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GENERALIZED FRIEZES AND A MODIFIED
CALDERO–CHAPOTON MAP DEPENDING

ON A RIGID OBJECT

THORSTEN HOLM and PETER JØRGENSEN

Abstract. The (usual) Caldero–Chapoton map is a map from the set of objects

of a category to a Laurent polynomial ring over the integers. In the case

of a cluster category, it maps reachable indecomposable objects to the cor-

responding cluster variables in a cluster algebra. This formalizes the idea that

the cluster category is a categorification of the cluster algebra. The defini-

tion of the Caldero–Chapoton map requires the category to be 2-Calabi–Yau,

and the map depends on a cluster-tilting object in the category. We study

a modified version of the Caldero–Chapoton map which requires only that

the category have a Serre functor and depends only on a rigid object in the

category. It is well known that the usual Caldero–Chapoton map gives rise

to so-called friezes, for instance, Conway–Coxeter friezes. We show that the

modified Caldero–Chapoton map gives rise to what we call generalized friezes

and that, for cluster categories of Dynkin type A, it recovers the generalized

friezes introduced by combinatorial means in recent work by the authors and

Bessenrodt.

§0. Introduction

The (usual) Caldero–Chapoton map is an important object in the homo-

logical part of cluster theory (see [9, Section 3.1]). Among other things, it

gives rise to so-called friezes. In particular, Conway–Coxeter friezes can be

recovered like this (see [9, Section 5]).

This paper studies a modified version of the Caldero–Chapoton map. We

show that it gives rise to what we call generalized friezes. In particular, the

generalized friezes which were introduced by combinatorial means in [6] can

be recovered like this.
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102 T. HOLM AND P. JØRGENSEN

0.1. Background

We first explain what the usual Caldero–Chapoton map is. If Q is a finite

quiver without loops and 2-cycles, then there is a cluster algebra A(Q) and

a cluster category C(Q) of type Q (see [8], [16]).

The algebra A(Q) and the category C(Q) are linked by the Caldero–

Chapoton map ρT , which depends on a cluster-tilting object T ∈ C(Q) (see

[9], [11], [12], [21], [22]). It is a map from the set of objects of C(Q) to a Lau-

rent polynomial ring over Z. Its image generates A(Q), which embeds into

Laurent polynomials. Indeed, ρT maps reachable indecomposable objects

to cluster variables and formalizes the idea that the cluster category is a

categorification of the cluster algebra.

Note that ρT can actually be defined on any 2-Calabi–Yau category C

with a cluster-tilting object T , and that one of its good properties is that

it is a so-called frieze (see [1, Definition 1.1], [9, Proposition 3.10], [15,

Theorem]). This means that it is a map from the set of objects of C to a

ring, satisfying ρT (c1 ⊕ c2) = ρT (c1)ρT (c2), such that if τc → b → c is an

Auslander–Reiten (AR) triangle in C, then

(0.1) ρT (τc)ρT (c)− ρT (b) = 1.

Moreover, since ρT has values in a Laurent polynomial ring over Z, setting
all the variables equal to 1 gives a frieze with values in Z.

A classic case of this arises for C(An), the cluster category of Dynkin

type An. For example, the AR quiver of C(A7) is shown in Figure 1. The

quiver is ZA7 modulo a glide reflection, so the two dotted line segments in

the figure should be identified with opposite orientations. Figure 2 shows a

Z-valued frieze, obtained as described, by giving its values on the indecom-

posable objects of C(A7). Observe that (0.1) implies that if

(0.2)

β

α δ

γ

is a diamond in the frieze, then αδ−βγ = 1. This is because such a diamond

corresponds to a mesh in the AR quiver, hence to an AR triangle.

Friezes like this are known as Conway–Coxeter friezes and were stud-

ied long before cluster theory (see [13], [14]). They can also be defined by

combinatorial means based on triangulations of polygons (see [7]).
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Figure 1: The Auslander–Reiten quiver of the cluster category C(A7).

4 4 1 2 2 4

15 3 1 3 7

11 11 2 1 10 5

8 7 1 3 7

5 5 3 2 2 11

3 2 5 1 3

4 1 3 2 1 4

Figure 2: A frieze on the cluster category C(A7). This is also

known as a Conway–Coxeter frieze.

0.2. This paper

We study a modified version of the Caldero–Chapoton map which does

not require the category C to be 2-Calabi–Yau but merely that it has a

Serre functor. Moreover, it does not depend on a cluster-tilting object T

but on a rigid object R, that is, an object satisfying the weaker condition

C(R,ΣR) = 0. Note that C(−,−) is shorthand for the Hom functor in C.

To be precise, let C be the field of complex numbers, let C be an essentially

small C-linear Hom-finite triangulated category with split idempotents and

a Serre functor, let R ∈ C be a rigid object, and let E = C(R,R) be the
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104 T. HOLM AND P. JØRGENSEN

endomorphism algebra. Consider the category ModE of E-right modules

and the functor

C
G−→ModE,

(0.3)
c �−→ C(R,Σc).

Note that G actually has values in modE, the category of E-modules which

are finite-dimensional over C, but we prefer to view it as having values in

ModE because of a later generalization.

