal variety’, where objects can refer to algebraic cycles (or flags of
such), vector bundles, coherent sheaves (or complexes of such) and so on. We have achieved the
following concrete results.

(i) We provide a short and computation-free proof of Brugallé–Schaffhauser’s result
(Theorem 5.3) that, for coprime integers n> 0 and d, the moduli space MC(n, d) of stable
vector bundles of rank n and degree d on a maximal curve C is a maximal variety, and vice
versa if C(R) �= ∅. The same result holds for the moduli spaces of stable parabolic bundles
with full flag type (Corollary 5.5).

(ii) By adapting our new proof in (i) to the context of Higgs bundles, we establish the max-
imality of the moduli space HC(n, d) of stable Higgs bundles over a maximal curve C of
coprime rank and degree (Theorem 6.3).

(iii) If a real variety X has maximal Hilbert square X [2] and X(R) �= ∅, then X itself, its Hilbert
cube X [3] and the nested Hilbert schemes X [1,2] and X [2,3] are all maximal (Theorem 7.3).

(iv) For a maximal real smooth cubic 3-fold, all the smooth (nested) Hilbert schemes are
maximal (Theorem 7.5). On the contrary, for a maximal real smooth cubic 4-fold, its
Hilbert square is never maximal (Theorem 11.12).

(v) If a smooth projective maximal R-surface S satisfies H1(S, F2) = 0 and S(R) is connected,
then the nth punctual Hilbert scheme S[n] is maximal, for any n> 0 (Theorem 8.1). This
result applies, for example, to maximal R-rational real surfaces (Corollary 8.6), to some
surfaces of Kodaira dimension 1 (Corollary 8.9) and to smooth projective real surfaces
with Tate motives (Theorem 11.10).

(vi) For integers r > 0, c1, c2 with gcd
(
r, c1,

c1(c1+1)
2 − c2

)
= 1, the moduli space of stable

sheaves on P2
R
with rank r and first and second Chern classes c1 and c2 is also maximal

(Theorem 9.1).

(vii) For a Poisson R-surface S satisfying the K-maximality condition (Definition 4.1) and a
generic real ample line bundle H, the moduli spaces MH(S, v) of H-stable sheaves with
Mukai vector v on S are maximal (Theorem 10.1). This result applies, for example, to
R-rational maximal real Poisson surfaces (Corollary 10.2).

In all of our results, we implicitly include the claim that the moduli space (or Hilbert scheme)
under consideration has a natural real structure. The maximality referred to in the conclusion
is with respect to this real structure.
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1.3 Motives

In addition to providing examples of maximal varieties obtained via moduli constructions,
another important aspect of the paper is to highlight, in Section 11, the significant role played
by motive and its equivariant formality in the study of maximal real varieties.

We observe that the maximality of real algebraic varieties is a motivic property, determined
solely by the homological real motive with F2-coefficients of the real variety (Definition 11.2). As
a consequence (Corollary 11.7), if a real algebraic variety Y has motive contained in the tensor
subcategory generated by the motives of some maximal varieties {Xi}i (in which case we say
that Y is motivated by the Xi’s), then Y is also maximal. From this motivic perspective, many
results established in this paper can be explained or reproved. Further details can be found in
Section 11.

1.4 Branes in hyper-Kähler manifolds

On a hyper-Kähler manifold X, an anti-holomorphic involution σ is referred to as an (ABA) or
(AAB) brane involution,

1

and its fixed locus, which is precisely the real locus X(R), is known as
an (ABA) or (AAB) brane in X, as defined in [BS14] (see also [FJM19, §2.3]). Regarding to the
Smith–Thom inequality, X(R) is called a maximal brane if the real variety (X, σ) is maximal.
Our aforementioned result (ii) on Higgs bundles provides examples of maximal (ABA) or (AAB)
branes in hyper-Kähler manifolds of arbitrarily high dimensions, which are non-compact but
have a complete hyper-Kähler metric. Another example of maximal brane in a non-compact
hyper-Kähler manifold is provided by the cotangent bundle of a maximal R-variety.

However, the situation is more intriguing for compact hyper-Kähler manifolds (see [Bea83]
and [Huy99] for generalities of such manifolds). On the one hand, in (complex) dimension 2,
maximal real K3 surfaces and abelian surfaces exist and have been thoroughly studied; see
[Kha76], [Sil89, Chapters IV, VIII]. On the other hand, Kharlamov and Răsdeaconu [KR23]
recently discovered that the Hilbert squares of maximal real K3 surfaces and Fano varieties of
lines of maximal cubic 4-folds are never maximal (see Remark 7.4). This leads to a challenging
question: does there exist maximal (ABA) or (AAB) branes in compact hyper-Kähler manifolds
of dimension � 4?

1.5 Structure of the paper

– Section 2 provides a brief overview of equivariant cohomology, Atiyah’s KR-theory and
Chern classes.

– Section 3 covers fundamental operations that preserve maximality of real varieties, including
products (Lemma 3.1), symmetric powers (Theorem 3.2), projective bundles or flag bundles
(Proposition 3.3), blow-ups (Proposition 3.5), flips and flops (Remark 3.6), generically finite
surjection with odd degree (Proposition 3.8), the Albanese variety and the Picard variety
(Proposition 3.10), the intermediate Jacobian of a maximal real cubic 3-folds (Proposition
3.14), etc. These results are either documented in the literature or well-known to experts.

– Section 4 introduces c1-maximality and K-maximality, discusses their relation to maximality
and provides some examples.

1The distinction between (ABA) and (AAB) depends on the action of the involution on the holomorphic symplectic
form.
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– The main results are presented and proved in Sections 5–10; please refer to the table of
contents.

– In Section 11, basic notions of motives are recalled and the notion of equivariant formality is
introduced. Maximality is reformulated in the context of motives, and Section 11.4 revisits
the results from a motivic point of view and provides some more applications.

2. Preliminaries

Throughout the paper, we denote G :=Gal(C/R), which is a cyclic group of order 2.

2.1 Equivariant cohomology

Let X be a complex variety or manifold. A real structure σ on X gives rise to an action of G on
X, where the non-trivial element of G acts by σ, an anti-holomorphic involution.

Let BG be the classifying space of G and EG its universal cover. These spaces are unique
up to homotopy equivalence. In the case where G�Z/2Z, we can use the infinite-dimensional
real projective space RP∞ (respectively, infinite-dimensional sphere S∞), endowed with the weak
topology, as a model for BG (respectively, EG).

Let XG :=X ×G EG be the Borel construction, where ×G denotes the quotient by the (free)
diagonal action of G. Given a coefficient ring F (such as Z or F2), we denote by

H∗
G(X, F ) :=H∗(XG, F )

the equivariant cohomology ring with F -coefficients.
We note that there is a natural fiber sequence

X ↪→XG →BG,

which gives rise to the Leray–Serre spectral sequence:

Ep,q
2 =Hp(G,Hq(X, F2))⇒Hp+q

G (X, F2). (2)

Here, the left-hand side is the group cohomology and Hq(X, F2) is viewed as a G-module.
More generally, if we have a G-module F , such as Z(r) := (

√−1)rZ, which is the G-module
with underlying group Z upon which the non-trivial element of G acts by (−1)r (hence only
the parity of r matters), then we have the corresponding local system on the Borel construction
XG, still denoted by F . We define H∗

G(X,F) to be the local cohomology H∗(XG,F), and the
Leray–Serre spectral sequence (2) generalizes to this setting. For example,

Ep,q
2 =Hp(G,Hq(X,Z(1)))⇒Hp+q

G (X,Z(1)). (3)

Remark 2.1 (Algebraic setting). For an algebraic variety X0 defined over R, and a torsion G-
module F , viewed as an étale sheaf on Spec(R), the equivariant cohomology H∗

G(X0(C),F)
discussed above is canonically identified with the étale cohomology H∗

ét(X0, a
∗F), where a∗F

denotes the pullback of the étale sheaf F to X0 via the structural morphism a : X0 → Spec(R)
(see [Sch94, Corollary 15.3.1]). Under this identification, the Leray–Serre spectral sequence is
identified with the Hochschild–Serre spectral sequence.

We will use the following basic fact.

Lemma 2.2. Let X be a real variety with X(R) �= ∅ and F a G-module (e.g. F2, Z, or Z(1)).
Then, for any i, the following pull-back map along the projection π : XG →BG is injective:

H i(G, F )
π∗−→H i

G(X, F ).
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Proof. We can choose a real point x∈X(R), which induces a section s : BG→XG of π.
Therefore, s∗ ◦ π∗ = id and π∗ is injective. �

2.2 Maximality

Recall that a real variety (X, σ) is said to be maximal if the Smith–Thom inequality in
Theorem 1.1 becomes an equality: b∗(X, F2) = b∗(X(R), F2).

We will use repeatedly the following result, which reformulates the maximality of a real
variety (X, σ) in terms of the surjectivity of the restriction map from equivariant cohomology
to ordinary cohomology. A proof in a more general setting can be found, for instance, in [tD11,
Chapter III, Proposition 4.16].

Proposition 2.3 (Maximality and equivariant formality). Let (X, σ) be a real variety. The
following conditions are equivalent:

(i) X is maximal;

(ii) the action of G on H∗(X, F2) is trivial and the Leray–Serre spectral sequence (2)
degenerates at the E2-page;

(iii) the restriction homomorphism H∗
G(X, F2)→H∗(X, F2) is surjective.

The condition (iii) is called the equivariant formality for the action of G on X (with
coefficients F2), see [Fra18]. This notion will be extended to motives in Section 11.

We state the following simple fact for future reference.

Lemma 2.4. Let (X, σ) be a real variety and let i be a natural number. Assume that H i(X,Z)
and H i+1(X,Z) are both 2-torsion-free. If the action of G on H i(X, F2) is trivial (e.g. when X
is maximal), then we have

H i(X,Z) =H i(X,Z)G ⊕H i(X,Z(1))G,

where H i(X,Z(1))G denotes the σ-anti-invariant part of H i(X,Z).

Proof. By the 2-torsion freeness assumption, H i(X,Z)G ∩H i(X,Z(1))G = 0 and we have an
exact sequence

0→H i(X,Z)
×2−−→H i(X,Z)→H i(X, F2)→ 0.

For any α∈H i(X,Z), since σ acts trivially on its image α∈H i(X, F2) by assumption, the above
exact sequence implies that there exist unique elements α1, α2 ∈H i(X,Z) such that α+ σ∗(α) =
2α1 and α− σ∗(α) = 2α2. Again by the 2-torsion freeness assumption, we have α1 ∈H i(X,Z)G,
α2 ∈H i(X,Z(1))G and α= α1 + α2. The direct sum decomposition is proved. �

2.3 K-theory

For a topological spaceX, Atiyah [Ati67] introduced the topological (complex) K-theory, denoted
by KU∗(X) in this paper.

2

One key property of the topological K-theory is the Bott periodicity,
which states that KU∗(X)�KU∗+2(X). Specifically, KU0(X) is defined as the Grothendieck
group of the category of C∞ complex vector bundles on X. Chern classes can be defined on

2The notation K∗
top is also commonly used in the literature.
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KU0(X) using standard axioms, which allows the construction of the Chern polynomial map:

ct : KU0(X)→ 1 +
⊕
r>0

H2r(X,Z)tr.

This map sends [E] to 1 + c1(E)t+ c2(E)t2 + · · · , where [E] denotes the class of a complex
vector bundle E.

Now, let (X, σ) be a real variety. A Real vector bundle on X, in the sense of Atiyah [Ati66],
is a complex

3

vector bundle π : E →X together with an involution σ̃ covering σ:

E
σ̃

π

E

π

X
σ

X

(4)

such that the map σ̃ on the fibers Ex →Eσ(x) is C-anti-linear for any x∈X.

Remark 2.5. To avoid confusion, it is important to note that, just like in the complex case, a Real
vector bundle (E, σ̃) does not necessarily have a holomorphic structure, and as a manifold, E
does not have a natural complex analytic structure. Therefore, it does not make sense to say that
σ̃ is anti-holomorphic. However, in the holomorphic context, we can define a holomorphic real
vector bundle (also known as R-bundle) on a real variety (X, σ). This is a holomorphic vector
bundle E →X together with a real structure (an anti-holomorphic involution) σ̃ on E, which
covers σ and induces a C-anti-linear map Ex →Eσ(x) for any x∈X. According to GAGA, for
a smooth projective R-variety with a corresponding real form XR, the datum of a holomorphic
real vector bundle on XC is equivalent to that of an algebraic vector bundle on XR.

Atiyah [Ati66] defined the KR-theory for a real variety (X, σ), denoted by KR∗(X), which
is a graded commutative ring, with unit given by the class of the trivial line bundle C×X
with the complex conjugation on fibers. Specifically, KR0(X) is the Grothendieck ring of the
tensor category of Real vector bundles on X. The KR-theory KR∗(X) satisfies Bott period-
icity KR∗(X)�KR∗+8(X) and interpolates between the (complex) topological K-theory, the
equivariant K-theory and the KO-theory. More details on KR-theory can be found in the original
source [Ati66].

