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ABSTRACT

Based on recurrence equation theory and relative error (rather than absolute
error) analysis, the concept and criterion for the stability of a recurrence
equation are clarified. A family of recursions, called congruent recursions, is
proved to be strongly stable in evaluating its non-negative solutions. A type of
strongly unstable recursion is identified. The recursive formula discussed by
PANJER (1981) is proved to be strongly stable in evaluating the compound
Poisson and the compound Negative Binomial (including Geometric) distribu-
tions. For the compound Binomial distribution, the recursion is shown to be
unstable. A simple method to cope with this instability is proposed. Many
other recursions are reviewed. Illustrative numerical examples are given.
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1. INTRODUCTION

Compound distributions are used extensively in modeling the total claims for
insurance portfolios. Consider the family of claim frequency distributions
satisfying the recursion:

b
a+ -
n

(1) Pn= Pn-1 s n:1,2’3a"'

where p, denotes the probability that exactly » claims occur in a fixed time
interval such as one year and p, is an initial value. If the claim severity has a
probability function (p.f.) f(x), x > 0, the total claims has a compound
distribution with a p.f.:

@) gx) =Y pf*(x),  x20.

n=0
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PANJER [12] has shown that, if the claim severity distribution is defined on

the positive integers with a p.f. f(x), x > 0, the compound distribution in (2)
can be evaluated recursively as:

3) gix) =Y
j=1

a+b£)f(j)g(x—j), x=1,2,3,...
x

©)] g(0) = po.

This recursive formula is very useful for computer programming and
significantly reduces the computing time comparing with the brute-force
method directly using formula (2).

As with any algorithm, round-off errors are inevitable since computers only
represent a finite number of digits. Practical observations show that algo-
rithm (3) works well in evaluating compound distributions. However, in the
actuarial literature, there are also some comments which diverge from the
above observations and make the picture somewhat fuzzy. There is an obvious
need for a clearer picture of the stability of recursive computation. '

To convey some impression that round-off errors are not necessarily small,
we start with a numerical example.

Example 1: In a compund Poisson model, the claim frequency has a Poisson
distribution with mean 4 = 10, the claim severity has a two points distribu-
tion:

f)=95 f() =.05.

By directly applying recursion (3) in the usual forward direction:

A
&) g(x) ;[f(l)g(x'1)+2f(2)g(x—2)],

It

10
(6) ; [95g(x—1)+.1g(x-2)],

with initial values
(N g(—=1)=0, g(@0)=exp(—41) =exp(—10),

one can obtain the compound distribution easily.
Values at x =9 and x = 10 are

g(9) = .1140989798,  g(10) = .1183785348.
Equation (6) can be used in the backward direction as:
®) g(x—2)=x¢g(x)—9.5g(x—1).

With ¢ (10) and g (9) as starting points, we obtained the surprising results in
Table 1 when 6 digits of floating points are used. One can see that round-off
errors blow up rapidly!
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TABLE 1
AN EXAMPLE USING ALGORITHM (3) IN THE BACKWARD DIRECTION

points probability
8 .099850
7 078315
6 054807
5 027538
4 067231
3 —.501005
2 5.02847
1 -49.2735
0 478.155

The catastrophic instability in the backward direction can indicate strong
stability in the forward direction. The well-known Miller’s algorithm (see [16],
p. 153) is based on this principle. Thus, the stability of a recursion depends on
the direction in which it is used. In this paper, unless otherwise stated, the
direction of recursive evaluation is the forward direction.

2. RELATIVE ERROR VS ABSOLUTE ERROR

GoovaerTs and DE VYLDER [9] (p. 57) have discussed the propagation of
absolute errors of the recursion (3). Based on their analysis about the inflation
of absolute errors, they concluded that the recursion (3) seems to be unsta-
ble.

There is nothing wrong in their error analysis, but the conclusion they drew
is inappropriate because the absolute error has little bearing on the behavior of
errors relative to the required solution. We want to stress one basic point in
standard numerical analysis: *“ as a measure of accuracy, the absolute error may
be misleading and the relative error more meaningful”” — BURDEN and FAIRES [1]
(p. 13). The criterion for the stability of an algorithm should be relative error,
rather than absolute error.

Example 2: For a Poisson distribution with a large mean A, say 4 = 1000,
assume ideal computing which gives exact solutions using the recursion:

A
(9) pn :“pn—l’ nZl
n

Thus, in the above ideal computing process there is no error propagation.
Rounding errors only occur when the computer outputs the exact solution.
Only a finite number r (r can be any desired number) digits can be represented
in the output. In this way, both the first point, p,, and the mean point, p g,
are obtained. When r = 10, one has

Po = .5075958897 x 10~ %% and  pjgeo = 0.1261461134,
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with absolute errors of about
1074 and  107"%,

respectively.

For any value of r, the absolute error is inflated 1 times when the
recursive evaluation moves from py to pg0. Obviously one cannot conclude
that the algorithm (9) is unstable.

On the other hand, one can see that the algorithm (9) is stable by observing a
constant relative error in the evaluation process (the relative errors for p, and
Piogo are about the same at 107"),

To conclude this section, we cite Oliver’s ([11], p. 324) argument about the
criterion of stabilities of recursions:

0432

“If we should wish to determine the number of significant figures in the
computed values, then the absolute stability of the relation is quite irrelevant,
what matters is the behavior of the propagated errors relative, not to unity, but
to the required solution.”

3. LINEAR RECURSIONS OF FINITE ORDER

Consider the linear homogeneous recurrence equation in the forward direc-

tion
(10) g(x) = Y A4(x)g(x—)), x>k A,(x)#0,
i=1

where m is called the order of the recurrence equation. The point k is the
starting point of the recursion and g(k—m+1),....g(k) are the initial
values.

For any given initial conditions
(11) gD = jmhkmmt K @y e %) = 4,

the linear recurrence equation (10) has one and only one solution, g; ,(x). Any
solution of (10) can be represented by its initial values. Also, the solution
;. 1 (x) linearly depends upon the initial vector a:

(12) Geiatep k(X)) = c19z k(X)) T C2gp 1 (x)

The homogeneous linear recurrence equation (10) possesses a linearly
independent set of solutions {g"’ (x), 1 < h < m}, called a fundamental set, and
any solution of (10) can be expressed as a linear combination of these
functions.

Definition 1: A solution g (x) of equation (10) is called a dominant solution, if
for any solution %(x) of equation (10) there exists a constant C > 0, such
that

(13) lg(x) = Clh(x), x>K forsome K=k.
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A solution A(x) of equation (10) is called a subordinate solution, if there
exists a solution g(x) of equation (10) such that

g(x)
h(x)

(14) lim

X300

in this case, we say that g(x) dominates 4 (x).