The modified Caldero–Chapoton map determined by R is given by the

formula

ρR(c) =
∑
e

χ
(
Gre(Gc)

)
,

where c ∈ C is an object, Gre(Gc) is the Grassmannian of E-submodules

M ⊆Gc with K0-class satisfying [M ] = e, and χ is the Euler characteristic

defined by cohomology with compact support (see [17, p. 93]). The sum is

over e ∈K0(modE). This gives a map ρR : objC→ Z.
One of our main results is the following.

Theorem A. The map ρR : objC→ Z is a generalized frieze. That is,

(i) ρR(c1 ⊕ c2) = ρR(c1)ρR(c2);

(ii) if Δ= τc→ b→ c is an AR triangle in C, then the difference ρR(τc)×
ρR(c)− ρR(b) equals 0 or 1.

In fact, the difference in (ii) is 0 or 1 depending on whether G(Δ) is a

split short exact sequence or not. If the difference in (ii) were always 1, then

ρR would be a frieze in the earlier sense.

The idea of permitting the difference to be 0 or 1 occurred in [6], where

generalized friezes on C(An) were introduced by purely combinatorial means

based on higher angulations of polygons (see Paragraph 5.3 below for

details). For example, Figure 3 shows the values of such a generalized frieze

on the indecomposable objects of C(A7). Note that for each diamond as in

(0.2) we have αδ − βγ equal to 0 or 1.

It is another main result that the generalized friezes of [6] can be recovered

from the modified Caldero–Chapoton map.

Theorem B. Let C = C(An) be the cluster category of type An. It fol-

lows from [10] that a rigid object R ∈ C without repeated indecomposable

summands corresponds to a polygon dissection of an (n+ 3)-gon P . By [6]
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3 2 1 1 2 2

6 2 1 2 4

6 6 1 1 4 4

6 3 1 2 4

4 3 2 1 2 6

2 2 2 1 3

2 1 2 1 1 3

Figure 3: A generalized frieze on the cluster category C(A7), as

introduced in [6].

such a polygon dissection defines a generalized frieze on C, and this gener-

alized frieze equals ρR.

Note that it is not explicit in [6] that its generalized friezes are defined on

C(An), but it is established that they have the requisite periodicity to be so.

Moreover, [6] requires that R corresponds not just to a polygon dissection of

P but to a higher angulation. However, this turns out to be an unnecessary

restriction, both for the combinatorial definition in [6] and for ρR.

This paper considers only the above version of the Caldero–Chapoton

map with values in Z. In the sequel [18] we consider a more elaborate version,

ρR(c) = α(c)
∑
e

χ
(
Gre(Gc)

)
β(e),

where α and β have values in a Laurent polynomial ring. In particular, we

will obtain a version of the generalized friezes of [6] with values in Laurent

polynomials.

The paper is organized as follows. Section 1 gives some background from

representation theory, and Section 2 shows a few properties of Grassmanni-

ans. Section 3 proves Theorem A, Section 4 proves another useful property

of ρR, and Section 5 proves Theorem B.

Note that Sections 1 and 2 sum up and adapt some well-known material

to our setting. In these sections we make no claim to originality. However,

it did not seem feasible to replace them with references.
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106 T. HOLM AND P. JØRGENSEN

§1. Modules over R

This section sums up some items from representation theory. Most of

them go back to [2]–[4], and [5].

Setup 1.1. Throughout, C is the field of complex numbers and C is

an essentially small C-linear Hom-finite triangulated category with split

idempotents and Serre functor S. The suspension functor of C is denoted Σ.

Moreover, R is a functorially finite subcategory of C, closed under direct

sums and summands, which is rigid; that is, C(R,ΣR) = 0. Here C(−,−) is

short for HomC(−,−).

1.2 (The case R= addR). An important special case is R= addR where

R ∈ C is rigid; that is, C(R,ΣR) = 0. Then R is automatically functorially

finite, and we have the endomorphism algebra E = C(R,R), the category of

E-right modules ModE, and the functor G from (0.3). This is the situation

from the Introduction.

However, R has the form addR only when it has finitely many indecom-

posable objects, and we want to permit infinitely many because there are

nice examples where it is relevant (see, e.g., [20, Section 6]). This requires

the following, more general machinery.

1.3 (Krull–Schmidt categories). Since C is C-linear Hom-finite with split

idempotents, it is Krull–Schmidt. So is R, since it is closed under direct sums

and summands. We denote the sets of indecomposable objects by indC and

indR. Note that R being rigid implies that Σ−1(indR) and indR are disjoint.

1.4 (The category ModR). We let ModR= (Rop,ModC) denote the cate-
gory of C-linear contravariant functors R→ModC. It is an abelian category

where a sequence K → L→M is exact if and only if its evaluation at each

object of R is exact (see [3, Section 2]).

There is a functor

C
G−→ModR,

c �−→ C(−,Σc)|R.

Note that G(R) = 0.

If R= addR where R is a rigid object, and E = C(R,R) is the endomor-

phism algebra, then there is an equivalence
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ModR
∼−→ModE,

M �−→M(R)

which identifies the two versions of G given in this paragraph and (0.3).