Forgetting the involution on the bundle gives a natural map from the KR-theory to the
topological K-theory:

KR∗(X)→KU∗(X). (5)

2.4 Chern class

For a Real vector bundle E on a real variety X and a positive integer r ∈N, the rth equivariant
Chern class of E, denoted by cGr (E), is defined by Kahn [Kah87]. It is an element inH2r

G (X,Z(r)),
where Z(r) = (

√−1)rZ is the Tate twist. We can define the equivariant Chern polynomial

cGt (E)∈ 1 +
⊕
r>0

H2r
G (X,Z(r))tr.

It is easy to see that equivariant Chern classes satisfy the same axioms as Chern classes. In
particular, the additivity with respect to short exact sequences ensures that equivariant Chern
classes are well-defined on KR0(X). For our purpose, we are mostly interested in cohomology

3In the C∞ (topological) sense, not necessarily holomorphic or anti-holomorphic.
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with F2-coefficients. We often view cGr (E) as an element in H2r
G (X, F2), by composing with the

natural map H2r
G (X,Z(r))→H2r

G (X, F2). (Note that the Tate twists are dropped when passing
to F2-coefficients since the G-module F2(r) is always isomorphic to the trivial one F2.)

We have the following commutative diagram:

KR0(X)

cGt

KU0(X)

ct

1 +
⊕

r>0H
2r
G (X,Z(r))tr 1 +

⊕
r>0H

2r(X,Z)tr

1 +
⊕

r>0H
2r
G (X,F2)t

r 1 +
⊕

r>0H
2r(X,F2)t

r

(6)

where the top horizontal arrow is induced by forgetting the involution, and the middle and
bottom horizontal arrows are restriction maps.

On the level of cohomology, there is a natural map of ‘restricting to the real locus’, which
was introduced by Krasnov [Kra94] and van Hamel [vH00]:

H2r
G (X, F2)→Hr(X(R), F2).

For a Real vector bundle E, we define cRr (E)∈Hr(X(R), F2) to be the image of the equivariant
Chern class cGr (E)∈H2r

G (X, F2) under the above map; this element, called the rth real Chern
class of E, is nothing but the rth Stiefel–Whitney class of the bundle E(R) on X(R) by Kahn
[Kah87, Théorème 4]. In the algebraic setting, for an algebraic vector bundle E on a real variety
XR, we can equivalently define cRr (E) as the image of the Chow-theoretic Chern class cr(E)∈
CHr(XR) under the Borel–Haefliger cycle class map [BH61] clR : CHr(XR)→Hr(X(R), F2).

3. Basic operations preserving maximality

To facilitate easy reference, this section summarizes various operations that enable the
construction of new maximal real varieties from existing ones.

3.1 Product

Lemma 3.1. Let X1, . . . , Xn be real varieties. Then the product X :=X1 × · · · ×Xn (endowed
with the product real structure) is maximal if and only if each Xi is maximal.

Proof. By the Künneth formula H∗(X, F2)�
⊗

i H
∗(Xi, F2), we have

b∗(X, F2) =
∏
i

b∗(Xi, F2). (7)

Since X(R) =X1(R)× · · · ×Xn(R), the Künneth formula yields that

b∗(X(R), F2) =
∏
i

b∗(Xi(R), F2). (8)

Comparing (7) and (8), we see immediately that the maximality of all Xi implies the maximality
of X, and also the converse by combining with the Smith–Thom inequality (Theorem 1.1). �

8

https://doi.org/10.1112/mod.2025.4 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.4


Maximal real varieties from moduli constructions

3.2 Symmetric power

For a positive integer n, the nth symmetric power of a complex variety X, denoted by X(n) or
Symn(X), is defined as the quotient of Xn by the permutation action of the symmetric group
Sn. More generally, for any subgroup Γ of Sn, one can define the Γ-product of X, denoted by
XΓ, as the quotient Xn/Γ. A real structure σ on X induces a natural real structure σ(n) on X(n)

by sending {x1, . . . , xn} to {σ(x1), . . . , σ(xn)}, and more generally also a real structure σΓ on
XΓ.

Note that even when X is smooth, XΓ can be singular (e.g. X(n) is singular when dim(X)� 2
and n� 2), but the notion of real structures still makes sense. Moreover, the Smith–Thom
inequality remains valid and we can speak of maximality.

We record the following theorem of Franz [Fra18], which generalizes an earlier work of Biswas
and D’Mello on curves [BD17].

Theorem 3.2. If (X, σ) is a maximal real variety, then, for any n> 0 and any subgroup Γ of
Sn, the Γ-product (XΓ, σΓ) is maximal. In particular, all the symmetric powers (X(n), σ(n)) are
maximal.

3.3 Projective bundle

Let X be a complex manifold or a complex algebraic variety, and let E be a holomorphic
vector bundle of rank r+ 1 on X. The relative projectivization gives rise to a complex manifold
P(E) := PX(E) which is a CPr-bundle over X,

π : P(E)→X,

called the projective bundle associated to E. If, moreover, (X, σ) is a real variety and (E, σ̃)
is a holomorphic real vector bundle (i.e. an R-bundle) on it (Remark 2.5), then P(E) inherits
a natural real structure, sending (x, [v]) to (σ(x), [σ̃(v)]), which makes π a morphism of real
varieties. (In the algebraic setting, it follows from the simple observation that the projective
bundle construction is defined over the base field.)

Proposition 3.3. Let E be a holomorphic real vector bundle on a real variety X. Then X is
maximal if and only if the projective bundle P(E) is maximal.

Proof. Let Oπ(1) be the relative Serre bundle. Denote by ξ := cG1 (Oπ(1))∈H2
G(P(E), F2) its first

equivariant Chern class as well as its image, the usual first Chern class, in H2(P(E), F2), and
denote by ξR := cR1 (Oπ(1))∈H1(P(E)(R), F2) its first real Chern class (see Section 2.4).

Let r+ 1 be the rank of E. By definition, the restriction of ξ to a fiber CPr is a generator of
its cohomology ring H∗(CPr, F2) = F2[ξ]/(ξ

r+1). By the Leray–Hirsch theorem,

H∗(P(E), F2)∼=H∗(X, F2)⊗H∗(CPr, F2). (9)

In particular,

b∗(P(E), F2) = b∗(X, F2)b∗(CPr, F2) = (r+ 1)b∗(X, F2). (10)

On the other hand, it is clear that the real locus P(E)(R) is a RPr-bundle over X(R). Again, by
construction, the restriction of ξR to a fiber is a generator of the cohomology ring H∗(RPr, F2) =
F2[ξR]/(ξ

r+1
R ). By the Leray–Hirsch theorem,

H∗(P(E)(R), F2)∼=H∗(X(R), F2)⊗H∗(RPr, F2). (11)

9

https://doi.org/10.1112/mod.2025.4 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.4


Lie Fu

Consequently,

b∗(P(E)(R), F2) = b∗(X(R), F2)b∗(Pr
R, F2) = (r+ 1)b∗(X(R), F2). (12)

Comparing (10) and (12), we see that X is maximal if and only if P(E) is maximal. �

Remark 3.4. Proposition 3.3 can be easily generalized to flag bundles (e.g. Grassmannian bun-
dles) associated to a holomorphic real vector bundle. The argument is similar: in the above proof,
one replaces the usual (respectively, equivariant, real) first Chern class of the relative Serre bundle
by the usual (respectively, equivariant, real) Chern classes of the universal/tautological bundles,
and apply Leray–Hirsch in the same way. A more conceptual proof is via motives (see Section
11.4). In general, it is an interesting question to relate the maximality of the total space of a
fibration to the maximalities of the base and the fiber.

3.4 Blow-up

Let X be a smooth real variety and let Y be a smooth real subvariety of codimension c� 2.
Then the blow-up BlY X, as well as the exceptional divisor E ∼= P(NY/X), has a natural real
structure, where NY/X is the normal bundle. We have the commutative diagram of morphisms
of real varieties.

E

p

j
BlY X

τ

Y
i

X

(13)

Proposition 3.5. If X and Y are both maximal, then BlY X is maximal.

Proof. We have the following commutative diagram (the coefficients F2 are omitted):

H∗
G(X)⊕H∗−2

G (Y )⊕ · · · ⊕H
∗−2(c−1)
G (Y ) H∗

G(BlY X)

H∗(X)⊕H∗−2(Y )⊕ · · · ⊕H∗−2(c−1)(Y ) � H∗(BlY X)

(14)

where all the vertical arrows are restriction maps, and both horizontal maps are given by

(α, β1, . . . , βc−1) �→ τ∗(α) +
c−1∑
k=1

j∗(p∗(βk)
ξk−1),

where ξ is cG1 (Op(1))∈H2
G(E) in the top row and is c1(Op(1))∈H2(E) in the bottom row; the

commutativity of the diagram follows from the fact that all maps in (13) are real maps and
Op(1) is an R-line bundle on E.

Now in diagram (14), the bottom arrow is an isomorphism by the blow-up formula,
4

and the
left vertical arrow is surjective by the maximalities of X and Y (Proposition 2.3). Therefore, the
right vertical arrow is surjective. By Proposition 2.3, BlY X is maximal. �

4In fact the top arrow is also an isomorphism: this is the equivariant version of the blow-up formula; but we do
not need this.
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Remark 3.6 (Flips and flops). There are other types of basic birational transformations that
preserve maximality. For instance, a standard flip

5

(or flop) of a maximal real variety along a
maximal real flipping/flopping center is again maximal (this can be deduced from the blow-up
formula, or by using Jiang [Jia21, Corollary 3.8]). Similarly, the Mukai flop of a maximal real
hyper-Kähler manifold along a real flopping center is maximal (use, e.g., [FHPL23, Theorem
3.6]).

We give an example of application. Given a smooth compact complex manifoldX and an inte-
ger n, the configuration space F (X, n) is the open subset of Xn parameterizing n ordered distinct
points in X. Fulton and MacPherson constructed in [FM94] a compactification X[n] of F (X, n),
such that the complement is a simple normal crossing divisor with geometric description. The
quickest way to define X[n] is as the closure of the embedding F (X, n)⊂Xn ×∏I Blδ(X

I),
where I runs through all subsets of {1, · · · , n} with |I|� 2, XI is the |I|-the power of X, and δ
is the small(est) diagonal of XI . Clearly, a real structure on X induces a real structure on X[n].

Proposition 3.7. If X is a maximal real variety, then X[n], equipped with the induced real
structure, is also maximal.

Proof. We use the geometric inductive construction of Fulton–MacPherson’s compactification.
We refer the reader to [FM94, §3] for the details. Roughly speaking, starting from Xn, X[n]
is obtained as a sequence of 2n − n− 1 blow-ups along centers that are themselves successive
blow-ups of similar form. By repeatedly using Proposition 3.5, one shows by induction that all
the varieties obtained as well as the blow-up centers are maximal. �

3.5 Generically finite surjection of odd degree

Proposition 3.8. Let f : X → Y be a surjective proper real morphism between smooth real
varieties. Assume that f admits a rational multi-section of odd degree; for example, when f is
generically finite of odd degree. If X is maximal, then Y is maximal.

Proof. We have the commutative diagram

H∗
G(X,F2)

fG∗
H∗

G(Y,F2)

H∗(X,F2)
f∗

H∗(Y,F2)

(15)

where the horizontal arrows are push-forwards and the vertical arrows are restriction maps. We
claim that the bottom map is surjective. Indeed, let S be the closure of a rational multi-section
of odd degree, then by projection formula we have that f∗(f∗(−)
 [S]) = deg(S/Y ) · id, which
is the identity since deg(S/Y ) is odd and we are working with F2-coefficients. Therefore, f∗
is surjective. The left vertical map is surjective by the maximality of X. Therefore, the right
vertical arrow is also surjective. By Proposition 2.3, it yields that Y is maximal. �

Remark 3.9. The statement does not hold for maps of even degree. As a counter-example, take
a maximal real surface S with non-maximal Hilbert square S[2] (such surface exists by [KR23],

5Also called ordinary flip or Atiyah flip.
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see Remark 7.4), then the degree-2 quotient map BlΔ(S × S)→ S[2] is from a maximal variety
to a non-maximal one.

3.6 Albanese and Picard

Recall that for a projective complex manifold X, there are two naturally associated abelian
varieties, namely, its Picard variety

Pic0(X) :=
H1(X,OX)

H1(X,Z)
,

and its Albanese variety

Alb(X) :=
H0(X,Ω1

X)∨

H1(X,Z)
.

A real structure on X naturally induces real structures on Alb(X) and Pic0(X) (see [CP96,
§2.7]), they are moreover proper in the sense of [CP96]. The theory of real abelian varieties was
developed by Comessatti [Com24, Com25] ; see also [CP96] for a recent account.

Proposition 3.10. Let X be a smooth projective real variety with H1(X,Z) torsion-free. If X
is maximal, then Alb(X) and Pic0(X) are also maximal. In particular, the dual of a maximal
real abelian variety is again maximal.

Proof. Recall that Alb(X) and Pic0(X) are both of dimension q := h1,0(X), the irregularity of
X, and they both have total F2-Betti number 22q. Denote by σ the real structure on X. Recall
that the first Comessatti characteristic is

λ1(X) := dimF2
(1 + σ∗)H1(X, F2).