It should be noted that some solutions may be neither dominant nor
subordinate. However, for most recurrence equations that are encountered in
practical applications, their coefficients 4;(x) satisfy some regularity conditions
and there exists a fundamental set {g (x), 1 < h < m} such that

e ¢"(x)is a dominant solution and free from zero for x sufficiently large;
o lim gV(x)g"(x)=00, for 2<h<m.
(See CasH [2], p. 2; Wimp [23], p. 19 and p. 272-9).

Remarks:

For positive arithmetic severities with finite support, by a simple rescaling, one
can assume that f(x) is defined on positive integers with finite support

{X{, X3, ..., %, such that
(15) <X <x<...<x, <0,
(16) ng(xlaXZ""’xr) = 1:

where gcd stands for greatest common divisor. In this case, formula (3) becomes
a special case of (10) with m = x, and k = 0:

(17) gx) =Y [a+bl)r()ax—1)
=1 X
with initial values:
(18) fg(x)=0; x=-—m+1,..., =1}; g(0) = py> 0.

4. RELATIVE STABILITY THEORY

For the general linear recurrence equation (10), OLIVER![11] proposed a
theory of relative stability. Oliver’s relative stability theory is presented with
modifications and refinement.

U J. Oliver, wrote his Ph.D. dissertation partly on the relative stability theory of linear recurrence
algorithms under J.C. P. Miller at Cambridge.
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4.1. Concepts and definitions

Definition 2: The desired solution of recursion (10) is a special solution to be
computed, which can be represented by the initial values

(19) gD = j=k=m+1, Kk} @ty s %) =2,

We denote this desired solution as g; ,(x).

Notation: We use ¢ to denote absolute errors and # to denote relative
errors.

Two possible ways to generate round-off errors are: (i) rounding, and (ii)
chopping. Most computers use rounding; however, some computers do use
chopping.

As indicated in Example 2, when the desired solution is a rapidly varying
solution, the absolute round-off errors also vary rapidly. However, OLIVER [11]
(p. 326-7) pointed out that, for a rapidly varying solution, floating point
arithmetic would be used. If floating point arithmetic is used then the actual
relative round-off errors #; are fairly evenly distributed within a small range

{[—ﬁ, 7] if rounding is used,
[—#,0] if chopping is used.

If r digits are assigned by a user to the computer, r+1 digits would be
actually used by the computer to leave some room for rounding or chopping ?.
Then every real number in the floating-point range of the computer can be
represented with a relative error bounded by

_ S5x1077 if rounding is used,
(20) n= ., . .
10 if chopping is used.

(See DAHLQUIST and BIoRCK [4], p. 45).
To symbolize this fact, we give the following definition.

Definition 3: The basis relative error generator ﬁge,, is a random variable
uniformly distributed on

@ {[—ﬁ, 7] if rounding is used,
[—=#,0] if chopping is used.
During the recursive evaluation by computers, each of the initial values
{9(j); j=k—m+1, ..., k} has only initial round-off error. After the starting
point k, there are two sources of errors in each step of the evaluation of g{(x):

2 To be consistent, ‘the number of digits’ will refer to the number of digits assigned to the
computer.
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(i) the propagation of earlier errors, and (ii) the newly generated round-off
error when the computer outputs its ‘exact’ result assuming that all inputs are
exact. We assume that the newly generated round-off errors are independent
and identically distributed random variable ﬁgen. Obviously, for any newly
generated error, it will be propagated in the same way as the true ‘value’ and
thus satisfies the recursion (10).

Definition 4: The relative error for the initial value g (j) = «; is #; (a value of
r,ge,,) The propagation of the initial value errors is a solutlon er(x) of (10)
which satisfies the initial condition:

(22) g(=no, j=k-m+l,.. . k.

We shall adopt the following convention: if one of the initial values «; is zero,
then the actual value used will be correct. This is equivalent to assuming that
the computer can represent zero exactly, i.e. all bits set to zero. For example, in
the initial conditions (18) of the recursion (17), the first m— 1 initial values are
zero, and in actual computing they are used as zero without error. OLIVER [11]
(p- 330) also supports this convention.

Definition 5: The (newly generated) round-off relative error at point 7 (z > k) is
1, (a value of #,,.,). The propagation of the round-off error at 7 is a solution
¢, (x) which satisfies the initial condition at z:

(23) {ET(T_m"i"j) = 0, ]: la tens m_l}’ Sr(‘L') i/ g&,k(f)-

4.2. The basic error propagation
Consider the first order homogeneous linear recursion:
(24) gx)=cg(x—1), x=>1.

For recursion (24), it is easy to see that the propagated value of any
generated error remains constant relative to the solution g(x):

(25) St =n, 1=0,1,2,...

An upper bound for the accumulated relative error is

(26) E)’(ﬁ@ < MJ < (x+D7.
lg ()l lg ()]

Note that at worst the accumulated relative error increases linearly with the
number of points that have been evaluated. *“ This is an acceptable form of error
accumulation, since if floating point arithmetic is used then doubling the range of
evaluation corresponds to the loss of a single binary digit (in terms of error
bounds rather than actual errors).” — OLIVER [11] (p. 325).
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We define the basic error propagation for which (26) holds, i.e. relative error
bound grows linearly with a slope no greather than 1, and we judge the
acceptability of error behavior in the general case by comparing it with the
above basic error propagation.

4.3. Index of error propagation

Definition 6: The range of interest for recursion (10) is the interval [k, R] over
which the values of g(x) are to be computed.

Definition 7: The index of error propagation for the recursion (10) in
evaluating the desired solution g; ,(x) over the range [k, R] is defined by

1 |Z)ic=k &;(x)] }
(x—k+ 177 195 (x)l

@7 I(k, R)'=sup, e & {

In evaluating the desired solution,

1. if I(k, R) is bounded, we say that the recursion (10) is stable over the range

[k, R).

2. if Ik, R) < 1, we say that the recursion (10) is strongly stable over the range
[k, R).

3. if I(k, R) = oo, we say that the recursion (10) is unstable over the range
[k, R).

In other words, a recursive evaluation is stable if the round-off error grows
linearly, and being strongly stable if the linear slope is bounded by I; a
recursive evaluation is unstable if the round-off error grows more rapidly than
linear; for example, exponentially.

Theorem 1: The linear recursion (10) is stable for evaluating its dominant
solutions, and unstable for evaluating its subordinate solutions.

This result can be found in Wimp [23] (p. 10) and CasH [2] (p. 3). Here we
just give an intuitive interpretation.

Let g®(x), (h =1, 2, ..., m), be a fundamental set of (10) such that g'" (x) is
a dominant solution and

9P () _
v g0 (x)

(28) 0, for h=2,...,m.