Note that ModR= (Rop,ModC) has the subcategory (Rop,modC) of C-
linear contravariant functors R→modC. It is closed under subobjects and

quotients, so it is an abelian subcategory of ModR with exact inclusion

functor.

1.5 (Projective objects). An object r ∈ R gives a projective object

Pr(−) = R(−, r) =G(Σ−1r)

in ModR. For an object M ∈ModR, Yoneda’s lemma says that there is an

isomorphism

(1.1) HomModR(Pr,M)→M(r)

given by mapping a natural transformation Pr = R(−, r)→M to its evalu-

ation on idr.

If r ∈ indR, then Pr is indecomposable and has a unique maximal proper

subobject, radPr. Hence, a morphism M → Pr which is not an epimorphism

factors through radPr ↪→ Pr (see [3, Section 2], [4, Propositions 2.2 and 2.3]).

1.6 (The category modR). An object M ∈ ModR is called coherent if

there is an exact sequence

Pr1 → Pr0 →M → 0

with r0, r1 ∈ R. The full subcategory of coherent objects is denoted bymodR.

It is clearly contained in (Rop,modC). Since R is functorially finite in C, the

category modR is abelian by [19, Remark after Definition 2.9], and the

inclusion modR ↪→ModR is exact by [2, Section III.2].

1.7 (Dualizing variety). Composition with the functor D(−) = HomC(−,

C) gives a duality

(Rop,modC)→ (R,modC).

By [19, Propositions 2.10 and 2.11] the category R is a dualizing variety in

the sense of [5, Section 2], so the displayed duality restricts to a duality

modR→modRop.
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1.8 (Simple and finite length objects). The simple objects of ModR are

precisely those of the form

Sr = Pr/ radPr

for r ∈ indR (see [4, Propositions 2.2 and 2.3]). Since R is a dualizing variety,

Sr ∈ modR for each r ∈ indR by [5, Proposition 3.2(c)]. As in [20, (1.4)]

it follows that modR and ModR have the same simple and the same finite

length objects. We denote the full subcategory of finite length objects by flR.

It is closed under subobjects and quotients in modR and in ModR, so it is

abelian, and the inclusion functors flR ↪→modR and flR ↪→ModR are exact.

1.9 (K-theory). It is immediate from Paragraph 1.8 that K0(flR) is a free

group on the generators [Sr] for r ∈ indR, where [−] denotes the K0-class of

an object. If M ∈ flR, then M has a finite filtration with simple quotients

and the K0-class [M ] is the sum of the K0-classes of the simple quotients.

For M ′ ⊆M this implies that

(1.2) [M ′] = [M ]⇔M ′ =M, [M ′] = 0⇔M ′ = 0.

1.10 (Injective objects). The previous items are left/right symmetric, so

if r ∈ indR, then P r = R(r,−) is indecomposable projective in ModRop and

there is a short exact sequence

0→ radP r → P r → Sr → 0

in ModRop where Sr is simple in ModRop. The sequence is in (R,modC),
and dualizing it gives a short exact sequence

0→ Sr → Ir → corad Ir → 0,

where

Ir =DR(r,−) = R(−, Sr)

is indecomposable injective in ModR. A morphism Ir �N which is not a

monomorphism factors through Ir � corad Ir.

The next two lemmas follow by standard methods. We include short

proofs for completeness. Note that if A and B are full subcategories of C, then

A ∗ B denotes the full subcategory of objects x appearing in distinguished

triangles a→ x→ b with a ∈ A, b ∈ B.
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Lemma 1.11.

(i) For M ∈modR there is z ∈ (Σ−1R) ∗ R such that Gz ∼=M .

(ii) For z ∈ (Σ−1R) ∗ R and c ∈ C, the map

C(z, c)
G(−)−→ HomModR(Gz,Gc)

is surjective.

Proof. (i) For M ∈modR there is an exact sequence Pr1 → Pr0 →M → 0

with r0, r1 ∈ R. By (1.1) the first arrow is induced by a morphism r1 → r0
in R. Desuspending and completing to a distinguished triangle Σ−1r1 →
Σ−1r0 → z → r1 in C, it is easy to check that M ∼=Gz.

(ii) For r ∈ R, (1.1) gives an isomorphism HomModR(Pr,Gc)→ (Gc)(r),

which can also be written HomModR(G(Σ−1r),Gc)→ C(Σ−1r, c). One checks

that its inverse is G(−), which is hence bijective in this case.
Now let z ∈ (Σ−1R)∗R be given. There is a distinguished triangle Σ−1r1 →

Σ−1r0 → z → r1 which induces an exact sequence G(Σ−1r1)→G(Σ−1r0)→
Gz → 0 and a commutative diagram

C(r1, c) C(z, c)

G(−)

C(Σ−1r0, c)

G(−)

C(Σ−1r1, c)

G(−)

0 HomModR(Gz,Gc) HomModR

(
G(Σ−1r0),Gc

)
HomModR

(
G(Σ−1r1),Gc

)
with exact rows. The first vertical arrow is surjective, and the third and

fourth vertical arrows are bijective by the previous part of the proof. This

four lemma implies that the second vertical arrow is surjective, as claimed.