The maximality of X implies that σ acts trivially on H1(X, F2), hence λ1(X) = 0.
We apply [CP96, Theorem 2.7.2 and Theorem 2.7.9], which say that Alb(X)(R) and

Pic0(X)(R) are both isomorphic as Lie groups to (R/Z)q × (Z/2)q−λ1 . Since λ1 = 0, the total
F2-Betti number is clearly 22q, hence Alb(X) and Pic0(X) are maximal. The assertion for dual
abelian varieties follows since Â∼=Pic0(A), as real varieties. �

Remark 3.11 (Dual complex tori). In fact, the same argument shows that if a complex torus T
equipped with a real structure is maximal, then its dual torus T̂ , equipped with the natural real
structure, is also maximal.

The following result was first obtained by Gross and Harris [GH81].

Corollary 3.12 (Jacobian). Let C be a smooth projective real curve. If C is maximal, then
its Jacobian J(C) is also maximal. Conversely, if J(C) is maximal and C(R) �= ∅, then C is also
maximal.

Proof. The first claim is a special case of Proposition 3.10, since the Jacobian of C is identified
with Alb(C) (and also with Pic0(C) by the Abel–Jacobi theorem). Conversely, the Abel–Jacobi

map a :C → J(C), which is a real morphism, induces an isomorphism a∗ : H1(J(C), F2)
∼=−→

H1(C, F2). In the commutative diagram
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H1
G(J(C),F2)

a∗
H1

G(C,F2)

H1(J(C),F2)
a∗
∼= H1(C,F2),

the left vertical map is surjective and the bottom map is an isomorphism. Therefore, the right
vertical map is surjective. Hj

G(C, F2)→Hj(C, F2) is clearly surjective for j = 0 and also for j = 2
as C(R) �= ∅. Hence C is maximal by Proposition 2.3. �

Remark 3.13. Corollary 3.12 can also be deduced from Franz’s Theorem 3.2: for N � 2g+ 2, the
symmetric power C(N), which is maximal by Theorem 3.2, is a projective bundle over JN (C).
By Proposition 3.3, JN (C) is maximal. Since C(R) �= ∅, J(C) is isomorphic to JN (C) as real
varieties, hence is maximal.

3.7 Intermediate Jacobians

For a smooth projective variety X of odd dimension n= 2m+ 1 with the only non-zero Hodge
numbers hi,i(X) for all 0� i� n and hm,m+1 = hm+1,m. Its intermediate Jacobian, denoted by
J(X), is a principally polarized abelian variety with the underlying complex torus

J(X) :=
Hn(X,C)

Fm+1Hn(X,C)⊕Hn(X,Z)tf
=

Hm,m+1(X)

Hn(X,Z)tf
,

and with polarization induced by the intersection pairing on Hn(X,Z).
Examples of such varieties include cubic 3-folds, cubic 5-folds, quartic 3-folds, quartic double

solids, complete intersections of two even-dimensional quadrics, complete intersections of three
odd-dimensional quadrics, odd-dimensional Gushel–Mukai varieties, etc. A real structure σ on
X induces a C-anti-linear map Hm,m+1(X)→Hm+1,m(X) =Hm,m+1(X) respecting Hn(X,Z)tf ,
and thus a natural real structure on J(X). The following result for the Fano surface of lines is
due to Krasnov [Kra05].

Proposition 3.14. Let X be a smooth real cubic 3-fold. If X is maximal, then its Fano surface
of lines F (X) and the intermediate Jacobian J(X) are also maximal.

Proof. We recall the proof for convenience of readers. Let P := {(x, L)∈X × F (X) | x∈L} be
the incidence variety, or equivalently, the universal projective line over F (X). The correspondence
via P induces an isomorphism ([CG72]):

[P]∗ : H3(X,Z)
∼=−→H1(F (X),Z). (16)

Consider the commutative diagram

H3
G(X,F2)

clG(P)∗
H1

G(F (X),F2)

H3(X,F2) ∼=
[P]∗

H1(F (X),F2)

where the top map is the correspondence induced by the equivariant cycle class clG(P), the
bottom map is an isomorphism by (16) and the universal coefficient theorem, the vertical arrows
are restriction maps and the left one is surjective by assumption. Therefore, the right arrow
H1

G(F (X), F2)→H1(F (X), F2) is surjective too. Since H2(F (X), F2) =∧2H1(F (X)), F2), we
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have that H∗
G(F (X), F2)→H∗(F (X), F2) is surjective, hence F (X) is maximal. Consequently,

by Proposition 3.10, Alb(F (X)) is also maximal. Finally, by [CG72], we have J(X)∼=Alb(F (X))
and it is straightforward to check that the isomorphism is defined over R. Therefore, J(X) is
also maximal. �

The same argument shows similar results as follows:

– for a general real cubic 5-fold X that is maximal, its Fano variety of planes F2(X) and its
intermediate Jacobian J(X) are also maximal;

– for a general real quartic 3-fold X that is maximal, its Fano variety of conics Fc(X) and its
intermediate Jacobian J(X) are also maximal;

– for a real smooth Gushel–Mukai 3-fold or 5-fold X that is maximal, its double EPW surface
Ỹ �2
A(X) and its intermediate Jacobian J(X) are also maximal;

where in place of the results of Clemens and Griffiths [CG72], one applies results of Collino
[Col86], Letizia [Let84] and Debarre–Kuznetsov [DK20], respectively.

4. Variants of maximality

Inspired by Proposition 2.3, we propose several variants of the notion of maximality for real
varieties. As we will see, these notions are closely related to topological properties, for example
maximality, of surfaces. Their implications for higher-dimensional varieties are not clear to the
author.

Definition 4.1 (K-maximality). Let X be a real variety. We say that X is K0-maximal if the
natural map forgetting the real structure

KR0(X)→KU0(X)

is surjective. Similarly, one can define K1-maximality by the surjectivity of KR1(X)→KU1(X).
We say that X is K-maximal if it is K0-maximal and K1-maximal.

Definition 4.2 (c1-maximality). Let X be a real variety. We say that X is c1-maximal if the
first Chern class map

c1 : KR0(X)→H2(X, F2)

is surjective. By first taking the determinant bundle, it is clear that the c1-maximality is
equivalent to the surjectivity of

c1 : {Real vector bundles of rank 1}→H2(X, F2).

Thanks to [Kah87, Proposition 1], this condition is also equivalent to the surjectivity of the
following natural map:

H2
G(X,Z(1))→H2(X, F2).

It would be very interesting to compare these notions to the usual maximality. First, we have
a few easy relations.

Lemma 4.3. Let X be a smooth projective real variety.
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(i) If X is K0-maximal
6

and H3(X,Z) has no 2-torsion, then X is c1-maximal.

(ii) If X is a c1-maximal R-surface such that X(R) �= ∅ and b1(X) = 0, then X is maximal.

Proof. For (i), the map c1 : KR0(X)→H2(X, F2) is the composition

KR0(X)−→KU0(X)
c1−→H2(X,Z)→H2(X, F2).

The first map is surjective by assumption, the second map is surjective since K(Z, 2)∼=CP∞

classifies vector bundles of rank 1 and the third map is surjective sinceH3(X,Z) has no 2-torsion.
For (ii), since c1 : KR0(X)→H2(X, F2) factors through the equivariant first Chern class map

cG1 : KR0(X)→H2
G(X, F2), we get that H2

G(X, F2)→H2(X, F2) is surjective. Since b1(X) = 0,

Hj
G(X, F2)→Hj(X, F2) is surjective for j = 1, 3. Since X(R) �= ∅, H4

G(X, F2)→H4(X, F2) is also
surjective. Therefore, X is maximal. �

For maximal real surfaces, the c1-maximality can be reinterpreted geometrically as follows
(the equivalence between (ii) and (iii) below is due to Kharlamov, who kindly taught me the
nice geometric argument and allowed me to include it here).

Proposition 4.4. Let X be a maximal smooth projective real surface with H1(X, F2) = 0.
Then the following conditions are equivalent:

(i) X is c1-maximal, i.e. H2
G(X,Z(1))→H2(X, F2) is surjective;

(ii) rkH2(X,Z)G = 0;

(iii) X(R) is connected.

Proof. The conditionH1(X, F2) = 0 is equivalent to saying that b1(X) = b3(X) = 0 andH∗(X,Z)
is 2-torsion-free.

For (i)⇔ (ii), by the Leray–Serre spectral sequence (3), together with the fact that
H1(X,Z) = 0 (since b1 = 0), we have an exact sequence

0→H2(G,Z(1))→H2
G(X,Z(1))→H2(X,Z(1))G →H3(G,Z(1))→H3

G(X,Z(1)).

Since H2(G,Z(1)) = 0 and H3(G,Z(1))→H3
G(X,Z(1)) is injective by Lemma 2.2 (X(R) �= ∅

since X is maximal), the natural map H2
G(X,Z(1))→H2(X,Z(1))G is an isomorphism. Hence

the natural map H2
G(X,Z(1))→H2(X, F2) factorizes as follows:

H2
G(X,Z(1))

�−→H2(X,Z(1))G ↪→H2(X,Z)→H2(X, F2). (17)

By Lemma 2.4,

H2(X,Z) =H2(X,Z)G ⊕H2(X,Z(1))G.

SinceH2(X, F2) =H2(X,Z)⊗ F2, the surjectivity of (17) (i.e. the c1-maximality) is equivalent to
the vanishing of H2(X,Z)G ⊗ F2 or, equivalently, since H2(X,Z)G is 2-torsion-free, H2(X,Z)G

is of rank zero.
For (ii)⇒ (iii), supposing the contrary that X(R) is disconnected, one can take two points

x, y belonging to distinct components of X(R). Let γ be a path from x to y. Then γ − σ∗(γ)
is a 1-cycle in X. Since H1(X,Z) is of odd torsion, there exists an odd number N such that
N(γ − σ∗(γ)) is a boundary of a 2-chain T , i.e.

N(γ − σ∗(γ)) = ∂T.

6The argument in the proof shows that theK0-maximal condition can be weakened to the surjectivity of KR0(X)⊗
Z/2Z→KU0(X)⊗ Z/2Z.

15

https://doi.org/10.1112/mod.2025.4 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.4


Lie Fu

Then T + σ∗(T ) is a 2-cycle, σ-invariant. Moreover, its class in H2(X,Z) is non-torsion, since
the intersection number of T + σ∗(T ) with the connected component of S(R) containing x is
odd. We thus obtain a free class in H2(X,Z)G, a contradiction.

For (iii)⇒ (ii), assuming X(R) is connected, the maximality of X implies that

dimH1(X(R), F2) = rkH2(X,Z) = rkH2(X,Z)G + rkH2(X,Z(1))G.

Consider the Viro homomorphism (see [DIK00, Section 1.5]),

bv : H2(X,Z(1))G →H1(X(R), F2),

which is, roughly speaking, defined as follows: for a two-dimensional σ-invariant oriented real
submanifold Σ⊂X such that σ reverses its orientation, bv sends the class [Σ]∈H2(X,Z(1))G

to the class of the smooth curve Σ∩X(R) in H2(X(R), F2).
We claim that the Viro homomorphism bv is surjective. Indeed, for any 1-cycle γ representing

a class H1(X(R), F2), its image inside H1(X,Z) is of odd torsion. Hence there is an odd number
N such that the class of Nγ vanishes, i.e. there exists a 2-chain T in X such that ∂T =Nγ. Then
T − σ∗(T ) is a 2-cycle, σ-anti-invariant, and hence defines an element in H2(X,Z(1))G, which
is a preimage of [γ]. The surjectivity of the Viro homomorphism implies that rkH2(X,Z(1))G �
dimH1(X(R), F2). Therefore, we must have rkH2(X,Z)G = 0. �

Lemma 4.5. A maximal R-rational real surface is K-maximal and c1-maximal.

Proof. The minimal model theory for surfaces has its real version: any smooth projective real
surface can be obtained from a minimal

7

one by a sequence of successive blow-ups, where at
each step the blow-up center is either a point in the real locus or a pair of complex conjugate
points outside of the real locus; see [Kol01].

Note that, given a maximal surface S, (any of) its minimal model S0 is again maximal by
Proposition 3.8. Moreover, at each step of blow-up in S = Sn → · · ·→ S1 → S0, the blow-up center
must be a point in the real locus (otherwise b2(Si+1, F2)− b2(Si, F2) = 2, but the real locus does
not change). Therefore, any maximal real surface can be obtained from a maximal minimal real
surface, via a sequence of blow-ups at points in the real loci. Since blowing up at a point in the
real locus preserves the K-maximality, we only need to check that, for any minimal rational real
surface, maximality implies K-maximality (which implies c1-maximality by Lemma 4.3).