The solution g; ,(x) to be computed can be written as a linear combination
of this fundamental set:

(29) gi k(x) =digV(x)+ ... +dug™(x),
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where
d { =0 if g;,(x) is subordinate
! #0 if gz ,(x) is dominant

On the other hand, the round-off error propagation &,(x), as a disturbance
solution, can be written as a linear combination of the fundamental set:

(30) e (x) =1 gV (x)+ .. Feng™(x),

where even though ¢, is small, but with probability 1 that c¢; # 0.
Since ¢, # 0, one has

o if gz 4 (x) is subordinate
(31) im0 0
x>0 gy k(X) i

if gz +(x) is dominant
d

4 . . C .
where — can be made arbitrarily small by using sufficient number of digits.
d

Therefore, a recursive evaluation by (10) is stable if the desired solution
gz, x(x) is dominant; and is unstable if the desired solution g; ,(x) is
subordinate.

Also, we can see that, regardless of our desired solution, the computation
always generate a dominant solution g; ,(x)+e¢,(x).

Example 3: Consider the following linear recursion:
' 3
(32) g(x)=g(x—-1) — T69(x—2), x>12.

Equation (32) has a fundamental set of solutions
(33) gV x)= (79", ¢P(x) = (25)".

Where ¢'"(x) is a dominant solution, and ¢'¥(x) is a subordinate solution.
A combination ¢; gV (x)+¢,¢”(x) is a dominant solution if and only if
¢; #0. Also, a solution g(x) is a dominant solution if and only if

im 9%~ 25
o g(x—1)

(I). Evaluate the desired solution ¢‘"(x) by recursion (32) with initial
values:

gV =.5 ¢V =.75.
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The computed results for some selected points are listed in Table 2 (5 digits
are used in the evaluation).

TABLE 2
EVALUATION OF THE DOMINANT SOLUTION g'"(x)
x calculated g (x) relative error X calculated gV (x) relative error
5 .23730 —.000019753 75 A42622x107° .000089971
10 056318 .000079649 100 32074 % 10712 .000061680
20 .0031710 —.000066832 200 10291 x 10~ .00047191
30 .00017858 ~.000011704 300 33020 107 .00091698
40 .000010057 .000041251 400 .10592% 107 0010888
50 .56639 % 107° .00012068 500 33970 x 10 %2 .0010686

From Table 2, one can observe that the relative error grows very slowly. The
accumulated error at x is bounded by (x— 1)#, (i.e. the evaluation of ¢/ (x) is
stable).

(IT). Evaluate the desired solution g®(x) by recursion (32) with initial
values:
gP)y =25 ¢?@) = .25%.

The computed results for some selected points are listed in Table 3 (5 digits
are used in the evaluation).

TABLE 3
EVALUATION OF THE SUBORDINATE SOLUTION ¢ (x)

x calculated g (x) relative error gP ) gP(x—1)

3 015625 0 25000

5 .0009763 ~ 00026880 24995
10 8781 x107° - .079245 23643
20 — 42568 x107° —4681.4 75032
30 —.23977x107° — 27644 x 10° 75001
50 -~.76036 x 10~ 12 — 96387 x 108 75000

From Table 3, one can observe that the round-off errors blow up rapidly.
The recursive evaluation is very wunstable. By checking the ratio
g?P(x)/g® (x—1) of the computed results, one can see that the computed
solution (eventually) follows a pattern of a dominant solution.

Remarks:

1. In general, every (non-trivial) linear recursion is stable for some solution
and unstable for other solutions. Thus it is meaningless to merely talk
about the stability of a recursion without mentioning the desired solution.
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However, for simplicity, when we talk about the stability of a recursion
without specifying which solution it refers to, we assume that the desired
solution is implicitly known.

2. Tt is the rate of growth of the desired solution with respect to other
solutions of the recursive equation that determines whether or not the
recursive computation is successful. In terms of initial value representations,
the family of subordinate solutions form an m—1 dimensional surface in
the m dimensional space of all solutions of (10). As a result of round-off
errors and higher-order round-off errors, the disturbance solution can be in
any direction in the space of all solutions of (10). Therefore, in general, no
matter whether the desired solution is dominant or not, the computed result
follows a pattern of a dominant solution. When the desired solution is a
subordinate solution, round-off errors will blow up and make the recursive
evaluation ineffective.

We have clarified the stability concept of linear recursions. In the next
section, we shall give a family of recursions whose non-negative solutions are
dominant solutions.

5. CONGRUENT RECURSIONS OF FINITE ORDER
AND THEIR DOMINANT SOLUTIONS

Definition 8: A linear recurrence equation of the form:

m

(34) gx) = > B)f(j)gx—)),

J=1

with the following restrictions:
e f(x) is non-negative with finite support on {x,, x,, ..., x,} which satisfies

(15) and (16). Note that f(x) does not have to be a probability function
o Bi(x), j=1,2,...,m, are strictly positive functions of x > 0
is called a congruent recursion of finite order m.

In this section, we are going to give the dominant solutions of congruent
recursions.

We first discuss a set of solutions ¢ (x) of (34) with starting point k (> 0)
and initial values
1 if j=h,
(35) g(")(k——m+j)=5h’j={ J 1<h j<m.
0 if j+#h,

Proposition 1: For a positive number #, if it is a linear combination of
Xy, Xy, ..., x, with coefficients in zZ° =10, 1, 2, ...}, then

(36) gP(k+h+n) > 0.
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Proof: Since
gPk—m+hy =1 B,()f()=0,
from equation (34), we have
g® (k+h)= B, (k+h)f(m)>0.
Now from point k+ h, apply the recurson (34) again:
gP(k+h+x)>B, () f(x)g?k+h) >0

By induction, for any »n which is a linear combination of x;, x,, ..., x, with
coefficients in Z°, we have

gP(k+h+n)>0. O

Lemma 1: Let x;, x,, ..., x, € Z with x; not all zero. The following statements
are equivalent:

® x,z;+x,z,+ ... +x,z,= 1 has a solution in integers z;;

® ged(x;,xy,...,x,)=1.
Proof: See FratH ([7], p. 13).

Proposition 2: Let x;, x5, ..., x, be positive integers with
ged(xy, x5, ...,x,)=1.

There exists a constant N,, such that for any integer k > N;, k can be
expresssed as a linear combination of x;,x,,...,x, with coefficients in
z2°=1{0,1,2,...}.

Proof: From Lemma 1, there exist z;, z,, ..., z, € Z such that
X1zt xy2,+ ... +x,z,=1.
Let
No = x1(z1]x; + |zalx0+ ... +]z,]x,).

For any n > N, apply the division algorithm to positive integers n— N, and
X, we obtain

n=N0+ux1+U, UZO, 0SU<XI.
By replacing v with

v(x;z1txz,+ ... tXx,z2,),
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we obtain
n=Noytv(x;z;txz,+ ... +x,z)tux,

which is a linear combination of x,, x,, ..., x, with coefficients in Z°. O

Theorem 2: For the congruent recursion (34), the solution g¥’(x) is non-
negative and free from zero when x gets large:

(37 g (x)=0, for x>k; ¢g"(x)>0, for x> Ny;

where N, is some constant.