Now let

Δ= τc→ b
β→ c

be an AR triangle in C, whence

G(Δ) =G(τc)→Gb→Gc

is an exact sequence.

Lemma 1.12.

(i) If c=Σ−1r ∈Σ−1 indR, then G(Δ) = 0→ radPr → Pr.

(ii) If c= r ∈ indR, then G(Δ) = Ir → corad Ir → 0.

(iii) If c /∈Σ−1(indR)∪ indR, then G(Δ) is a short exact sequence.
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Proof. (i) Let c=Σ−1r, whence Gc= Pr.

Pick a right R-approximation r′
ρ′→ Σb. It is easy to see that compos-

ing with Σb
Σβ→ r gives a morphism r′ → r which is almost splitable in the

sense of [4, Section 2], so the row in the following diagram is exact by [4,

Corollary 2.6]:

C(−, r′)|R

ρ′∗

C(−, r)|R
σ

Sr 0

C(−,Σb)|R
(Σβ)∗

Since σ is the canonical epimorphism Pr → Sr, the diagram shows

Im(Σβ)∗ = radPr. This can also be written ImGβ = radPr.

Finally, c=Σ−1r implies that

G(τc) = C(−,Στc)|R = C
(
−,Σ(SΣ−1)(Σ−1r)

)
|R

= C(−, SΣ−1r)|R =DC(Σ−1r,−)|R = 0.

The sequence G(Δ) is exact and, combining with what we have shown,

gives G(Δ) = 0→ radPr → Pr as desired.

(ii) Apply (i) to Cop and Rop and dualize.

(iii) There is a long exact sequence

G(Σ−1b)
G(Σ−1β)

G(Σ−1c) G(τc) Gb
Gβ

Gc.

The first morphism can also be written C(−, b)|R
β∗→ C(−, c)|R. It is an epi-

morphism when c /∈ indR, since β is right almost split. Similarly, the last

morphism in the long exact sequence is an epimorphism when Σc /∈ indR,

and (iii) of the proposition follows.

§2. Grassmannians

This section adapts some material from [9], [11], [12], [21], and [22] to our

setting.

Definition 2.1 (Grassmannians). Let M ∈ ModR and e ∈ K0(flR) be

given. Let Gr(M) be the Grassmannian of subobjects M ′ ⊆M with finite

length, and let Gre(M)⊆Gr(M) be the Grassmannian of subobjects M ′ ⊆
M with finite length and [M ′] = e.
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2.2 (Constructible maps). A morphism M
j→ N in flR induces

constructible maps of Grassmannians as follows:

Gr(M)→Gr(N), Gr(N)→Gr(M),

M ′ �→ jM ′, N ′ �→ j−1N ′

(see [22, Section 2.1] for the definitions of constructible sets and maps). Note

that, in particular, the image and the inverse image under a constructible

map of a constructible set are constructible.

Setup 2.3. For the rest of this section, a→ b→ c are fixed morphisms

in C. We assume that applying G gives a short exact sequence

(2.1) 0→Ga
i→Gb

p→Gc→ 0

and that Ga, Gb, Gc have finite length in ModR.

Definition 2.4. For e, f ∈K0(flR), there is a constructible subset

Xe,f =
{
L ∈Gr(Gb)

∣∣ [i−1L] = e, [pL] = f
}
⊆Gr(Gb)

and a morphism

Xe,f
πe,f−→Gre(Ga)×Grf (Gc),

L �−→ (i−1L,pL).

Lemma 2.5. For each g ∈K0(flR) we have

Grg(Gb) =
⋃

e+f=g

Xe,f ,

where the right-hand side is a finite disjoint union.

Proof. Each L ∈Gr(Gb) is a subobject of Gb and so sits in a short exact

sequence 0→ i−1L→ L→ pL→ 0, whence [L] = [i−1L] + [pL] in K0(flR).

This gives the disjoint union in the lemma which is clearly finite.

Lemma 2.6.

(i) If the sequence (2.1) is split exact, then πe,f is surjective.

(ii) If (e, f) �= (0, [Gc]) and a→ b→ c is an AR triangle, then πe,f is sur-

jective.
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(iii) If (e, f) = (0, [Gc]), then either πe,f is surjective or Xe,f = ∅. The for-

mer happens if and only if the sequence (2.1) is split exact.

(iv) If (e, f) = (0, [Gc]), then Gre(Ga)×Grf (Gc) = {(0,Gc)} has only one

point.

(v) Each fiber of πe,f is an affine space over C.

Proof. For (i) and (ii) let (K,M) ∈Gre(Ga)×Grf (Gc) be given. That is,

K ⊆Ga, M ⊆Gc are subobjects with [K] = e and [M ] = f .

(i) When the sequence (2.1) is split exact, we set L=K⊕M ⊆Ga⊕Gc=

Gb, whence i−1L=K, pL=M , so πe,f (L) = (K,M).