By classification (see [Man20, Theorem 4.3.23 and Theorem 4.4.11]), minimal rational real
surfaces that are maximal are P2, P1 ×R P1 and Fn (real Hirzebruch surface) for n� 2. For each
surface S in the list, KU1(S) = 0 and KU0(S) is generated by real algebraic line bundles:

- for P2, the generators are O,O(1),O(2);
- for P1 × P1, the generators are O, p∗1O(1), p∗2O(1), p∗1O(1)⊗ p∗2O(1);

- for Fn = PP1(O⊕O(n))
π−→ P1, the generators are O, π∗OP1(1),Oπ(1), π

∗OP1(1)⊗Oπ(1).
Hence KR0(S)→KU0(S) is surjective. �

5. Moduli spaces of vector bundles on curves

Let C be a compact Riemann surface of genus g� 2. Let n> 0 and d be two coprime integers. Let
M :=MC(n, d) be the moduli space of stable vector bundles of rank n and degree d. Since n and
d are assumed to be coprime, M is a projective complex manifold of dimension n2(g− 1) + 1 and

7Here, a real surface is said to be minimal if it does not contain a (-1)-curve defined over R or a disjoint conjugate
pair of (-1)-curves.
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there exists a universal bundle E on C ×M . We denote by p : C ×M →C and π : C ×M →M
the two natural projections.

We will use the following fundamental theorem of Atiyah and Bott [AB83, Theorem 9.11] on
generators of the cohomology ring of M .

Theorem 5.1 (Atiyah–Bott). Assume that d> (2g− 2)n. The cohomology ring H∗(M,Z) is
torsion-free and generated by the following three types of elements.

(i) For 1� r� n, the Chern class ar := cr(E|M )∈H2r(M,Z), where E|M is the restriction of E
to a fiber of p.

(ii) For 1� r� n, the (1, 2r− 1)-Künneth components br,j ∈H2r−1(M,Z) of cr(E), where we

write cr(E) =
∑2g

j=1 αj ⊗ br,j + 1C ⊗ ar + [pt]⊗ π∗(cr(E)), where {αj}1�j�2g form a basis of

H1(C,Z), 1C is the fundamental class of C and [pt] is the class of a point on C.

(iii) For 1� r� d+ n(1− g), the Chern class cr(π∗E)∈H2r(M,Z).

Remark 5.2. In the above theorem, note that under the numerical assumption d > (2g− 2)n, we
have R1π∗E = 0 and π∗E is a vector bundle of rank d+ n(1− g) by the Riemann–Roch theorem.
This assumption can be dropped in the statement provided that in (iii) we replace the direct
image π∗E by the K-theoretic push-forward π!E :=

∑
i(−1)i[Riπ∗E ] and allow r to be any integer.

Now, let σ be a real structure on the curve C. It naturally induces a real structure σM on M ,
given by the anti-holomorphic involution sending E to σ∗(E) (indeed, the rank and the degree
are both preserved by σM ). We give a short proof of the following theorem of Brugallé and
Schaffhauser [BS22, Theorem 1.2], which is based on previous works of Earl and Kirwan [EK00],
Schaffhauser [Sch12] and Liu and Schaffhauser [LS13].

Theorem 5.3. Let (C, σ) be a smooth projective real curve. If (C, σ) is maximal, then (M, σM )
is also maximal. Conversely, if (M, σM ) is maximal and C(R) �= ∅, then (C, σ) is maximal.

Proof. For simplicity, we drop the real structures from the notation. First, we assume that C
is maximal and prove the maximality of M . Tensoring with an algebraic R-line bundle L on
C of positive degree induces an isomorphism of moduli spaces that is compatible with the real
structures (in particular, the maximality is preserved):

−⊗L : MC(n, d)
�−→MC(n, d+ n deg(L)).

We can therefore assume that d> (2g− 2)n.
By passing to the F2-coefficient in Theorem 5.1, we get a set of generators for the ring

H∗
G(M, F2). We will show that they are all in the image of the restriction map H∗

G(M, F2)→
H∗(M, F2). The key point is that the universal bundle E is a real algebraic/holomorphic vector
bundle on the real variety C ×M , and hence defines a class [E ]∈KR0(C ×M) and possesses
equivariant Chern classes cGr (E)∈H2r

G (C ×M, F2) for any r ∈N.
- For the generators in (i) and (ii), they are all of the form [cr(E)]∗(α) := π∗(p∗(α)
cr(E)),

where α∈H∗(C, F2), upon which the Chern class cr(E)∈H∗(C ×M, F2) acts as cohomological
correspondence. Since we have the commutative diagram

H∗
G(C,F2)

[cGr (E)]∗
H∗

G(M,F2)

H∗(C,F2)
[cr(E)]∗

H∗(M,F2),

(18)
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where the left vertical arrow is surjective by the maximality of C (and Proposition 2.3), we
obtain that [cr(E)]∗(α) lies in the image of H∗

G(M, F2)→H∗(M, F2).
- For the generators in (iii), consider the commutative diagram (for any r ∈N)

KR0(C ×M)
π!

KR0(M)
cGr

H2r
G (M,F2)

KU0(C ×M)
π!

KU0(M)
cr

H2r(M,F2),

(19)

where the left horizontal arrows are the K-theoretic push-forwards along the projection
π : C ×M →M (which is a real map). Recall that [E ]∈KR0(C ×M) is mapped to [E ]∈
KU0(C ×M). Therefore, cr(π∗(E)) = cr(π![E ]) (see Remark 5.2), which naturally lies in the image
of H∗

G(M, F2)→H∗(M, F2).
Consequently, H∗

G(M, F2)→H∗(M, F2) is surjective. We conclude the maximality of M by
Proposition 2.3.

Conversely, assuming that M is maximal, then by Proposition 3.10 and the fact that
H∗(M,Z) is torsion-free, we get the maximality of the Albanese variety of M , which is identi-
fied with Jd(C). Since C(R) �= ∅ by our hypothesis, tensoring with a degree-1 real line bundle
shows that J(C) is isomorphic to Jd(C), and hence is also maximal. By Corollary 3.12, C is
maximal. �

Remark 5.4.

(i) Brugallé and Schaffhauser [BS22] also proved that, for a R-line bundle L on a maximal
real curve C, the moduli space MC(n,L) of stable bundles with fixed determinant is also
maximal.

(ii) Brugallé and Schaffhauser [BS22] actually shows that MC(n, d) and MC(n,L) satisfy a
stronger property called Hodge-expressivity provided C is maximal. Our proof does not
give any information on this regard; the reason is partially explained in Remark 11.8.

Moduli spaces of parabolic vector bundles were introduced and studied by Mehta and Seshadri
[MS80]. Theorem 5.3 admits the following consequence in this context.

Corollary 5.5 (Moduli of parabolic bundles). Let C be a maximal real curve. Fix a (finite)
set D⊂C(R) whose elements are called parabolic points. Let n> 0 and d be coprime integers.
Let 1 denote the full flag type (at each point of D), and let α be a generic weight. Then the
moduli space Mα

C,D(n, d, 1) of α-stable parabolic vector bundles of rank n, degree d and full
flag type is maximal.

Proof. By [BH95], [BY99] and [Tha96], there is a wall-and-chamber structure on the space of
weights and, by varying the weight, the moduli space stays the same within the chamber and
undergoes a standard flip when crossing a wall with flipping centers being projective bundles
over products of moduli spaces of stable parabolic bundles with smaller invariants (see [BY99,
Theorem 4.1] or [FHPL23, Theorem 5.11]). Therefore, by wall-crossing, induction and Remark
3.6, we only need to prove the maximality of Mα

C,D(n, d, 1) for α generic in the minimal chamber,
where the stability of a parabolic bundle reduces to the stability of the underlying vector bun-
dle. To this end, one uses natural morphisms which forget the flags. By [BY99, Theorem 4.2],
such morphisms identify the moduli space of parabolic bundles as iterated flag bundles (hence
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iterated Grassmannian bundles) over MC(n, d). By Proposition 3.3 (or rather Remark 3.4) and
Theorem 5.3, we can conclude the maximality of Mα

C,D(n, d, 1). �

6. Moduli spaces of Higgs bundles on curves

Let C be smooth projective curve of genus g� 2. A Higgs bundle on C is a pair (E, φ) where
E is a holomorphic vector bundle on C and φ : E →E ⊗ ωC is OC-linear. Such a pair (E, φ) is
said to be (semi-)stable if any proper Higgs sub-bundle (E′, φ|E′) satisfies the slope inequality
μ(E′)(�)<μ(E). Fix two integers n> 0 and d that are coprime to each other. Then stability and
semi-stability coincide for Higgs bundles of rank n and degree d, and the moduli space HC(n, d),
constructed by Nitsure in [Nit91], of (semi-)stable Higgs bundles of rank n and degree d is a
smooth quasi-projective variety of dimension 2n2(g− 1) + 2, admitting a hyper-Kähler metric
and containing the cotangent bundle of MC(n, d) as an open subscheme. There is a so-called
Hitchin map sending (E, φ) to the coefficients of the characteristic polynomial of φ:

HC(n, d)→
n⊕

i=1

H0(C, ω⊗i
C ).

The Hitchin map is a proper map (see Hitchin [Hit87], Nitsure [Nit91] and Simpson [Sim92,
Proposition 1.4]). Hence HC(n, d) is a partial compactification

8

of the cotangent bundle of
MC(n, d). We refer to [Hit87] and [Sim92] for more details.

Markman constructed in [Mar07, Theorem 3] a system of integral generators of the coho-
mology ring H∗(HC(n, d),Z). By [GPH13, Corollary 9], H∗(HC(n, d),Z) is torsion-free, and
hence Markman’s generators also give generators for H∗(HC(n, d), F2). We will need the follow-
ing somewhat different characterizations of these integral generators, in a way closer to that in
Atiyah and Bott’s Theorem 5.1.

Theorem 6.1 (Integral generators for cohomology of Higgs moduli). Let H :=HC(n, d) be the
moduli space of stable Higgs bundles of coprime rank n and degree d. Let E be a universal
bundle over C ×H. Let p1, p2 be the two projections from C ×H to its two factors. Then the
cohomology ring H∗(H,Z) is torsion-free and generated by the following three types of elements.

(i) For 1� r� n, the Chern class ar := cr(E|H)∈H2r(H,Z), where E|H is the restriction of E
to a fiber of p1.

(ii) For 1� r� n, the (1, 2r− 1)-Künneth components br,j ∈H2r−1(H,Z) of cr(E), where we

write cr(E) =
∑2g

j=1 αj ⊗ br,j + 1C ⊗ ar + [pt]⊗ p2,∗(cr(E)) via the Künneth formula, where

{αj}1�j�2g form a basis of H1(C,Z), 1C is the fundamental class of C and [pt] is the class
of a point on C.

(iii) For r� 0, the Chern class cr(p2,![E ])∈H2r(H,Z), where [E ] is viewed as in KU0(C ×H)
and p2,! is the K-theoretic push-forward (Gysin map).

Proof. As is mentioned above, H∗(H,Z) is torsion-free thanks to [GPH13, Corollary 9].
The Atiyah–Hirzebruch spectral sequence Ep,q

2 =Hp(C,KUq(pt))⇒KUp+q(C) degenerates
at the E2-page for dimension reasons. We obtain that:

– the Chern character map (rk, c1) : KU0(C)
∼=−→H0(C,Z)⊕H2(C,Z) is an isomorphism;

8In the sense that it compactifies the fibers of the Hitchin map by adding semistable Higgs bundles with unstable
underlying vector bundle.
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– the higher first Chern class
9

map c 1

2
: KU1(C)

∼=−→H1(C,Z) is an isomorphism.

As in the statement of the theorem, let {αi}2gi=1 be a basis of H1(C,Z). We consider the following
basis of H0(C,Z)⊕H2(C,Z):

α2g+1 := 1C + (g− 1)[pt]; α2g+2 := [pt].

Via the above Chern class isomorphisms, we lift {αi}2g+2
i=1 to a basis {xi}2g+2

i=1 of KU∗(C). In
particular, c 1

2
(xi) = αi for 1� i� 2g, and x2g+1 (respectively, x2g+2) is represented by a degree

g− 1 line bundle (respectively, by [OC ]− [OC(−x)] for a point x∈C).
We can write the decomposition of the class [E ]∈KU0(C ×H) via the Künneth formula

KU0(C ×H) =KU1(C)⊗KU1(H)⊕KU0(C)⊗KU0(H) as follows:

[E ] =
2g+2∑
i=1

p∗1(xi)⊗ p∗2(ei), (20)

where ei ∈KU∗(H). By Markman [Mar07, Theorem 3], the (usual) Chern classes cr(ei) for
i= 2g+ 1 and 2g+ 2, and the higher Chern classes cr− 1

2
(ei) for i� 2g, where r ∈N∗, generate

the cohomology ringH∗(H,Z). We will show that they all can be written in the form of generators
in (i), (ii) and (iii) in the statement of the theorem:

- For the Chern classes of e2g+2, it is easy to check that when applying p2,! to (20), on the right-
hand side, the only contribution is the term p2,!(p

∗
1(x2g+2)⊗ p∗2(e2g+2)) = χ(x2g+2)e2g+2 = e2g+2.