Proof: It is an immediate application of Propositions 1 and 2. 0

Now we are ready to generalize our results to the solutions of equation (34)
with an arbitrary non-negative initial vector o with at least one positive
element :

(38)  gailk—mt) = >0, (=12 om); Yt > 0.
=1

J

Theorem 3: For the congruent recursion (34) with initial conditions (38), the
solution g; ,(x) is non-negative and free from zero when x gets large:
(39) gax(x) =0, for x>k; g;4+(x)>0, for x> N,

where N; is some constant.
We say that o > fif an only if o, _ ;> Bi_,; for j=12,...,m.

Theorem 4 (Comparison): For the congruent recursion (34), if o> B, then

9z k(x) 2 g5« (x), for x>k.

Proof: Since o > 3, we have &—B > 0 and from equation (34) we have
9ok (X)—9p k() = ga-p x(x) 2 0. L

Theorem 5: For the congruent recursion (34) with initial conditions (38), the
solution g; ,(x) is a dominant solution.

Proof: From Theorem 3, we can move the starting point from k£ to a new
point K such that

(40) 5;: (yK‘val’ rees yK) = {g&,k(K—m+l)7 "'59&,/6(1()}

has all its m components strictly positive.
Obviously g; «(x) and g; x(x) are the same for x > K.
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Let 4(x) be any solution of the congruent recursion (34), and

(A1) B=Bkomris-s )= th(K—m+1), ..., h(K)}.

Since a finite number of values are always bounded, there is a positive
constant £ (0 < & < o0) such that

éyKvm+jZ|ﬂK*m+j|’ j=1,2""9m-
Therefore
95,k (x) = g5 x(x) = &7 (x)l, for x> K. O

6. NON-HOMOGENEQUS RECURSIONS OF INFINITE ORDER

Now we extend our discussions to a general family of non-homogeneous
recursions of infinite order.

Definition 9: A recurrence equation of the form

X

42) gy = Y. A4;(x)g(x—)+H(x), x>k>0,

Jj=1

is called a non-homogeneous recursion of infinite order.

Definition 10: The recurrence equation of infinite order

X

43) gx) = Y A4;(x)gx—j), x>k=>0,

Jj=1

is called the homogeneous counterpart of recursion (42).

The homogeneous counterpart (43) is also a special case of (42) with
H(x)=0. When H(x) =0, the homogeneous counterpart of equation (43) is
itself.

For an example, when claim severity has a infinite support, the recursion (3)
is homogeneous recurrence equation of infinite order.

Definition 11: The desired solution is a special solution of the non-homoge-
neous recursion (42) to be computed, which can be represented by the initial
values:

(44) g(.]):a]’ J:(),l’,ka (aO’al9~"5ak):&'

We denote this desired solution as g; ,(x).

In the above definition, without loss of generality, we assumed that the
initial points are {0, 1, ..., k}. If initial points are {r, r+1, ..., r+k}, one can
always introduce a new variable x’ = x—r and get a new equation in terms of
x'. Of course, the stabilities for these two recursions are equivalent. Note that,
by a transformation x’ = x—(k —m+ 1) the recursion (10) of finite order is a
special case of (42) with H(x) =0 and 4,(x) = 0 for j > m.
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Since both the desired solution g; ,(x) and the computed values g; ;(x)
satisfy the non-homogeneous recursion (42), the accumulated absolute error
Gz, 1 (x)— gz x (x) satisfies the homogeneous counterpart (43).

Definition 12: The relative error for the initial value g(j) = o, is #;. The
propagation of initial value errors is a solution ¢ (x) of the homogeneous
counterpart (43) with the initial condition

(45) eg(j)=mo;, j=0,1,... k.

Definition 13: The (newly generated) round-off relative error at point 7 (1 > k)
is #,. The propagation of the round-off error at 7 is a solution &,(x) of the
homogeneous counterpart (43) with the initial condition

(46) e(/)=0, j=0,1..,17=1; &()=n.9;5.(1).

Other definitions (e.g. index of error propagation and strongly stable, etc.)
can be similarly defined as in the finite homogeneous case.

Definition 14: A non-homogeneous congruent recursion of infinite order is
defined by:

(47) g(x) = Y Bi(x)g(x-p+H(x), x>k,
j=1

with B;(x) >, and H(x) > 0.

The dominance ranking between the desired solution and the error solution
determines whether the recursive evaluation is successful or not.

Unlike its homogeneous counterpart, a non-homogeneous first order recur-
sion is not necessarily stable. This is because that, for a non-homogeneous
recursion, the desired solution and the error solution satisfy two different
equations.

Example 4: Consider the first order forward recursion:
(48) g(x)=gx-1)—-5% x=1,

with an initial value g (0) = 1. The desired solution is g (x) = .5*. A fundamen-
tal set of the homogeneous counterpart is given by g (x) = 1. Since g'V(x)
dominates g(x), the recursive evaluation is unstable in evaluating g (x). This
instability can be easily verified on a computer. If 5 digits are used, the
computed results for the points after x = 40 become a constant .79228 x 107,
which again follows a pattern of a dominant solution.

Similarly, we have a comparison theorem.
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Theorem 6: Let g; ,(x) and g ,(x) be two solutions of the non-homogeneous
congruent recursion (47), ¢j ,(x) be a solution of the homogeneous counter-
part of (47). If o > B, then

95 k(x) = g5 (x) > €5 ,(x), for x>k.

From the above theorem, or by mathematical deduction, for non-negative
initial vector «, the solution g; ,(x) of (47) is non-negative.

Theorem 7 (Strongly Stable): A non-homogeneous congruent recursion of
infinite order (47) is strongly stable in evaluating gz ,(x) provided that a is
non-negative.

Proof: After the initial points, any vanishing of g; ,(x) results solely from
zeros in the initial values and does not depend on previous non-zero g; ;(x)
values. There is no error in this case.

We need only to be concerned with positive values of g5 ,(x).
For the propagation ¢, (x) of initial value errors, since

lee(DI<ng(j)=no;, j=0,1,...,k,
from Theorem 6, we have
(49) BIC  ,
gz, i (x)
For the propagation &, (x) of the newly generated round-off error at point <,
since
gr(j):()a (j:(), L---aT_l); ‘gr(r)igﬁg&,k(r)s
we have
(50) M <75 x>k
gs, £ (x)
Therefore,
1 PRAEPrS
. i I‘kpl(x)’ < 1’ X>k.
(x—k+Dn  Igs x(x)i
The strongly stable condition (27) holds. Ll

In the proof, the inequalities (49) and (50) can be very loose. Thus, 1 is only
a gross upper bound for I(k, c0). It can be much less than 1 in actual error
propagation. Another important factor is the offset of positive and negative
relative errors when rounding is used by the computer.
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Theorem 8: In evaluating non-negative solutions of the congruent recur-
sion (47), if rounding is used by the computer, the accumulated relative error at
point x is a random variable #(x) with values in

(51 [~(x—k+ D7y, x—k+1)7].
u(x) has a mean of zero and variance (x—k+ 1)#7%/3.