(ii) Pick z ∈ (Σ−1R) ∗ R such that there is an isomorphism Gz
∼→M (see

Lemma 1.11(i)). Composing it with the inclusion M ⊆Gc gives a monomor-

phism Gz →Gc which has the form G(z
ζ→ c) by Lemma 1.11(ii). Note that

M = ImGζ.

First, suppose that e �= 0. In this case, K �= 0 by (1.2).

By Paragraphs 1.6 and 1.8 we can pick r ∈ R such that there is an epi-

morphism Pr = G(Σ−1r) � K. Composing it with the inclusion K ⊆ Ga

gives a morphism G(Σ−1r) → Ga which has the form G(Σ−1r
ϕ→ a) by

Lemma 1.11(ii). Note that K = ImGϕ and that K �= 0 implies that ϕ �= 0.

We are assuming that there is an AR triangle a→ b→ c
γ→Σa, and since

ϕ and hence Σϕ are nonzero, γ factors as c
ε→ r

Σϕ
→ Σa. We can spin this into

the following commutative diagram where the top row is also a distinguished

triangle:

Σ−1r

ϕ

y

υ

z
εζ

ζ

r

Σϕ

a b c γ

ε

Σa

Applying G gives a commutative diagram with exact rows:

G(Σ−1r)

Gϕ

Gy

Gυ

Gz

Gζ

0

0 Ga
i

Gb p Gc 0

Set L= ImGυ. A diagram chase using that Gζ is a monomorphism shows

that i−1L= ImGϕ=K and that pL= ImGζ =M , so πe,f (L) = (K,M).
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Second, suppose that e = 0. We are assuming that (e, f) �= (0, [Gc]), so

f �= [Gc] follows. In this case, K = 0 and M �=Gc by (1.2).

Since M = ImGζ, the morphism Gz
Gζ−→Gc is not an epimorphism; thus,

ζ is not a split epimorphism, so ζ factors as z
υ→ b→ c. Applying G gives

the following commutative diagram:

Gz

Gυ

Gz

Gζ

0 Ga
i

Gb p Gc 0

Set L= ImGυ. As above, a diagram chase using that Gζ is a monomorphism

shows that i−1L= 0=K and that pL= ImGζ =M , so πe,f (L) = (K,M).

(iii) When (e, f) = (0, [Gc]), it is clear from (iv) that either πe,f is sur-

jective or Xe,f = ∅. The former happens if and only if there is a subobject

L ⊆Gb such that i−1L = 0 and pL =Gc. This is clearly equivalent to the

existence of a morphism Gc
q→ Gb with pq = id, that is, equivalent to the

short exact sequence (2.1) being split exact.

(iv) This follows from (1.2).

(v) See [9, Lemma 3.11], which is stated for AR sequences but has a proof

that also works in the present situation.

§3. Generalized friezes

This section shows Theorem 3.3, which is a refined version of Theorem A

from the Introduction.

Definition 3.1. For c ∈ C set

ρR(c) =
∑
e

χ
(
Gre(Gc)

)
.

Recall that Gc is the R-module C(−,Σc)|R and that Gre(Gc) is the Grass-

mannian of subobjects M ⊆Gc with finite length and [M ] = e, while χ is

the Euler characteristic defined by cohomology with compact support (see

[17, p. 93]). The sum is over e ∈K0(flR).

Note that if Gc = 0, then ρR(c) = 1. However, for other objects c the

formula may not make sense because Gc may have infinite length, in which

case the sum may be infinite.
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Definition 3.2. If R = addR for a rigid object R, then we write ρR
instead of ρR; this is the situation from the Introduction.

For the rest of this section and the next, ρR is abbreviated to ρ.

Theorem 3.3.

(i) If Gc is of finite length, then the formula for ρ(c) makes sense.

(ii) If c1, c2 ∈ C have Gc1, Gc2 of finite length, then G(c1 ⊕ c2) has finite

length and ρ(c1 ⊕ c2) = ρ(c1)ρ(c2).

(iii) If

Δ= τc→ b→ c

is an AR triangle in C and G(τc), Gc have finite length, then so does

Gb and

ρ(τc)ρ(c)− ρ(b) =

{
0 if G(Δ) is a split short exact sequence,

1 if G(Δ) is not a split short exact sequence.

Proof. (i) If Gc has finite length, then Gre(Gc) is nonempty only for

finitely many values of e (see [20, Paragraphs 1.6 and 1.8]). Hence, the

formula for ρ makes sense.

(iii) Consider the AR triangle Δ, and suppose that G(τc), Gc have finite

length. The exact sequence G(Δ) shows that Gb has finite length. We now

split into cases.

Case (a): c=Σ−1r ∈Σ−1 indR. Lemma 1.12(i) says that

G(Δ) = 0→ radPr → Pr;

in particular, G(Δ) is not a split short exact sequence. We have

ρ(c) =
∑
e

χ
(
Gre(Pr)

)

= χ
(
Gr[Pr](Pr)

)
+

∑
e �=[Pr]

χ
(
Gre(Pr)

)

= 1+
∑
e

χ
(
Gre(radPr)

)
= 1+ ρ(b).