Indeed, χ(x2g+1) = 0 and χ(x2g+2) = 1 by the Riemann–Roch theorem and the choices for x2g+1

and x2g+2. Therefore, e2g+2 = p2,!([E ]), and its Chern classes are included in (iii).
- For the Chern classes of e2g+1, it is easy to check that when restricting both sides of (20)

to a fiber of p1, on the right-hand side, the only contribution comes from the term p∗1(x2g+1)⊗
p∗2(e2g+1), which restricts to e2g+1. Indeed, when restricting to a point of C, x2g+1 becomes 1pt
and x2g+2 becomes zero. Therefore, e2g+1 = [E ]|H , and its Chern classes are included in (i).

- For the higher Chern classes of {ei}2gi=1, take the (1, 2r− 1)-Künneth component of the rth
Chern classes of both sides of (20):

[cr(E)](1,2r−1)

=

[
cr

(
2g+2∑
i=1

p∗1(xi)⊗ p∗2(ei)

)]
(1,2r−1)

=

[
cr

(
2g∑
i=1

p∗1(xi)⊗ p∗2(ei)

)]
(1,2r−1)

=

2g∑
i=1

[cr (p
∗
1(xi)⊗ p∗2(ei))](1,2r−1)

=

2g∑
i=1

p∗1c 1

2
(xi)
p∗2cr− 1

2
(ei)

=

2g∑
i=1

p∗1αi 
p∗2cr− 1

2
(ei),

9We use here the topological convention to denote higher Chern classes by half integers. In a more algebro-
geometric fashion, it should be denoted by c1,1. In general, cj− 1

2
corresponds to the algebraic notation cj,1 :

KU1 →H2j−1.
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where the second equality follows from the fact that x2g+1, x2g+2, e2g+1, e2g+2 are in KU0 and
hence do not have higher Chern classes in odd cohomology; the third equality is because

cr

(∑2g
i=1 p

∗
1(xi)⊗ p∗2(ei)

)
is a polynomial in higher Chern classes of xi and ei, but each xi

can only contribute to c 1

2
(xi)∈H1(C,Z) for the (1, 2r− 1)-Künneth component, so only one

of the xi can contribute each time; the fourth equality follows from the explicit computation
in [Mar07], as is explained in the next lemma; the last equality is by the definition of the xi.
Therefore, cr− 1

2
(ei) is a Künneth component of cr(E), which is included in (ii).

To summarize, we have showed the Markman’s generators are indeed the ones in (i), (ii) and
(iii) in the statement of the theorem. �

Lemma 6.2. Given a variety H and a curve C, for any x∈KU1(C) and y ∈KU1(H), we have

[cr(p
∗
1x⊗ p∗2y)](1,2r−1) = p∗1c 1

2
(x)
p∗2cr− 1

2
(y),

for any positive integer r.

Proof. Combining Markman [Mar07, Lemma 22 (3)] and [Mar07, the last formula in Section 2],
we get

cr(p
∗
1x⊗ p∗2y) =∑

λ=(1m1 ···sms )	r
(−1)r−�(λ)

∏
i�1

(−1)mi(i−1)
∑

0�k1<···<kmi
�i−1

mi∏
j=1

(
i− 1
kj

)
p∗1ckj+

1

2
(x)
p∗2ci−kj− 1

2
(y).

On the right-hand side, ckj+
1

2
(x) is non-zero only if kj = 0. Therefore, all kj = 0, and hence

mi = 0 or 1 (i.e. λ has no repeated parts), and the above formula simplifies to

cr(p
∗
1x⊗ p∗2y) =

∑
λ=(λ1>···>λ�)	r

(−1)r−�
�∏

j�1

(−1)(λj−1)p∗1c 1

2
(x)
p∗2ci− 1

2
(y).

Now if we take the (1, 2r− 1)-Künneth component, for each term there can be at most one c 1

2
(x)

in the product, so only the trivial partition λ= (r) contributes to this Künneth component, and
we get the desired formula. �

If C is defined over R, then so is HC(n, d) by construction. In other words, a real structure on
C induces a natural real structure on HC(n, d). We have the following analogue of Theorem 5.3.

Theorem 6.3. Let C be a smooth projective real curve. Let n> 0 and d be two coprime integers.
If C is maximal, then the moduli space HC(n, d) is also maximal. Conversely, if HC(n, d) is
maximal and C(R) �= ∅, then C is maximal.

Proof. The proof is completely analogous to the proof of Theorem 5.3. We wrote that proof in
the way that it applies here verbatim, with M replaced by H and we use Theorem 6.1 in place
of Theorem 5.1. �

7. Hilbert squares and Hilbert cubes

Given a smooth complex variety X and a positive integer n, the Hilbert scheme of length n
subschemes on X is called the nth punctual Hilbert scheme of X, denoted by X [n] or Hilbn(X),
which is a proper (respectively, projective) scheme if X is proper (respectively, projective). When
dim(X) = 1, X [n] is nothing but the symmetric power X(n), which is smooth. When dim(X) = 2,
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X [n] is again smooth by Fogarty [Fog68] and it provides a crepant resolution of the symmetric
power X(n) via the Hilbert–Chow morphism. When dim(X)� 3, by Cheah [Che98], X [2] and
X [3] are still smooth, but X [n] are singular for n� 4.

More generally, for any sequence of positive integers n1 <n2 < · · ·<nr, we have the so-called
nested punctual Hilbert scheme X [n1,n2,...,nr] classifying flags of subschemes of lengths n1, . . . , nr,
defined as the incidence subscheme in the product X [n1] × · · · ×X [nr]. Cheah [Che98] proved
that, when dim(X)� 3, the only smooth nested Hilbert schemes are X, X [1,2], X [2], X [3] and
X [2,3].

Remark 7.1 (Explicit construction). We call X [2] the Hilbert square of X. One can construct X [2]

simply as the blow-up of the (in general, singular) symmetric square X(2) along the diagonal.
An alternative way of construction is as follows: let BlΔ(X ×X) be the blow-up of X ×X along
its diagonal, so then the natural involution on X ×X lifts to the blow-up and the quotient of
BlΔ(X ×X) by the involution is isomorphic to X [2].

Similarly, we call X [3] the Hilbert cube of X. There is also a concrete construction for the
Hilbert cube starting from X ×X ×X. Roughly, we first perform successive blow-ups in X3 to
resolve the natural rational map X3 ���X [3], then quotient by the symmetric group S3 and
finally contract a divisor; see [SV16] for the details.

Remark 7.2 (Douady spaces). The construction of Hilbert schemes can be generalized to the
analytic category: for a complex manifold X and a positive integer n, we have the so-called
nth punctual Douady space X [n], as well as the nested version. The aforementioned results of
Cheah still hold in this setting: the only smooth nested punctual Douady spaces associated to
a complex manifold X of dimension � 3 are X, X [1,2], X [2], X [3] and X [2,3]. In what follows,
we will use the algebraic terminology Hilbert schemes (squares, cubes, etc.) to refer to their
Douady analogues, and all the results in this section hold in the analytic category as well as in
the algebraic category, with the same proof.

If (X, σ) is a real variety, then σ naturally induces real structures on the nested punctual
Hilbert schemes. Indeed, for a finite length closed subscheme Z of X, consider the base change
by the conjugate automorphism of the base field C:

Z̄

σ◦i′

conj

i′

Z

i

X

f

X̄

f ′

σ

conj
X

f

Spec(C)
conj

Spec(C)

Then define the image of Z to be the closed subscheme σ ◦ i′ : Z̄ ↪→ S. In what follows, we always
equip the (nested) Hilbert schemes with such natural real structures.

Theorem 7.3. Let X be a smooth real variety.

(i) If X is maximal, then X [1,2] is maximal.

(ii) If X [2] is maximal and X(R) �= ∅, then X, X [1,2], X [2,3] and X [3] are all maximal.
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Proof. (i) It is easy to see that X [1,2] is isomorphic to BlΔ(X ×X), the blow-up of X ×X along
its diagonal, whose maximality follows from Lemma 3.1 and Proposition 3.5.

(ii) Denote by τ : BlΔ(X ×X)→X ×X and g : BlΔ(X ×X)→X [2] the natural morphisms,
both defined over R. For any class γ �= [X]∈H∗(X, F2), we first remark that

τ∗g∗g∗τ∗(γ ⊗ [X]) = γ ⊗ [X] + [X]⊗ γ ∈H∗(X ×X, F2).

Since g∗τ∗(γ ⊗ [X])∈H∗(X [2], F2), which is the image of some α∈H∗
G(X

[2], F2) by the maxi-
mality assumption, we obtain that

γ ⊗ [X] + [X]⊗ γ = τ∗g∗(α)∈ Im (H∗
G(X ×X, F2)→H∗(X ×X, F2)) .

Taking any real point p∈X(R), define the R-morphism ip : X →X ×X sending x to (x, p).
It follows that i∗p(γ ⊗ [X] + [X]⊗ γ) = γ is in the image of H∗

G(X, F2)→H∗(X, F2). Therefore,
X is maximal by Proposition 2.3. (The maximality of X in the surface case is also shown by
Kharlamov and Răsdeaconu in [KR23, Theorem 1.1] with a different argument and without the
assumption X(R) �= ∅.)

Using (i), X [1,2] is maximal as well.
ForX [2,3], we first note that the universal subscheme inX ×X [2] is canonically identified with

the nested Hilbert schemeX [1,2], which is in turn isomorphic to BlΔ(X ×X) as mentioned above.
It is known that X [2,3] is isomorphic to the blow-up of X ×X [2] along its universal subscheme.
Hence

X [2,3] ∼=BlX [1,2](X ×X [2]).

All the involved embeddings are real morphisms between smooth real varieties. Therefore, we
can conclude the maximality of X [2,3] by invoking Lemma 3.1 and Proposition 3.5 together with
the maximalities of X, X [2] and X [1,2].

Finally, for X [3], note that there is a natural surjection π : X [2,3] →X [3] by forgetting the
length 2 subscheme. It is easy to see that π is generically finite of degree 3 (an odd number).
Proposition 3.8 allows us to deduce the maximality of X [3] from that of X [2,3]. �

Remark 7.4 (Loss of maximality in Hilbert squares). It is quite surprising that Kharlamov and
Răsdeaconu [KR23] recently discovered the existence of maximal real surfaces with non-maximal
Hilbert squares. In fact, they showed in [KR23, Theorem 1.2] that, for a real surface X with
H1(X, F2) = 0, its Hilbert square X [2] is maximal if and only if X(R) is connected. This finding
led to the discovery of many examples of maximal surfaces with non-maximal Hilbert square,
such as K3 surfaces. We will provide in Theorem 11.12 a higher-dimensional counter-example:
the Hilbert square of a maximal real cubic 4-fold is never maximal.

Although taking the Hilbert square fails to preserve maximality in general, we provide an
interesting example where Theorem 7.3 can be applied. More examples in the surface case can
be found in Section 8.

Theorem 7.5 (Cubic 3-folds). Let X be a smooth real cubic 3-fold. If X is maximal, then X [2],
X [3], X [1,2] and X [2,3] are all maximal.

Proof. By Krasnov [Kra05], the maximality of X implies that its Fano surface of lines F :=
F (X) is also maximal (see Proposition 3.14). Applying the realization functors H∗(−, F2) and
H∗(−(R), F2) to the motivic Galkin–Shinder relation [GS14] established in [BFR22, Corollary
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18], we obtain the following relations between the total F2-Betti numbers of X, F and X [2]:

b∗(F, F2) + 4b∗(X, F2) = b∗(X [2], F2)

b∗(F (R), F2) + 4b∗(X(R), F2) = b∗(X [2](R), F2).

Therefore, X [2] is also maximal. We can conclude by applying Theorem 7.3. �

8. Punctual Hilbert schemes of surfaces

As discussed in the previous section, for a smooth complex surface S, the punctual Hilbert
scheme/Douady space S[n] is smooth for any n� 1 [Fog68]. Moreover, a real structure on S
naturally induces a real structure on S[n]. This section aims to prove the maximality of Hilbert
powers of certain maximal R-surfaces:

Theorem 8.1. Let (S, σ) be a maximal smooth projective real surface with H1(S, F2) = 0. If
S(R) is connected, then S[n] is maximal for any n� 1.

Remark 8.2. The case of n= 2 in Theorem 8.1 gives a different proof of the ‘if’ part of Kharlamov
and Răsdeaconu’s result [KR23, Theorem 1.2]. It is worth noting some details about the
conditions in Theorem 8.1.

– The condition on the connectedness of S(R) can be equivalently replaced by rkH2(S,Z)σ = 0,
or by c1-maximality (Definition 4.2), as shown in Proposition 4.4.

– By Poincaré duality and the universal coefficient theorem, the condition H1(S, F2) = 0 is
equivalent to bodd(S) = 0 and H∗(S,Z) has no 2-torsion. By Göttsche [G90] and Totaro
[Tot20, Theorem 3.1], this condition implies that, for any n� 1, the odd Betti numbers of
S[n] vanish and the integral cohomology ring of S[n] is 2-torsion-free.

– All the conditions in Theorem 8.1 are invariant under blow-ups at real points.