Proof: It is a direct result from a sum of x—k+1 i.i.d. random variables which
are uniformly distributed on [—7, 5]. 0

From Theorem 8, even though the upper bound for accumulated relative
errors at x grows linearly with x, the standard deviation is only a constant

multiple of \/Jx—k+1. A 99% confidence interval for u(x) is approximately
(52) [—1.5yx—k+1ny 1.5yx—k+17].

7. FORWARD DIRECTION vs BACKWARD DIRECTION

The earlier discussions can also be easily extended to recursions in the
backward direction. For simplicity, we only discuss recursions of finite
order.

Definition 15: A recurrence equation of the form

m

(53) 9(») = D, 4N gO+N+HG), y<k,
j=1
with
(54) g(j):(x/a (jzk’7k+m_l)’ &=(ak,-~-aak+m‘l)
is called a hon-homogeneous recursion in the backward direction with starting
point k and initial vector a. We denote this solution as gz ().

Definition 16: A non-homogeneous congruent recursion in the backward
direction is defined by:

m

(55) g(») =Y B gy+H+H(y), y<k,

j=1

with B;(y) >0, and H(y) = 0.
Similarly, we have a strongly stable theorem.

Theorem 9: The non-homogeneous congruent recursion (55) is strongly stable
in evaluating its non-negative solution g; ,(y) in the backward direction.

When a congruent recursion in the forward direction is rewritten as a
recursion in the backward direction, it is no longer a congruent recursion in the
backward direction. Thus, ‘congruent’ is direction dependent!

The links between the two directions are important.
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For a first order homogeneous recursion, since there is no dominance
ranking among the solutions, the recursion is strongly stable in both direc-
tions.

For a second order homogeneous recursion, there are only two solutions in a
fundamental set. If the recursion is unstable in one direction, which means the
undesired error solution grows unboundedly with respect to the desired
solution, then this undesired error solution will decrease rapidly in the reverse
direction, and thus the recursion is stable in the reverse direction.

For a recursion of order m > 2, its solutions are ranked by their dominance
relationship. There may be solutions which are subordinate in both directions;
for these solutions, the recursion is unstable in both directions. Nevertheless, if
the desired solution dominates all other solutions (in a fundamental set) in one
direction, then the same desired solution will be dominated by other solutions
in the reverse direction. Thus, if a recursion is stable in one direction, it is
unstable in the reverse direction. In general, the more stable a recursoin is in
one direction, the more unstable when it is used in the reverse direction.

Definition 17: Asssuming that m > 2, a recursion is called strongly unstable in
one direction for a desired solution if it is strongly stable in the reverse
direction for the same desired solution.

The next two theorems follow directly from this definition.

Theorem 10: A recurrence equation (m > 2)
m=1

(56)  g(x)=B,(x)g(x—m) — Y B(x)g(x—j)~H(x), x>k,

j=1

with B;(x) > 0 and H(x) > 0 is strongly unstable in the forward direction in
evaluating its non-negative solutions.

Theorem 11: A recurrence equation (m > 2)
m—1
5D g =B,(»gly+m = ¥ B(Ng+)—H), y<k,

j=1

with B;(y) = 0 and H(y) = 0 is strongly unstable in the backward direction in
evaluating its non-negative solutions.

Example 5: Reconsider Example 1. From Theorem 7, the forward recursion (6)
is strongly stable in evaluating its non-negative solutions. From Theorem 11,
the backward recursion (8) is strongly unstable in evaluating its non-negative
solutions.
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Example 6: Consider the recurrence equations for modified Bessel functions
(see Press, et al. [16], p. 192):

(58) L (x) = =Qnfx) Li(x)+1,(x),
(59) K,+1(x) = +2n/x) K, (x)+ K, (x).
Since I,(x) and K,(x) are non-negative solutions for x>0, the recur-

sion (58) is strongly unstable in the forward direction, and the recursion (59) is
strongly stable in the forward direction.

8. EMPIRICAL INFLATION FACTOR

In this section, based on the signs of the coefficients 4;(x) and the term H (x)
in (42), we investigate the growth of the relative errors in each step of the
recursive evaluation.

Lemma 2: Let ¢ and b be two positive real values, wiAth their estimates @ and b
having relative errors 5, , #,, respectively. Then, 4+5 as an estimate of a+ b,
has a relative error

a
(60) ——n +
at+b at+b

Uy

which is bounded by [—#, #] where

(61) n = max (|, ).

As a special case, if #, = 0 (bis exact), then, 4+ b, as an estimate of a+ b, has
a relative error which is less than #,. We say that the relative error is
damped.

Lemma 3: Let g and b be two positive real values, with their estimates 4 and b
having relative errors #,, 77, , respectively. Then, 44, as an estimate of ab , has a
relative error ), +#,, provided that #; is small relative to 1 (; < 1,i =1, 2). As
a special case, db, as an estimate of ab, has a relative error #,.

Lemma 4: Let a and b be two positive real values, with their estimates 4 and b
having relative errors of any value in the range (—#, #). Then, 4—5 as an
estimate of a— b, can have a relative error of any value in the range (— y7, v7),
where

62) at+b
7= s
la—b|

is called the error inflation factor.

In Lemma 4, one can see that, when a ~ b, y can be infinitely large, which
causes extraordinary unstable result. This should be avoided in any computing
schemes.
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Consider the non-homogeneous recursion (42) of infinite order. The value
g(x) at point x depends upon all previous values g(x—j), j =1, ..., x. In each
step of recursive evaluation, there are x+1 terms involved:

H(x) and A;(x)g(x—j), (=1,...,x).

Some of them may be positive, and some may be negative. To indicate
clearly the sign of each term, we re-write the equation (42) into the following
form:

X

(63) g(x) =Y s(x)Bi(x) g(x—)+H" (x)~H (x),
j=1

such that

(64) Bi(x) g(x—j) = 14;(x) g(x—))| > 0,

and

(65) 1 if 4,(x)g(x—j)>0,

5;(x)y =<0 if A;(x)g(x—j)=0,
-1 if A;(x)gx—j)<0,
and
|H(x)|+H(x) _ 1H)I—H(x)

(66) HY (x) = 2 200 . H (x)
2 2

Definition 18 : Associated with the computed solution g (x), we define a positive
part g, (x) and a negative part g_ (x) at each point x such that ’

(67) , gr(x) =) Bi(x)gx—j))+H" (x)=0
sj=1

(68) g-(x)= Y, B(x)gx—)+H (x)=0
5=—1

(69) gx)=¢g+(x)—g-(x)

Definition 19: An empirical inflation factor at x is defined by

(70) F(x) = —e, i g (X)) #F g (x);
g+ (x)—g- (x)|

and

(7 jx)=o0, if g,(x)=g (x).
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Definition 20: If k& is the starting point of the recursion (63), then we define an
empirical accumulated relative error bound recursively :

(72) ax)=a(x—Djx)+y, x>k,

with initial value 4 (k) = 7.