The penultimate = holds because (1.2) implies that Gr[Pr](Pr) = {Pr} has

only one point and that each subobject M ⊆ Pr with [M ] �= [Pr] is proper

and hence contained in radPr. Moreover,

ρ(τc) = 1
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since G(τc) = 0. Combining the equations shows that

(3.1) ρ(τc)ρ(c)− ρ(b) = 1.

Case (b): c= r ∈ indR. We can use the dual argument to Case (a), based

on Lemma 1.12(ii). We get that G(Δ) is not a split short exact sequence,

and (3.1) remains true.

Case (c): c /∈Σ−1(indR)∪ indR. We will use the machinery of Section 2,

so set a → b → c of Setup 2.3 equal to Δ = τc → b → c. The require-

ments of the setup are satisfied because G(Δ) is a short exact sequence

by Lemma 1.12(iii).

We have

ρ(τc)ρ(c) =
∑
e,f

χ
(
Gre

(
G(τc)

))
χ
(
Grf (Gc)

)

=
∑
e,f

χ
(
Gre

(
G(τc)

)
×Grf (Gc)

)

= χ
(
Gr0

(
G(τc)

)
×Gr[Gc](Gc)

)
+

∑
(e,f) �=(0,[Gc])

χ
(
Gre

(
G(τc)

)
×Grf (Gc)

)

= χ
(
Gr0

(
G(τc)

)
×Gr[Gc](Gc)

)
+

∑
(e,f) �=(0,[Gc])

χ(Xe,f ).

The second = is by [17, p. 92, item (4)], and the last = is by [17, p. 93,

Exercise] and Lemma 2.6(ii), (v). On the other hand,

ρ(b) =
∑
g

χ
(
Grg(Gb)

)
=
∑
e,f

χ(Xe,f ) = χ(X0,[Gc]) +
∑

(e,f) �=(0,[Gc])

χ(Xe,f ),

where the second = is by [17, p. 92, item (3)] and Lemma 2.5. It follows

that

ρ(τc)ρ(c)− ρ(b) = χ
(
Gr0

(
G(τc)

)
×Gr[Gc](Gc)

)
− χ(X0,[Gc]) = (†).

If G(Δ) is split exact, then π0,[Gc] is surjective by Lemma 2.6(i), whence

(†) = 0 by [17, p. 93, Exercise] and Lemma 2.6(v). If G(Δ) is not split

exact, then Lemma 2.6(iii), (iv) implies that (†) = 1− 0 = 1.

(ii) Suppose that Gc1, Gc2 have finite length. It is clear that G(c1 ⊕ c2)

has finite length. Set a → b → c of Setup 2.3 equal to c1 → c1 ⊕ c2 → c2.
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A simplified version of the above computation for Case (c), using part (i)

of Lemma 2.6 instead of (ii), shows that ρ(c1 ⊕ c2) = ρ(c1)ρ(c2).

Definition 3.4. Let A be a commutative ring. A generalized frieze on

C with values in A is a map ϕ : objC→A satisfying

(i) ϕ(c1 ⊕ c2) = ϕ(c1)ϕ(c2);

(ii) if τc→ b→ c is an AR triangle in C, then ϕ(τc)ϕ(c) − ϕ(b) equals 0

or 1.

Corollary 3.5. If Gc has finite length for each c ∈ C, then ρ is a gen-

eralized frieze with values in Z.

Proof. This is immediate from Theorem 3.3.

Remark 3.6. Theorem A in the Introduction follows from this since it

is clear that each Gc has finite length when R= addR for a rigid object R.

However, Theorem 3.3 is a bit finer because it also deals with situations

where ρ is not defined on every c ∈ C.

§4. An extension formula

This section shows Proposition 4.4 which is akin to the exchange relation

or multiplication property for cluster maps, albeit in a special case (see [12,

Introduction] and [21, Introduction]).

Setup 4.1. In this section C is assumed to be 2-Calabi–Yau; that is, its

Serre functor is S =Σ2.

Moreover, m ∈ indC and r ∈ indR denote objects satisfying

dimCExt
1
C(r,m) = dimCExt

1
C(m,r) = 1,

and m→ a→ r and r→ b→m are the ensuing nonsplit extensions.

Remark 4.2. Being more verbose, we have the following distinguished

triangles with δ, ε �= 0:

m
μ→ a→ r

δ→Σm, r→ b
β→m

ε→Σr.

Applying G gives exact sequences in ModR:

G(Σ−1r)
G(Σ−1δ)−→ Gm

Gμ−→Ga→ 0, 0→Gb
Gβ−→Gm

Gε−→G(Σr).

Lemma 4.3. If M ⊆ Gm, then either KerGμ ⊆ M or M ⊆ ImGβ, but

not both.
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Proof. Equivalently, either ImG(Σ−1δ) ⊆ M or M ⊆ KerGε, but not

both.