Remark 8.3 (Nested Hilbert schemes). By Theorem 7.3, for any maximal real surface S satisfying
the conditions in Theorem 8.1, the nested Hilbert schemes S[1,2] and S[2,3] are also maximal.
However, by Cheah [Che98], in dimension 2, all the nested Hilbert schemes S[n,n+1] are smooth.
This raises the interesting question of whether S[n,n+1] is maximal for any n in this case.

Our strategy for proving Theorem 8.1 is similar to that of Theorem 5.3. We will rely on the
following result of Li and Qin [LQ08, Theorem 1.2] (based on [LQW02b, LQW02a, LQW03,
QW05]) on the generators of the cohomology ring of S[n], which can be viewed as the analogue
of Atiyah and Bott’s Theorem 5.1.

Theorem 8.4 (Li–Qin). Let S be a smooth projective complex surface with b1(S) = 0, and n a
positive integer. Then H∗(S[n],Z)/Tors is generated by the following three types of elements:

(i) for 1� r� n, the Chern class cr(O[n]
S )∈H2r(S[n],Z), where O[n]

S is the tautological rank-n
bundle defined as p∗(OZn

) where p : S[n] × S → S[n] is the projection and Zn ⊂ S[n] × S is
the universal subscheme;

(ii) for 1� r� n, and α∈H2(S,Z)/Tors, the class 1−(n−r)m(1r),α|0〉;
(iii) for 1� r� n, the class 1−(n−r)p−r(pt)|0〉, where pt∈H4(S,Z) denotes the class of a point.
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Here |0〉 denotes the positive generator of H0(S[0],Z), the operator p is Nakajima’s operator
[Nak99] and the operators 1 and m are defined in [LQW03, QW05, LQ08]; see the explanation
in the remark below.

Remark 8.5 (Operators). Let us give some more details on the operators p, 1 and m. In the
discussion below, the coefficients of the cohomology can be chosen arbitrarily (e.g. Z), and are
omitted.

(i) For any r� 0 and any α∈H∗(S), the (creation) Nakajima operator p−r(α) sends, for any
j � 0, an element β ∈H∗(S[j]) to the class q∗(p∗(β)
ρ∗(α)
 [Qj+r,j ])∈H∗(S[j+r]), where
Qj+r,j := {(Z, x, Z ′)∈ S[j] × S × S[j+r] | supp(IZ/IZ′) = {x}}, and p, ρ and q are the pro-
jections from S[j] × S × S[j+r] to S[j], S and S[j+r], respectively. In particular, taking j = 0,
then p−r(α)|0〉 is the image of α via the correspondence [Γr]∗ : H∗(S)→H∗(S[r]), where
Γr := {(x, Z)∈ S × S[r] | supp(Z) = {x}}.

(ii) For any r� 0, the operator 1−r is defined in [LQW03, Definition 4.1] and [LQ08, (2.7)]
as 1−r :=

1
r!p−1(1S)

r. Despite of the apparent denominator, in [QW05, Lemma 3.3] it is
proved that 1−r is an integral operator. Indeed, it can be equivalently defined as follows: for
any j � 0, the operator 1−r :H

∗(S[j])→H∗(S[j+r]) is the correspondence [S[j,j+r]]∗, where
S[j,j+r] := {(Z, Z ′)∈ S[j] × S[j+r] | Z ⊂Z ′} is the nested Hilbert scheme.

(iii) The operator m is defined in [QW05, §4.2] and in [LQ08, Definition 3.3]. The pre-
cise definition is somewhat involved. Let us only mention here that when α= [C] for a
smooth irreducible curve C in S, then, for any partition λ= (λ1 � · · ·� λN ) of n, we have
mλ,C |0〉= [LλC], where LλC is the closure in S[n] of {λ1x1 + · · ·+ λNxN |xi ∈ S distinct}.
An interpretation which works for λ= (1n) and for any class α will be given and used in
the proof of Theorem 8.1 below.

Proof of Theorem 8.1. By Remark 8.2, the condition H1(S, F2) = 0 implies that bodd(S
[n]) = 0

and H∗(S[n],Z) has no 2-torsion. By the universal coefficient theorem, the cohomology ring
H∗(S[n], F2) is generated by the same collection of generators in Theorem 8.4 by passing to
F2-coefficients. Like in Theorem 5.3, we only need to show that all the generators are in the
image of the restriction map H∗

G(S
[n], F2)→H∗(S[n], F2).

- For generators in (i), since the tautological vector bundle O[n]
S is a holomorphic real vec-

tor bundle on S[n] by construction, it hence defines a class [O[n]
S ]∈KR0(S[n]). As cGr (O[n]

S )∈
H∗

G(S
[n], F2) is mapped to cr(O[n]

S )∈H∗(S[n], F2), the latter is in the image of the restriction
map.

- For generators in (ii), given a class α∈H2(S, F2), by Proposition 4.4, S is c1-maximal,
i.e. c1 : KR0(S)→H2(S, F2) is surjective, and there exists an element L∈KR0(S) such that
c1(L) = α. Up to replacing L by its determinant, one can in fact assume that L is a real vector
bundle of rank 1.

We denote by α̃ := cG1 (L)∈H2
G(S, F2) the equivariant first Chern class of L. Clearly, α̃ is

mapped to α under the restriction map. Let Zn ⊂ S[r] × S be the universal subscheme. Let
p1 and p2 be the two natural projections from Zr to S[r] and S, which are real morphisms since
Zn is a subscheme defined over R. We thus obtain an element p1,!(p

∗
2(L))∈KR0(S[n]). By the

proof of [LQ08, Lemma 3.5], we have the following equality (which holds integrally):

cr(p1,!(p
∗
2(L))) =m(1r),α ∈H∗(S[r], F2).
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Therefore, cGr (p1,!(p
∗
2(L)))∈H∗

G(S
[r], F2) is mapped to m(1r),α via the restriction map.

Now consider the commutative diagram

H∗
G(S

[r],F2)
[S[r,n]]∗

H∗
G(S

[n],F2)

H∗(S[r],F2)
[S[r,n]]∗

H∗(S[n],F2)

(21)

where the vertical arrows are restriction maps, and the horizontal maps are given by the cor-
respondences induced by the nested Hilbert scheme S[r,n] := {(Z, Z ′)∈ S[r] × S[n] | Z ⊂Z ′},
viewed as algebraic cycles (defined over R). By Remark 8.5, the bottom arrow sends m(1r),α

to 1−(n−r)m(1r),α. Since we just proved that m(1r),α is in the image of the left vertical arrow, we
conclude by the commutativity of the diagram that 1−(n−r)m(1r),α is in the image of the right
vertical arrow.

- For generators in (iii), by definition, 1−(n−r)p−r(pt)|0〉 is the image of the class [pt]∈H4(S)
under the following composition of correspondences:

H∗(S)
[Γr]∗−−−→H∗(S[r])

[S[r,n]]∗−−−−−→H∗(S[n]),

where Γr := {(x, Z)∈ S × S[r] | supp(Z) = {x}} and S[r,n] is as above, both viewed as algebraic
cycles (see Remark 8.5). However, Γn and S[r,n] (although singular) are defined over R, so they
induce equivariant correspondences; we have the commutative diagram

H∗
G(S,F2)

[Γr]∗
H∗

G(S
[r],F2)

[S[r,n]]∗
H∗

G(S
[n],F2)

H∗(S,F2)
[Γr]∗

H∗(S[r],F2)
[S[r,n]]∗

H∗(S[n],F2)

(22)

where all the vertical arrows are restriction maps and the left one is surjective since S is maximal
(Lemma 4.3). Therefore, 1−(n−r)p−r(pt)|0〉= [S[r,n]]∗ ◦ [Γr]∗([pt]) is in the image of the restriction
map.

To summarize, all types of generators lie in the image of the restriction map H∗
G(S

[n], F2)→
H∗(S[n], F2), and hence the latter is surjective, and S[n] is maximal by Proposition 2.3. �

We provide two types of surfaces to which Theorem 8.1 applies: rational surfaces and some
surfaces of Kodaira dimension 1.

8.1 Example I: rational surfaces

The first type of examples includes P2, P1 × P1 and Hirzebruch surfaces, as well as blow-ups of
these surfaces at real points.

Corollary 8.6. The punctual Hilbert schemes of a maximal R-rational real surface are
maximal.

Proof. By Theorem 8.1, we only need to verify that H1(S, F2) = 0 and that S(R) is connected
(or, equivalently, c1-maximal). The former is obvious for rational surfaces, and the latter follows
from Lemmas 4.5 and 4.3. �
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Remark 8.7 (Del Pezzo of degree 1). If we consider a more general class of surfaces, namely
geometrically rational surfaces, which are real surface S with SC rational, there is another type
of maximal minimal real surface, namely B1, the real minimal del Pezzo surface of degree 1
whose real locus is RP2

∐
4S2; see [Kol01, Rus02]. By Proposition 4.4, B1 is not c1-maximal

(nor K-maximal). According to the result of Kharlamov and Răsdeaconu [KR23] mentioned in
Remark 7.4, the Hilbert square of B1 is not maximal. Furthermore, note that B1 is not Hodge
expressive in the sense of [BS22].

8.2 Example II: generalized Dolgachev surfaces

Let m> 1 be an integer, and choose another auxiliary integer 0< k <m. Recall that, for a rela-
tively minimal elliptic surface f : S →C with a smooth fiber Sc over a point c∈C, a logarithmic
transformation of order m at c produces another relatively minimal elliptic surface f ′ : S′ →C
with a multiple fiber S′

c of multiplicity m over c, such that S\Sc is isomorphic to S′\S′
c over

C\{c}. In fact, the logarithmic transformation can be performed more generally to replace a
fiber of type Ib in an elliptic fibration by a multiple fiber of type mIb. We refer to [BHPVdV04,
Chapter V, §13] for more details.

Dolgachev [Dol10] used logarithmic transformations to construct simply connected irrational
elliptic surfaces of Kodaira dimension 1 with vanishing geometric genus. Although all homeo-
morphic to the blow-up of P2 at nine points [Fre82], Donaldson [Don87] and Okonek and Van
de Ven [OVdV86] showed that Dolgachev surfaces provide infinitely many distinct diffeomorphic
types.

For our purpose, we follow Lübke and Okonek [LO87] to construct certain variants of
Dolgachev surfaces and adapt them to real geometry. We consider two real smooth planar cubic
curves intersecting at nine distinct real points in P2(R). Blowing up these nine points, we get an
R-rational surface S fibered in elliptic curves over P1. The morphism

f : S → P1

is defined over R. For any odd integer m> 2 and a generic pair of complex conjugate points
t, t̄∈ P1(C)\P1(R), performing the logarithmic transformations at t and t̄ of the same order m
(and with the same auxiliary choice of k) produces another elliptic surface Sm,m → P1 which is
isomorphic to S over P1\{t, t̄}. The real structure on S gives rise to a real structure on Sm,m.

Lemma 8.8. The real locus of Sm,m is

Sm,m(R)∼=RP2# · · ·#RP2︸ ︷︷ ︸
10 copies

,

with F2-Betti numbers 1, 10, 1.
The F2-Betti numbers of Sm,m are 1, 0, 10, 0, 1. In particular, Sm,m is a maximal real surface.

Proof. Since the logarithmic transformation along two conjugate complex points does not change
the real locus, Sm,m(R) is the same as the real locus of the blow-up of P2 at nine real points.
As blowing up at a real point modifies the real locus by taking a connected sum with a copy of
RP2, the formula of Sm,m(R) follows. Its F2-Betti numbers can be easily computed.

Contrary to the simple connectedness of the classical Dolgachev surfaces, we know that
π1(Sm,m)∼=Z/mZ (see [Dol10] or [LO87]). Since m is odd, H1(Sm,m, F2) = 0. The Euler charac-
teristic is not changed by logarithmic transformations (and hence is equal to χtop(Bl9P

2) = 12),
and therefore the F2-Betti numbers of Sm,m can be determined. �
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Corollary 8.9 (Generalized Dolgachev surface). The punctual Hilbert schemes of the real
surfaces Sm,m constructed above are maximal.

Proof. By Lemma 8.8, the surface Sm,m satisfies all the conditions in Theorem 8.1, which implies
that its punctual Hilbert schemes are maximal. �

Remark 8.10. The surfaces Sm,m provide infinitely many new examples as they have Kodaira
dimension 1 (see [LO87, p. 219]) and, by [LO87, p. 220, Corollary], {Sm,m}m contains infinitely
many diffeomorphic types.

9. Moduli spaces of sheaves on the projective plane

Given integers r > 0, c1, c2, let M :=M(r, c1, c2) be the moduli space of stable sheaves of rank r
with first and second Chern classes c1 and c2 on the complex projective plane P2

C
. Assume that

gcd

(
r, c1,

c1(c1 + 1)

2
− c2

)
= 1. (23)

Then M is a smooth projective fine moduli space.
We equip P2

C
with its standard real structure σ. We claim that this induces a natural real

structure σM on M :

σM : M →M

E �→ σ∗(E).