Theorem 12: Assuming that r digits are used. For the computed value g (x) by
recursion (42), an empirical upper bound of the relative error is given by

(x—k+1) I, $()x.5x107" if rounding is used,

(73) i(x) < {
(x—k+DII, 5@G)x107" if chopping is used.

Proof: It can be easily verified by mathematical induction.

Definition 21: We say that the number of significance digits in the computed
value g(x) is v(x) if the relative error is less than 107",

One can empirically estimate the number of significant digits v(x) in the
computed value g(x) by the following inequality:

(74) v(x) = 9(x) = [—log #(x)] = [_ In fl(x):l
In 10

where Inx denotes the natural logarithm of x, [x] denote the largest integer
which is no greater than x. For example, [2.317] = 2, and [—2.317] = —3.

Example 7: Reconsider the backward recursion (8) in Example 1. Now we
calculate the estimated ¥ (x) and compare it with the actual v(x) at each point.
The results are listed in Table 4.

TABLE 4

EMPIRICAL ESTIMATION OF THE NUMBER OF SIGNIFICANT DIGITS FOR THE BACKWARD RECURSION (8)
WHEN 6 DIGITS ARE USED

x computed g (x) P(x) 7(x) exact g(x) actual v(x)
8 .099850 4 22.71 .0998450 4
7 .078315 3 25.22 .0783629 3
6 .054807 2 28.15 0543124 2
5 .027538 0 38.81 0325723 0

The catastrophic instability of the backward recursion (8) can be seen from
the large inflation factors 7(x) in Table 4.
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Remarks:

If all the terms are of the same sign, (i.e. either g, (x) = 0 or g_ (x) = 0 for all
x > k), then é(x) = (x—k+1)7 and

75) Vx) > { r+[log;; 2—logyo (x—k+1)] if rounding is used,
r+[—log (x—k+1)] if chopping is used.

Our earlier results about the non-negative solutions of congruent recursions
are ‘recovered’.

One should interpret the inflation factors with care. For an example, in
evaluating the dominant solution gV (x) in Example 3, the inflation factors are
a constant j = 1.6667, but error inflations seldom occur and the evaluation is
stable.

9. APPLICATIONS

Note that the recursion (3) is a special case of (47) with H(x) = 0 and starting
point £ = 0. The initial value g(0) is positive and the desired compound
distribution is non-negative. If the claim frequency is in the family of Poisson,
Negative Binomial or Geometric distributions, we have, from PANJER [12],

(76) B(x)=a+b? >0, j=1,..x.
X

As an immediate application of Theorem 7, the recursion (3) is strongly
stable in evaluating compound Poisson, compound Negative Binomial and
compound Geometric distributions.

In using recursion (3) to evaluate compound Poisson, compound Negative
Binomial and compound Geometric distributions, the accumulated relative
error bound grows linearly with a slope no greater than 1. If the evaluation
starts at point x = 0 and r digits are used, a guaranteed number of significance
digits in the computed g(x) can be estimated by the following simple
inequality :

) vix) > { [logp 2—loge (x+1)] if rounding is used,
X
[—loge (x+1)] if chopping is used.

If rounding is used by the computer, with a probability of 99 %,
4 1
(78) vix)=r + [logmE - 5 logy (x+ 1):| .

For example, if both claim frequency and claim size have a mean 1000, one
wishes to get an accuracy with relative errors less than 10”7 over the interested
range [0, 107]. One can achieve this accuracy by using 14 digits. Also, with (at
least) 99 % confidence, one can achieve this accuracy by using only 11 digits.
This strongly stable property has practical significance in applications of
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discretization method (see GERBER [8], PANJER [13], PANJER and LUTEK {14]).
If one increases the number of points by a factor of 100 in the discretization of
severity distribution, simply adding 2 digits can keep the same level of
accuracy.

As an application of Lemma 2 and Lemma 3, the effet of round-off
coefficients can be considered. For any finite number of positive values, their
summation has the same level of relative error, and their product has a relative
error bound which is the summation of individual relative error bounds. For
any non-negative solution of the recursion (47), if the relative round-off errors
of B;(x) and f(j) are i.i.d. random variable ﬁge,,, then the index of relative
error propagation enlarges only by a constant multiple of 3. One additional
digit is sufficient to protect the solution from round-off errors in the
coefficients.

The condition (76) does not hold for the family of compound Binomial
distributions. Compound Binomial distributions share a special feature that it
has only finite support when claim size has finite support. Since the desired
solution eventually becomes zero in the forward direction, it can not be a
dominant solutoin. From Theorem 1, recursion (3) is unstable in evaluating
compound Binomial distributions. This instability can be encountered at the
right tail of the compound distribution in the forward direction. A special
treatment for compound Binomial distributions is given in the next section.

10. THE CASE OF COMPOUND BINOMIAL

In this section, we investigate in more detail about the instability of compound
Binomial distribution. Based on some special features of compound Binomial
distribution, a simple method to cope with this instability is given.

Consider the case that the claim frequency has a Binomial distribution:

N!
(79) pp=———0010-0"" 0<n<N.
n! (N—n)!
Then, in recursion (3),
f 0
(80) a= - ——, b=(N+1)—.
1-6 1-6

Example 83: Consider compound Binomial distribution with parameters
6 =95, N =100,

and with claim severity distribution as in Table 5.
In order to investigate how unstable the recursion (3) is in evaluating this
compound Binomial distribution, we use 200 digits in the calculation. The

3 All the numerical examples in this paper are done on Maple V [6], on which one can freely assign
the number of digits. Rounding is used by Maple V.
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TABLE 5
THE DISTRIBUTION OF CLAIM SEVERITY A
x 1 2 3 4 5 6 7 8 9 10
f(x) 150 .200 250 125 075 .050 .050 .050 025 025
TABLE 6

THE EMPIRICAL INFLATION FACTOR AND ESTIMATED SIGNIFICANT DIGITS IN THE COMPUTED VALUE
WHEN 200 DIGITS ARE USED IN THE COMPUTATION

x 7x) V(x) x 7(x) v(x) x 7(x) v(x)
50 1 199 350 9.5099 61 650 50.818 —345
100 1 198 400 12.905 8 700 68.394 —434
150 1.9574 191 450 17.447 -51 750 99.559 - 529
200 2.8849 171 500 22.699 - 116 800 157.89 ~634
250 4.6382 143 550 29.683 — 186 850 328.04 - 752
300 6.4586 106 600 38.372 ~263 900 — —

empirical inflation factors are calculated along with the recursive evaluation.
The results for some selected points are listed in Table 6.