Not both: Since C is 2-Calabi–Yau, its AR translation is τ =Σ, so there

is an AR triangle Σr→ y→ r
σ→Σ2r. The morphism r

δ→Σm is nonzero, so

σ factors as r
δ→ Σm

ψ→ Σ2r. Since ψδ = σ �= 0, we have ψ �= 0. It therefore

follows from dimCC(Σm,Σ2r) = dimCC(m,Σr) = 1 that Σm
Σε−→ Σ2r is a

nonzero scalar multiple of ψ, whence ψδ �= 0 implies that Σ(ε)δ �= 0. Hence,

G(εΣ−1δ) �= 0, because this morphism is

C(−, r)|R
(Σ(ε)δ)∗

C(−,Σ2r)|R.

Now suppose that ImG(Σ−1δ)⊆M . Applying Gε gives ImG(εΣ−1δ)⊆
(Gε)M . By what we have shown above, this implies that (Gε)M �= 0, that

is, that M �KerGε as claimed.

Either/or : Suppose that M �KerGε. Since Gε is

C(−,Σm)|R
(Σε)∗

C(−,Σ2r)|R,

this means that there exist r′ ∈ indR and a morphism r′
ρ′→ Σm in M(r′)

such that the composition r′
ρ′→ Σm

Σε−→ Σ2r is nonzero. Hence, the map

C(Σm,Σ2r)
ρ′∗→ C(r′,Σ2r) is nonzero, whence the lower horizontal map is

nonzero in the following commutative square which exists by Serre duality:

C(r, r′)
ρ′∗

∼=

C(r,Σm)

∼=

DC(r′,Σ2r)
D(ρ′∗)

DC(Σm,Σ2r)

It follows that the upper horizontal map is nonzero and so is surjective since

dimCC(r,Σm) = 1 by assumption. Hence, r
δ→Σm factors as r→ r′

ρ′→Σm.

However, for r′′ ∈ R each element of (ImG(Σ−1δ))(r′′) is a composi-

tion r′′ → r
δ→ Σm. By what we have shown, such a composition can also

be written as a composition r′′ → r′
ρ′→ Σm and so is in M(r′′). Hence,

ImG(Σ−1δ)⊆M as desired.

Proposition 4.4. In the situation of Setup 4.1, if Gm has finite length,

then so do Ga and Gb, and

ρ(m) = ρ(a) + ρ(b).

https://doi.org/10.1215/00277630-2891495 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2891495


118 T. HOLM AND P. JØRGENSEN

Proof. The claim about lengths follows from the exact sequences in

Remark 4.2.

When Gm has finite length there are injections

Gre−[KerGμ](Ga) Gre(Gm) Gre(Gb),

K (Gμ)−1K,

(Gβ)L L.

The images are constructible by Paragraph 2.2, and they are disjoint with

union equal to Gre(Gm) by Lemma 4.3, whence

χ
(
Gre(Gm)

)
= χ

(
Gre−[KerGμ](Ga)

)
+ χ

(
Gre(Gb)

)
by [17, p. 92, item (3)]. Summing over e ∈K0(flR) proves the proposition.

Remark 4.5. Since Gr = 0, we have ρ(r) = 1, so Proposition 4.4 can also

be written as

(4.1) ρ(m)ρ(r) = ρ(a) + ρ(b).

This makes it clearer that it is akin to the exchange relation or multiplication

property for cluster characters (see [12, Introduction], [21, Introduction]).

If r ∈ indC, then (4.1) holds for cluster characters but may fail for ρ (see

Remark 5.5).

§5. The generalized friezes of [6]

This section shows Theorem 5.4, which is a reformulation of Theorem B

in the Introduction.

Setup 5.1. In this section, n≥ 3 is an integer, C= C(An) is the cluster

category of type An (see [8], [10]), and R is a rigid object of C without

repeated indecomposable summands. We set R= addR (see Paragraph 1.2).

5.2 (Coordinates and diagonals). It is clear that Gc has finite length for

each c ∈ C, and it is well known that C and R satisfy the conditions of

Setups 1.1 and 4.1, so the results of Sections 3 and 4 apply.

The following properties were shown in [10]. The AR quiver of C is ZAn

modulo a certain glide reflection. There is a coordinate system on the AR
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Figure 4: The coordinate system on the AR quiver of C(An).

quiver of C, part of which is shown in Figure 4. It is continued with the stipu-

lations that the order of the coordinates does not matter and that individual

coordinates are taken modulo n+ 3; this emulates the action of the glide

reflection. We think of the coordinate pair (i, j) as the diagonal connecting

vertices i and j in a regular (n+ 3)-gon P with vertex set {0, . . . , n+ 2}.
This identifies the indecomposable objects of C with the diagonals of P .

The identification has the property that if M,S ∈ indC, then

(5.1) dimCExt
1
C(M,S) =

{
1 if M and S cross,

0 if not.

In particular, the indecomposable summands of the rigid object R are a set

of pairwise noncrossing diagonals of P , that is, a polygon dissection of P

which will also be denoted by R.

5.3 (The generalized friezes of [6]). Let us recall the algorithm of [6,

Section 3], which uses the polygon dissection R of the (n+3)-gon P to define

a generalized frieze on C = C(An). Note that in [6] the polygon dissection

was assumed to be a higher angulation, but this restriction is unnecessary.