Indeed, σM is clearly anti-holomorphic of order 2, and we only need to show that the Chern
classes of σ∗(E) and E are the same: first, it is easy to see that σ∗ acts on cohomology as
id on H0(P2

C
,Z)⊕H4(P2

C
,Z) and as −id on H2(P2

C
,Z) (because complex conjugate changes of

orientation on C). Therefore,

ci(σ∗(E)) = (−1)iσ∗(ci(E)) = (−1)i(−1)ici(E) = ci(E).

The claim is proved and σM is a real structure.
Recall that P2

C
has only one real structure (up to equivalence), namely the standard one, and

it is maximal (b∗(P2(C), F2) = b∗(P2(R), F2) = 3). We show that the maximality is inherited by
the moduli spaces.

Theorem 9.1. For integers r > 0, c1, c2 satisfying (23), the moduli space M(r, c1, c2) of stable
sheaves on the projective plane equipped with its natural real structure is maximal.

Proof. By construction (using GIT for example),M :=M(r, c1, c2) is a smooth projective variety
defined over R. Since M is a fine moduli space, there is a universal sheaf E on M × P2, which is
also defined over R. By Ellingsrud and Strømme [ES93], the cohomology ring H∗(M,Z) has no
odd cohomology, and it is torsion-free and generated by the elements

ci(R
1p∗(E(−j))), (24)

where p :M × S →M is the natural projection, 1� j � 3 and i∈N. Therefore, H∗(M, F2) is also
generated, as F2-algebra, by (the images of) the elements in (24). However, R1p∗(E(−j)) is a
real algebraic vector bundle on M , and hence its equivariant Chern class cGi (R

1p∗(E(−j)))∈
H∗

G(M, F2) is mapped to ci(R
1p∗(E(−j))) via the restriction map H∗

G(M, F2)→H∗(M, F2).
Therefore, the restriction map is surjective and M is maximal by Proposition 2.3. �
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10. Moduli spaces of sheaves on Poisson surfaces

Let S be a Poisson surface, that is, a smooth projective complex surface with an effective anti-
canonical bundle: H0(S,−KS) �= 0. Poisson surfaces are classified by Bartocci and Macr̀ı [BM05]:
they are either symplectic (i.e. K3 or abelian) surfaces or ruled surfaces; see [BM05, Theorem
1.1] for the precise classification of ruled Poisson surfaces.

A Mukai vector on S is an element v ∈KU0(S). We denote by rk(v)∈Z its rank and by
ci(v)∈H2i(S,Z) its ith Chern class for i= 1, 2. Any coherent sheaf E on S gives rise to a class
in the Grothendieck group [E]∈K0(S), and its image under the natural map K0(S)→KU0(S)
is called the Mukai vector of E. A polarization H is said to be v-generic if H-stability coincides
with H-semi-stability for any coherent sheaves with Mukai vector v. Here and in the following,
(semi-)stability is in the sense of Gieseker and Maruyama (see [HL10]).

Let v be a primitive Mukai vector with rk(v)> 0 and c1(v)∈NS(S) :=H2(S,Z)∩H1,1(S),
and H a v-generic polarization, which always exists.

10

Let M :=MH(S, v) be the moduli space
of H-stable sheaves on S with Mukai vector v.

For a symplectic surface S, the moduli space M is a connected smooth projective holomor-
phic symplectic variety of dimension 2n := 2− χ(v, v) = (1− r)c21 + 2rc2 − r2χ(OS) + 2, and is
deformation equivalent to the nth punctual Hilbert scheme S[n] (and hence hyper-Kähler if S
is a K3 surface). This is a theorem established by the works of Mukai [Muk84], Göttsche and
Huybrechts [GH96], O’Grady [O’G97], Yoshioka [Yos99], etc; see [HL10, Theorem 6.2.5].

For a ruled Poisson surface S, the moduli space M , if non-empty, is a connected smooth
projective variety of dimension 1− χ(v, v) = (1− r)c21 + 2rc2 − r2χ(OS) + 1 with a Poisson
structure. This is due to Bottacin [Bot95] (based on Tyurin [Tyu88]).

Theorem 10.1. Let (S, σ) be a Poisson surface with a real structure. Let v ∈KU0(S) be a
primitive Mukai vector with rk(v)> 0 and satisfying c1(v)∈NS(S) and σ∗(c1(v)) =−c1(v). Let
H be a real algebraic ample line bundle that is v-generic. Then σ induces a natural real struc-
ture on M :=MH(S, v). If S is K-maximal (Definition 4.1) in the sense that the natural maps
KRi(S)→KUi(S) are surjective for i= 0, 1, then M is maximal.

Proof. Let E be a (quasi)-universal sheaf on M × S, which defines a class e∈KU0(M × S);
see [Mar07, Section 3] for the detailed construction of e in the absence of universal sheaf. By
construction, E is a real sheaf, and hence the class e∈KU0(M × S) is the image of a class
ẽ∈KR0(M × S).

In the following, for simplicity, we denote KU∗ :=KU0 ⊕KU1 and KR∗ :=KR0 ⊕KR1. Let
p1 and p2 be the projections from M × S to M and S, respectively. Since KU∗(S) is torsion-free
(for any Poisson surface S), we have the Künneth decomposition for topological K-theory:

KU0(M × S)∼=KU0(M)⊗KU0(S)⊕KU1(M)⊗KU1(S).

Via the above decomposition, we write the following equality in KU0(M × S):

e=
∑
i

p∗1ei ⊗ p∗2x
∨
i , (25)

where {xi}i is a basis of KU∗(S), and ei ∈KU∗(M).

10Here we assumed rk(v)> 0 for simplicity. The case rk(v) = 0 can also be treated with some extra care. For
example, in Markman [Mar07, p. 628, Condition 7] a further assumption is added when S is a ruled Poisson
surface and rk(v) = 0.
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By Markman [Mar07, Theorem 1], the cohomology ring H∗(M,Z) is torsion-free and gen-
erated by Chern classes {cj(ei)}i,j , where j runs through N+ 1

2 if ei ∈KU1(M); see [Mar07,
Definition 19] for the definition of Chern classes of elements in odd K-theory. Therefore,
H∗(M, F2) is also generated by {cj(ei)}i,j . We only need to prove that every generator cj(ei)∈
H2j(M, F2) has a preimage in H2j

G (M, F2).
Since the pairing

χ : KU∗(S)⊗KU∗(S)→Z

(F1, F2) �→ χ(F∨
1 ⊗ F2).

is perfect (see [Mar07, Remark 18]), one can find a dual basis {yi}i of KU∗(S), i.e. χ(x∨i ⊗ yj) =
δij . Since KR∗(S)→KU∗(S) is surjective by assumption, we have that, for each i, there exists
ỹi ∈KR∗(S) whose image in KU∗(S) is yi.

Consider the element

ẽi := p1,!(ẽ⊗ p∗2(ỹi))∈KR∗(M).

The image of ẽi under the map KR∗(M)→KU∗(M) is computed as follows using (25):

p1,!(e⊗ p∗2(yi)) =
∑
j

p1,!(p
∗
1ej ⊗ p∗2(x

∨
j ⊗ yi)) =

∑
j

χ(x∨j ⊗ yi)ej = ei.

We obtain that, for any i, the class ẽi ∈KR∗(M) is mapped to ei ∈KU∗(M). Therefore, the
equivariant Chern class cGj (ẽi)∈H2j

G (M, F2) is mapped to the Chern class cj(ei)∈H2j(M, F2)
via the restriction map. As {cj(ei)} are generators, the restriction map H∗

G(M, F2)→H∗(M, F2)
is surjective, and M is maximal by Proposition 2.3. �

To provide examples where Theorem 10.1 applies, let us give the following generalization of
Theorem 9.1.

Corollary 10.2 (Rational real Poisson surface). Let S be a Poisson surface with a real struc-
ture σ such that it is R-rational. Let v be a primitive Mukai vector satisfying rk(v)> 0 and
σ∗(c1(v)) =−c1(v). Let H be a real algebraic ample line bundle that is v-generic. If (S, σ) is
maximal, then MH(S, v), equipped with the natural real structure, is also maximal.

Proof. To apply Theorem 10.1, we only need to check the K-maximality. This is verified in
Lemma 4.5. �

11. Real motives, equivariant formality, and maximality

The notion of motive was invented by Grothendieck around 1960 to unify various cohomology
theories and to deal with problems involving algebraic cycles. It has become a standard and
powerful tool nowadays throughout algebraic geometry. See [And04] for an introduction. In this
section, we would like to explain the relation between the maximality of real varieties and their
motives. Although not logically necessary for the results obtained in this paper, we highlight the
following principle which underlies the whole paper.

Principle: The maximality of real varieties is a motivic property called equivariant formality,
and new maximal varieties can be constructed as those motivated by maximal ones.
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For the precise meaning of the principle, see Definition 11.2 and Corollary 11.7. We switch
to the algebraic notation in this section: for an algebraic variety X defined over R, the complex
analytic space is denoted by X(C) :=Xan

C
. In particular, (X ×R Y )(C) =X(C)× Y (C).

11.1 Motives

Let us briefly recall some basic notions on motives; see [And04] for a detailed account.

Definition 11.1 (Real motives). Fix a commutative ring F as the coefficient ring. In this paper,
F =Z, Q, or F2, etc.

(i) The category of Chow motives over the field R with coefficients in F , denoted by
CHM(R)F , is defined as follows.

- An object, called a Chow motive, is a triple (X, p, n), where n is an integer, X is a smooth
projective variety over R of dimension dX and p∈CHdX (X ×R X)F is an algebraic cycle (mod-
ulo rational equivalence) in X ×R X with F -coefficients such that p ◦ p= p; here ◦ denotes the
composition of correspondences.

- A morphism between two Chow motives (X, p, n) and (Y, q, m) is an element in the group

Hom((X, p, n), (Y, q, m)) := q ◦CHm−n+dX (X ×R Y )F ◦ p.
The composition of morphisms is given by the composition of correspondences.

- There is a natural (contravariant) functor of ‘taking Chow motives’:

(Smooth projective R-varieties, R-morphisms)op →CHM(R)F

X �→ h(X) := (X,ΔX , 0)

(f : Y →X) �→ Γf ∈CHdX (X ×R Y )F

where ΔX ∈CHdX (X ×R X)F is the class of the diagonal and Γf is the graph of f .
The category CHM(R)F is an F -linear, idempotent complete, rigid tensor category, with

unit object 1= (Spec(R),Δ, 0), (X, p, n)⊗ (Y, q, m) := (X ×R Y, p× q, m+ n) and (X, p, n)∨ :=
(X, tp, dX − n), where tp is the transpose of p (i.e. its image under the involution on X ×R X)
swapping two factors. For an integer n, the Tate object is 1(n) := (Spec(R),Δ, n).
(ii) Similarly, by replacing the Chow groups by the groups of algebraic cycles modulo homological
equivalence in the above definition, we obtain the category of homological (or Grothendieck)
motives, denoted by Mot(R)F . The (contravariant) functor of taking homological motives is
denoted by X �→M(X).
(iii) Since rational equivalence is finer than homological equivalence, we have a natural functor
CHM(R)F →Mot(R)F .

11.2 Realizations

It is easy to check that any (generalized) cohomological theory (like Chow group CH∗, coho-
mology H∗, equivariant cohomology H∗

G, K-theory, topological K-theory, etc.) that behaves well
with respect to correspondences (i.e. with respect to pullbacks, push-forwards and intersection
products) can be extended to appropriate categories of motives, called realizations . Let us men-
tion some examples. Let ModF (respectively, ModZF ) be the category of (respectively, graded)
F -modules.
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(i) (Chow group). Define

CH∗ : CHM(R)F →ModZF
(X, p, n) �→ Im(p∗ : CH∗+n(X)F →CH∗+n(X)F ).

It follows from the definition that the Chow group of a Chow motive M is just a Hom group
in the category CHM(R)F :

CHi(M)F =Hom(1(−i), M).

(ii) (Equivariant cohomology). Let G=Gal(C/R). For any integers i, j, we have

H i
G(−, F (j)) : Mot(R)F →ModF

(X, p, n) �→ Im(clG(p)∗ : H i+2n
G (X(C), F (j + n))→H i+2n

G (X(C), F (j + n))),

where F (j) =
√−1

j
Z as G-module.

Here we used the existence of the equivariant cycle class map: for any smooth projective
real variety W , we have

clG : CH∗(W )F →H2∗
G (W (C), F (∗)),

which is compatible with the functorialities and cup-product of equivariant cohomology,
thanks to Krasnov [Kra91]. Let us also mention that, when F is torsion, H i

G(−, F (j)) is
canonically identified with the étale cohomologyH i

ét(−, F (j)) (see [Sch94, Corollary 15.3.1]),
and the standard compatibility with étale cycle class map yields the étale realization functor.

(iii) (Cohomology of complexification). For motives over C, we have the realization of singular
cohomology:

H∗ : Mot(C)F →ModZF

(X, p, n) �→ Im(cl(p)∗ : H∗+2n(X(C), F )→H∗+2n(X(C), F )),

where cl is the usual (complex) cycle class map. By composing with the complexification
functor −C : Mot(R)F →Mot(C)F , we get the following realization, still denoted by H:

H∗ : Mot(R)F →ModZF

M = (X, p, n) �→H∗(MC) := Im(cl(pC)∗ : H∗+2n(X(C), F )→H∗+2n(X(C), F )).