From Table 6, one can see that the error inflation factor remains flat at 1
when x < 100, and accelerates after x > 100. The acclerating growth in the
error inflation factors indicates that the recursive evaluation becomes more and
more unstable when it proceeds to the right half of the compound Binomial
distribution. Even 200 digits can not protect the desired solution from the
disturbance of rounding-off errors! In the computed values of g(x), we
obtained the following absurd results:

g(898):=—.19502x 10", and ¢ (1000):= —.59052x 10",

The computed g(x) becomes negative at x = 898, which tells us that the
empirical estimates $(x) and V(x) after point x = 898 are no longer reliable.

10.1. A combined usage of two directions

This method involves two recursions: (i) the forward direction, and (ii) the
reverse recursion in the backward direction staring at the end point mN.

When the claim severity has a finite support {x,, x,, ..., x,}, recursion (3)
can be written into a recursion (17) of finite order m = x,. The recursion (17)
can be easily turned into a backward recursion:

m—1

1 -
@81) g(y>=*{g(y+m)—2 a+b””)f(m—j)g(y+,f)}
P(y) j=1 m

where
82) P(y) = a+bl)f(m).
y+tm
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For compound Binomial distributions, the boundary condition at the end
point mN is known and can be used as an initial value for the backward
recursion:

(83) gmN)=0"f(m)¥,  gmN+j)=0, for j=1,2,...

Theorem 13: In evaluating compound Binomial distributions, we have the
following results:

1. The forward recursion (3) is locally strongly stable over the range
[0, N+1].

2. The forward recursion (17) is locally strongly stable over the range
{0, N+ 1], and becomes strongly unstable when it proceeds to the range
[mN—N—1, mN].

3. The backward recursion (81) is locally strongly stable over the range
[mN—N—1,mN], and becomes strongly unstable when it retreats to the
range [0, N+1]. -

4. As a special case, when m =2, a combination of recursions in both
_directions gives a locally strongly stable evaluation over the interested range
[0, mN].

Proof: When 0 < x < N+ 1, we have

atb? >0, j=1,2,..
X
Therefore, the coefficients of the forward recursion (3) are all non-negative
over the range [0, N+1].
When mN—(N+1) <y < Nm, we have
i
atb mJ
y+tm

P(y)>0, and - >0, j=1,....,m—1.

Thus the coefficients of the backward recursion (81) are all non-negative
over the range [mN—(N+1), mN].
From earlier results, the theorem is proved. |

One can see the connection between compound Binomial and compound
Poisson distributions. When N — o0 and 8 = 1/N — 0, the limiting distribution
of compound Binomial is nothing but a compound Poisson distribution, which
is strongly stable over the range [0, c0).

Example 9: Reconsider the compound Binomial distribution discussed in
Example 8. We use both the forward recursion (3) and the backward
recursion (81) to evaluate the compound Binomial distribution. This time,
instead of using 200 digits, we use only 20 digits in the evaluation. The results
are displayed in Table 7.
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EVALUATE COMPOUND BINOMIAL RECURSIVELY IN BOTH DIRECTIONS

g (x) (forward)

g(x) (backward)

0
1
200
305
306
378
379
600
999
1000

7888609052 x 1071
2248253579 x 1077

1254727678 x 102

2472423462 x 102
2694072242 x 102

.8779196867 x 102
.8381164919x 1072

.2300721278 x 102

- 2066050091 x 10'!!

.3516174897 x 16"

.1025580868 x 10"’
8857199512 % 10'°

.5706507331 x 10™¢

2472423462 % 1072
2694072242 x 102

8779196867 x 1072
8381164919 x 10>

.1099653604 x 1020

.3684354379 x 10760
3684354379 x 107 1¢?

From Table 7, one can observe that the computed results by recursions in
both directions meet each other over the middle range [305, 379] in their first
10 non-zero digits. If we use the results of forward recursion for points before
379, and the results of backward recursion for points after 305, then we have
confidence in that there are at least 10 significant digits in the combined results.

0
Note that in (79), a = — —H, thus a > 00 as 6 — 1.

In this numerical example, # = .95, which gives a large negative value a = — 19
and thus causes rapid round-off error blow-ups. The effectiveness of both
forward and backward recursions are compared in Table 8, for different values
of 6, and in Table 9, for different values of N.

TABLE 8

EVALUATE COMPOUND BINOMIAL WITH SEVERITY 4 AND N = 100 IN TWO DIRECTIONS
(20 DIGITS ARE USED TO ENSURE 10 SIGNIFICANCE DIGITS IN THE COMPUTED RESULT)

S

forward range

forward mass

backward range

backward mass

oo
G =

.\D.\O' . P . e . .
Elowauanbpriniom—

0965
0-926
0 — 889
0841
0— 801
0772
0747
0-732
0 - 692
0624
0523
0-379
0214

1—.67415x 107326
1—.90647 x 10723
1—.24936 x 10~ 1¥7
1—.74181 x 10~ 1%
1—.49640 x 10110
1—.78696 x 10™°°
1-.36413x 10774
1-.39255% 10793
1—.44574 x 10748
1—-.35322x107%
1—.44492 x 1072
87753

15973 x 10713

443 « 1000
465 « 1000
462 « 1000
442 « 1000
432 « 1000
415 « 1000
396 « 1000
375 « 1000
335 « 1000
299 « 1000
278 « 1000
305 « 1000
187 « 1000

90480 x 107114
75752 % 10~%2
.18494 x 10~
11263 x 10~
.88769 x 10~ °
22285% 1072
43928 x 1071
20499 x 1077
0023744
45509
98987
97773
1-.245%x 102

https://doi.org/10.2143/AST.23.2.2005093 Published online by Cambridge University Press


https://doi.org/10.2143/AST.23.2.2005093

ON THE STABILITY OF RECURSIVE FORMULAS 253

TABLE 9

EVALUATE COMPOUND BINOMIAL WITH SEVERITY 4 AND € = .5 IN TWO DIRECTIONS
(20 DIGITS ARE USED TO ENSURE 10 SIGFICANCE DIGITS IN THE COMPUTED RESULT)

N forward range forward mass backward range backward mass
10 0100 1 0« 100 1
20 0-192 1-.20096 x 103! 12 « 200 99630
50 0422 1—.14619x 10~ %! 142 « 500 .0043459
100 0— 747 1—.36413x 10774 396 « 1000 43928 x 10713
200 0 1337 1—.81694 x 10711 962 « 2000 67602 x 10746
500 0 -»2996 1—.52880 x 102"’ 2754 « 5000 31541 x 1071
1000 05763 1—.87859 x 10737 5763 « 10000 87859 x 107372
Remarks:

1. In terms of probability mass (not number of points) covered by the valid
range in which the accuracy meets a specified level, the effectiveness of the
forward direction increases when N increases, and increases when 6
decreases. This can be seen from Table 8 and Table 9, which is also
consistent with the result in Theorem 13.
However, the forward direction can be very unstable when 8 gets close to 1
or the claim distribution is highly negative skewed. In such cases, the
backward recursion can play a major part in evaluating the compound
distribution.