Define nonnegative integers mR(i, j), indexed by vertices i, j of P , by the

following inductive procedure. Let i be fixed. Set mR(i, i) = 0. The polygon

dissection R splits P into smaller polygonal pieces. If α is a piece containing

i, and j is another vertex of α, then set mR(i, j) = 1. If α is a piece not

containing i, then we can assume that there is a piece α′ sharing an edge
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(k, �) with α, such that mR(i, j) has already been defined for the vertices j

of α′. Set

(5.2) mR(i, j) =mR(i, k) +mR(i, �)

for each vertex j �= k, � of α. Note that (k, �) is a diagonal in R, that is, an

indecomposable summand of R.

It was proved in [6, Theorem 3.3] that mR(i, j) =mR(j, i), so mR can be

viewed as being defined on the diagonals of P , that is, on the indecompos-

able objects of C. It is extended to all objects by the rule mR(c1 ⊕ c2) =

mR(c1)mR(c2).

Moreover, the AR triangles in C have the form

(i− 1, j − 1)→ (i− 1, j)⊕ (i, j − 1)→ (i, j),

where (i− 1, j) and (i, j− 1) have to be interpreted as 0 if their coordinates

are neighboring vertices of P , and it was proved in [6, Theorem 5.1] that

each difference

(5.3) mR(i− 1, j − 1)mR(i, j)−mR(i− 1, j)mR(i, j − 1)

equals 0 or 1.

Hence, mR is a generalized frieze on C.

Theorem 5.4. Consider the situation of Setup 5.1. The rigid object R

gives a polygon dissection of the (n+3)-gon P (see Paragraph 5.2), and the

dissection gives a generalized frieze mR on C (see Paragraph 5.3).

The rigid object R also gives a generalized frieze ρR on C (see Defini-

tion 3.1 and Corollary 3.5).

These generalized friezes agree; that is, mR = ρR.

Proof. Since mR(c1⊕c2) =mR(c1)mR(c2) by definition and since ρR(c1⊕
c2) = ρR(c1)ρR(c2) by Theorem 3.3(ii), it is enough to let i be a fixed vertex

of P and to show that

(5.4) mR(i, j) = ρR
(
(i, j)

)
for each vertex j of P , and we do so inductively.
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The polygon dissection R splits P into smaller polygonal pieces. If α

is a piece containing i, and j is another vertex of α, then by definition

mR(i, j) = 1. The diagonal (i, j) crosses none of the diagonals in R, so

Ext1C(R, (i, j)) = 0 by (5.1). That is, G((i, j)) = 0, so ρR((i, j)) = 1, veri-

fying (5.4).

If α is a piece not containing i, then we can assume that there is a piece

α′ sharing an edge S = (k, �) with α, such that, if j is a vertex of α′, then
(5.4) has already been verified, and such that, if j �= k, � is a vertex of α,

then M = (i, j) crosses S. For such a j,

dimCExt
1
C(M,S) = dimCExt

1
C(S,M) = 1

by (5.1), and there are nonsplit extensions

M →A⊕A′ → S, S →B ⊕B′ →M

in C where A,A′,B,B′ ∈ indC are the diagonals in Figure 5. Note that if

one or more of A,A′,B,B′ are edges of P , then they must be interpreted as

zero objects, and note that S is a diagonal in R, that is, an indecomposable

summand of R.

Figure 5: There are nonsplit extensions M →A⊕A′ → S and

S →B ⊕B′ →M in C(An).
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Combining Proposition 4.4 and Theorem 3.3(ii) gives

(5.5) ρR(M) = ρR(A)ρR(A
′) + ρR(B)ρR(B

′).

Since j, k, � are vertices of α, the diagonals A′ = (j, k) and B′ = (j, �) cross

none of the diagonals in R, so GA′ =GB′ = 0 by (5.1), and hence ρR(A
′) =

ρR(B
′) = 1. Equation (5.5) therefore reads ρR(M) = ρR(A)+ ρR(B), giving

the first of the following equalities:

ρR
(
(i, j)

)
= ρR

(
(i, �)

)
+ ρR

(
(i, k)

)
=mR(i, �) +mR(i, k) =mR(i, j).

The second equality is by assumption since k, � are vertices of α′, and the

third equality is (5.2).

This shows (5.4) for the vertices j of α, completing the induction.

Remark 5.5. Consider the situation of Setup 4.1. Remark 4.5 proved

(4.1) for r ∈ indR. The remark claimed that if r ∈ indC, then (4.1) may fail.

We can now prove this: if it did always hold, then for C= C(An) we could

let the extensions in Setup 4.1 be

(i− 1, j − 1)→ (i− 1, j)⊕ (i, j − 1)→ (i, j), (i, j)→ 0→ (i− 1, j − 1),

where the first is the AR triangle ending in (i, j) and the second has con-

necting morphism equal to the identity on (i− 1, j − 1). Then (4.1) would

give

ρR
(
(i− 1, j − 1)

)
ρR

(
(i, j)

)
= ρR

(
(i− 1, j)

)
ρR

(
(i, j − 1)

)
+ 1,

and Theorem 5.4 would imply that the difference (5.3) was always 1. That

is false, however (see [6, Theorem 5.1(c)]).
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