In fact, when F =Z or Q, we can further enhance the realization functor into a functor with
target the category of (polarizable) Hodge structures, still denoted by H∗:

H∗ : Mot(R)F →HSZF .

(iv) (Cohomology of real loci). To each real variety X, one can associate the cohomology of its
real locus H∗(X(R), F2). We claim that this extends to a realization functor:

HR∗ : Mot(R)F2
→ModZF2

(X, p, n) �→ Im(clR(p)∗ : H∗+n(X(R), F2)→H∗+n(X(R), F2)).

Here we used that, for any smooth projective real variety W , we have the Borel–Haefliger
real cycle class map [BH61]

clR : CH∗(W )→H∗(W (R), F2),

which is compatible with pullbacks, push-forwards and the intersection product. The latter
fact can be justified as follows: thanks to Krasnov [Kra94], the Borel–Haefliger cycle class
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map is the composition of the equivariant cycle class map clG with the map of restricting
to the real locus constructed in [Kra94]:

H2∗
G (W, F2)→H∗(W (R), F2).

The compatibility with respect to the pullbacks and the intersection product is easy to check
while the compatibility with respect to push-forwards can be found in [BW20, Theorem 1.21
and Proposition 1.22].

(v) We have various natural transformations between these realization functors on motives. For
example, for any Chow motive M , we have

– the restriction map H i
G(M, F (j))→H i(MC, F );

– the equivariant cycle class map clG : CH∗(M)→H2∗
G (M,Z(∗));

– Krasnov’s map of restricting to real loci H2∗
G (M, F2)→HR∗(M, F2);

– composing the previous two morphisms, we get Borel–Haefliger’s real cycle class map for
real motives clR : CH∗(M)→HR∗(M, F2).

We can now generalize the notion of maximality as follows, in view of Proposition 2.3.

Definition 11.2 (Equivariantly formal real motives). A homological motive M ∈Mot(R)F2

is said to be equivariantly formal if the restriction morphism H∗
G(M, F2)→H∗(MC, F2) is

surjective.

By Proposition 2.3, a smooth projective real variety X is maximal if and only if its homo-
logical motive M(X)∈Mot(R)F2

is equivariantly formal. Of course, we have the following more
naive generalization of maximality (and Hodge expressivity) to motives.

Definition 11.3 (Maximal and Hodge expressive motives). A homological motive M ∈
Mot(R)F2

is said to be maximal if

dimHR∗(M, F2) = dimH∗(MC, F2).

Similarly, M ∈Mot(R) is said to be Hodge expressive if H∗(M,Z) is torsion-free and, for any
p∈Z,

dimHRp(M, F2) =
∑
q

dimHp,q(M),

where Hp,q(M) is the (p, q)-component of the Hodge structure H∗(MC,Q).

Remark 11.4. The notions of maximality and Hodge expressivity for real motives defined above
do not seem very useful, since it is a priori not inherited by submotives; see Remark 11.8.

11.3 Inheriting maximality by motivation

Recall that the category Mot(R)F2
is a tensor category. We first check that the standard tensor

operations in Mot(R)F2
preserve equivariant formality.

It is clear from Definition 11.2 that the direct sum of some equivariantly formal motives is
equivariantly formal, and a direct summand of an equivariantly formal motive is equivariantly
formal, and one can check directly (using the maximality of Pn

R
for example) that the Tate

motives 1(n) are equivariantly formal for all n∈Z.
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Next, recall that the tensor product of motives is given essentially by the fiber product (see
Definition 11.1). Similarly to Lemma 3.1, equivariant formality is preserved by the tensor product
of motives.

Lemma 11.5 (Tensor product). If M1, . . . , Mn ∈Mot(R)F2
are equivariantly formal real motives,

thenM1 ⊗ · · · ⊗Mn is also equivariantly formal. In particular, Tate twists of equivariantly formal
real motives are equivariantly formal.

Proof. By induction, it is enough to show the case where n= 2. Consider the following
commutative diagram, where we omit the coefficient F2:

H∗
G(M1)⊗H∗

G(M2) H∗(M1C)⊗H∗(M2C)

∼=

H∗
G(M1 ⊗M2) H∗(M1C ⊗M2C)

(26)

where the horizontal arrows are restriction maps, the right vertical arrow is given by the exterior
cup product of singular cohomology, the left vertical arrow is the composition of the exterior
cup product for equivariant cohomology followed by the restriction map from G×G to ΔG:

H∗
G(M1)⊗H∗

G(M2)→H∗
G×G(M1 ⊗M2)→H∗

G(M1 ⊗M2)

(or equivalently, since we are using F2-coefficients, we can identify the equivariant realization with
the étale realization, so the left arrow is given by the exterior cup product for étale cohomology).

Since the right vertical arrow is an isomorphism by the Künneth formula and the top arrow
is surjective by assumption, we can conclude that the bottom arrow is also surjective. �

Fix a category of motives C =CHM(R)F or Mot(R)F . For a collection of (Chow or homo-
logical) motives {Mi}i∈I , we denote by 〈Mi; i∈ I〉⊗ the thick tensor subcategory generated by
the Mi, that is, the smallest F -linear subcategory of C containing all Mi and closed under iso-
morphisms, direct sums, tensor products, direct summands and Tate twists. By Lemma 11.5, if
all Mi are equivariantly formal motives, then every object in the category 〈Mi; i∈ I〉⊗Mot(R)F2

is

equivariantly formal.

Definition 11.6 (Motivation). A real variety Y is said to be motivated by a collection of
smooth projective real varieties {Xi}i∈I if its homological motive with F2-coefficients M(Y ) lies
in the subcategory 〈M(Xi); i∈ I〉⊗Mot(R)F2

.

The main point of this section is the following observation.

Corollary 11.7. A real variety Y motivated by a collection of maximal real varieties {Xi}i∈I
is maximal.

Proof. It is almost evident: if Y is motivated by {Xi}i∈I , that is, in the category Mot(R)F2
,

M(Y )∈ 〈M(Xi); i∈ I〉⊗.
SinceM(Xi) is equivariantly formal for any i, Lemma 11.5 (and the remarks preceding it) implies
that M(Y ) is equivariantly formal. Hence Y is maximal by Proposition 2.3. �

Remark 11.8 (Hodge expressivity). Maximality as well as its strengthening Hodge expressivity
(see [BS22]) are notions in terms of realizations (Hodge numbers, Betti numbers of real loci,
etc.), and it is clear that the tensor product of two maximal (respectively, Hodge expressive)
motives is again maximal (respectively, Hodge expressive). However, it is unclear if a submotive
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of a maximal or Hodge expressive motive inherits the same property. Hence, a priori, we do not
have the Hodge expressive analogue of Corollary 11.7.

11.4 Applications

Despite the formal nature of Corollary 11.7, many results obtained in the previous sections on
various constructions of maximal real algebraic varieties can be viewed as instances of Corollary
11.7. Let us list them again by providing either an alternative motivic proof using Corollary 11.7,
a motivic explanation of the proof or a conjectural motivic strengthening, in light of Corollary
11.7. Notation is retained from the statements in the previous sections and, in the motivic results,
the base field R can often be replaced by any field.

(i) (Projective bundle). Proposition 3.3 can be proved directly by using the projective bundle
formula for motives, which holds even integrally for Chow motives ([And04, §4.3.2]):

h(PX(E))� h(X)⊕ h(X)(−1)⊕ · · · ⊕ h(X)(−r) in CHM(R).

Similarly, the claim in Remark 3.4 on flag bundles follows from the flag bundle formula for
motives,

h(FlX(E))� h(X)⊗ h(Fl(Ar+1)).

(ii) (Blow-up). Proposition 3.5 can be seen directly by using the blow-up formula for motives,
which also holds integrally for Chow motives ([[And04], §4.3.2]):

h(BlY X)� h(X)⊕ h(Y )(−1)⊕ · · · ⊕ h(Y )(−(c− 1)) in CHM(R).

(iii) (Compactification of configuration space). Proposition 3.7 can be deduced from the fact
that the Fulton–MacPherson compactification of the configuration space X[n] is motivated
by X (even integrally for Chow motives).

(iv) (Surjection of odd degree). The proof of Proposition 3.8 actually shows that, for a generi-
cally finite surjection of odd degree Y →X, X is motivated (even for Chow motives with
F2-coefficients) by Y .

(v) (Moduli of vector bundles on curves). For the moduli space MC(n, d) in Theorem 5.3, the
main ingredient in our proof is Atiyah and Bott’s Theorem 5.1, which suggests that the
integral Chow motive of MC(n, d) might be motivated by C and its symmetric powers.
It was known to hold with rational coefficients ([dBn01, Theorem 4.5], [Bea95], [B20,
Remark 2.2], [FHPL23, Proposition 4.1]). If we could show that the integral Chow motive
of MC(n, d) is motivated by the symmetric powers of C, then, using Franz’s Theorem 3.2,
we may get another alternative proof of Theorem 5.3.

(vi) (Moduli of parabolic bundles). Using the language of motives, Corollary 5.5 can be
proved by induction and by saying that [FHPL23, Corollaries 5.16 and 5.19] imply that
Mα

C,D(n, d, 1) is motivated by MC(n, d) and all Mα
C,D(n

′, d′, 1) with (n′, d′, 1) smaller
invariants.

(vii) (Moduli of Higgs bundles on curves). The main ingredient in the proof of Theorem 6.3
for the maximality of the moduli space HC(n, d) is Theorem 6.1 (a variant of Markman’s
result [Mar07]). One can expect that HC(n, d) is motivated by all symmetric powers of C.
This is only established with rational coefficients in [HPL21, Theorem 4.1].
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(viii) (Hilbert square and cube). In Theorem 7.3, we actually showed that X [2,3] and X [3] are
motivated (for Chow motives with F2-coefficients) by X [2] and X.

(ix) (Cubic 3-folds). Theorem 7.5 can be proven directly by using the fact that, for a cubic
threefolds X, its Hilbert square X [2] is motivated by X and its Fano surface of lines F (X),
thanks to [BFR22, Corollary 18].

(x) (Hilbert schemes of surfaces). For S[n], the key ingredient towards Theorem 8.1 is Li and
Qin’s Theorem 8.4, which leads to the challenge of understanding the motive of S[n] in
terms of the motive of S. The author has no idea for integral coefficients. But with rational
coefficients, de Cataldo and Migliorini [dCM02] showed that S[n] is motivated by S.

(xi) (Moduli of sheaves on P2). Ellingsrud and Strømme [ES93] actually show that the Chow
motive of M(r, c1, c2) is a direct sum of Tate motives in CHM(R), from which Theorem 9.1
can be immediately deduced, by Corollary 11.7.

(xii) (Moduli of sheaves on Poisson surfaces). In view of the result of Markman [Mar07], we
would like to make the following conjecture, with the hope of having more cases than in
Theorem 10.1.

Conjecture 11.9. The integral Chow motive of MH(S, v), the moduli space of stable sheaves
on a Poisson surface S with primitive Mukai vector v and v-generic stability condition H, is
in the tensor category generated by the motives of Hilbert schemes {S[n]}n.

This conjecture is known with rational coefficients, thanks to Bülles [B20].

To further illustrate the power of this motivic point of view, we provide some more
applications. Firstly, we have the following complement to Theorem 8.1.

Theorem 11.10 (Hilbert schemes of surfaces with Tate motives). Let S be a smooth projective
real surface. If its integral Chow motive h(S)∈CHM(R) is a direct sum of Tate motives, then
the Hilbert scheme S[n] is maximal for any n� 1.

Proof. By Totaro [Tot20, Theorem 4.1], h(S[n]) is also a direct sum of Tate motives. Since Tate
motives are equivariantly formal, S[n] is maximal. �

Remark 11.11. The above theorem generalizes Corollary 8.6, since R-rational real surfaces all
have Tate motives. This can be seen from the minimal model theory for real surfaces, the
classification of rational real surfaces and the blow-up formula (see the proof of Lemma 4.5).

Secondly, in the direction of [KR23], we show that cubic 4-folds provide more examples of
maximal varieties with non-maximal Hilbert square. This contrasts with the case of cubic 3-folds
in Theorem 7.5.

Theorem 11.12 (Hilbert squares of cubic 4-folds). Let X be a real smooth cubic 4-fold. Assume
that in Finashin and Kharlamov’s classification [FK08] X does not belong to the regular class
corresponding to K3 surfaces with 10 spheres as real locus. Then the Hilbert square X [2] is not
maximal. In particular, the Hilbert square of a maximal smooth real cubic 4-fold is not maximal.

Proof. In [KR23, Theorem 7.7] it is shown that, for such a cubic 4-fold X, the Fano variety
of lines F (X) is not maximal. However, by the motivic Galkin–Shinder relation established in
[BFR22, Corollary 18], F (X) is motivated by X [2]. Therefore, Corollary 11.7 implies that X [2]
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cannot be maximal. Finally, note that a maximal cubic 4-fold does not belong to the regular
class corresponding to real K3 surfaces with 10 spheres as real locus. �
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