2. From Table 8, we can see that, when 6 < .5, the backward direction can
give accurate results for more than one third of the points over the whole
range; however, their total probability mass is very small. Thus, when
0 < .5, the actual usefulness of the backward direction can be used to check
the accuracy of the forward direction.

3. In most insurance applications, 6 < .5 and N is large and the claim size
distribution f(x) is positively skewed, if additional digits are used in the
evaluation, one should not be bothered by seeing negative probabilities in
the extreme far right tail, since almost all of the compound distribution
except the very extreme right tail has been evaluated with desired accuracy.
A check of accuracy can be done by a recursive evaluation in the backward
direction. If two directions do not meet over the middle range, increasing
the number of digits in the evaluation can make them so.

4. As mentioned by CHAN ([3], p. 175) and SHiu ([19], p. 181), the famous
J. C.P. Milier formula has been used to evaluate the power of polynominals
and the N-fold convolution of arithmetic distributions. Essentially, J. C. P.
Miller formula is a variant of recursion (3) for the compound Binomial
case. Assume that a discrete distribution f(x) is defined on integers
{xy, X1, ..., X,}. With a transformation x' = x— N x,, the N-fold convolu-
tion of f(x) is equivalent to a compound Binomial with 8 = 1—f(x,). In
such situations, the Binomial parameter 8 can be very close to 1, or f(x)
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itself can have a high negative skewness, which may cause difficulties when
using the recursion in the forward direction. This instability can be easily
handled by using two recursive evaluations in both directions.

11. REVIEW OF OTHER RECURSIONS

11.1. The generalized (a, b) class

SunDT and JEWELL [2] extended recursion (3) to a larger family of claim

frequencies
b
(84) Pro—avl, n=re1,
Prn-1 n
The compound distribution for this family of claim frequency satisfies:
(85) g(x)=2 ‘“Lb f(J)g(x—J)+2 : Pix)f*"(x).
j=1 !

Among the generalized claim frequencies (84), the class with r=1 is of
special interest and is given a name (a, b) class. In the (a, b) class, p, can be any
value in the interval [0, 1]. The family of frequencies in (1) given by
PANJER [12] is a subclass of the (a, b) class with r = 0 and is called the (a, b, 0)
subclass. The family of frequencies in the (g, b) class with r = 1 and py = 0, is
called the (a, b, 1) subclass.

As counterparts of the (a, b, 0) subclass, truncated Poisson, truncated
Negative Binomial, truncated Geometric and truncated Binomial are members
in the (a, b, 1) subclass. Another member in the (a, b, 1) subclass is the
logarithmic distribution. SUNDT and JEWELL [20] and WiLLMOT [21] completed
the enumeration of members in the (a, b, 1) subclass by adding in the extended
truncated Negative Binomial (ETNB) distribution.

For members in the (a, b, 1) subclass, we can modify the probabilities at zero
arbitrarily. We name the members of the (a, b) class as: zero-modified Poisson,
zero-modified Negative Binomial, zero-modified Geometric, zero-modified
Binomial, zero-modified extended Negative Binomial, and log-zero distribu-
tion.

For claim frequencies in the (a, b) class, the non-homogeneous recursion (85)
becomes

(86) g(x) Z a+b F()gx=)+(pi—(@+b)py) f(x).

If we decompose the recursion (86) into the following form:
x—1

87 g(x) =)

j=1

atb= )f(])g(x —N)+pif(x)+(a+b)(g(0)—po) f(x),
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and utilize the initial condition g (0) = p,, recursion (86) can be reduced to:

(88) g(x) = Z a+b S gG=D+pif ().

with two initial values

(8% gy =py, g)=p fQA).

From Theorem 7, one can easily see that the recursion (88) is strongly stable
in evaluating compound zero-modified Poisson, compound zero-modified
Negative Binomial, compound zero-modified Geometric and compound log-
zero distributions.

The recursion (88) is unstable in evaluating compound zero-modified Binom-
ial. The method developed for compound Binomial in the last section can be
applied to this case without any difficulty.

For the compound zero-modified extended Negative Binomial distribution,

we have
(90) O0<a<l, b=(@—Daq, —1<r<0.
For positive claim severities with a finite support {x,,..., x, = m}, we
have
1) atb? >0, j=1,...,m, for x>(1+rh)m.

X

Therefore, for compound zero-modified extended Negative Binomial distri-
bution, the recursion (86) is stable. Also, once recursive evaluation has reached
at a point k > (1+ |r|) m, the recursive evaluation for future points are strongly
stable.

In all the previous recursions for aggregate claims, it was assumed that
claims were positive valued. For non-negative claim severities including zero
claims, PANJER and WILLMOT [15] proposed a simple method, by which the
spike at zero can be easily removed and the previous recursions for positive
claims can be used.

11.2. Compound Poisson (a, b)) (CPAB) class

WiLLmoT and PANJER [22] discussed various contagious counting distributions
which involve a sequential usage recursion (3). For example, a compound
Poisson Inverse Gaussian (P-1G) distribution can be evaluated by a two-stage
usage of recursion (3): (i) a compound ETNB over the claim severity
distribution; (i) a compound Poisson with the compound ETNB distribution
obtained in the first stage as its severity distribution.

If each recursive evaluation is stable, their combined usage is also stable.
IsLaM and CoNsuL ([10], p. 93) commented that the use of CPAB frequency
model may cause serious numerical instabilities. Clearly their comment was
wrong.
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11.3. Improved recursions aren’t improved

When the claim frequency has a Poisson distribution, and the claim severity
has a special pattern of piecewise constant or piecewise linear, DE PRrIL[17]
gave some simplified recursions in terms of numbers of calculations required.
However, since both positive and negative signs evenly appeared in the
coefficients of the recursions, they are unstable and thus not really
improved.

11.4. Probability of ultimate ruin

PANJER [13] proposed a method of direct evaluation of the probability of ruin.
Since the desired probability is a compound Geometric distribution, the
recursive evaluation is strongly stable.

GooVvAERTS and DE VYLDER [9] proposed a different approach to approxi-
mate the probability of ruin. The upper bounds are evaluated by a recurrence
equation:

(92) ¥, (xh)= {K(x B = > AK((i—1)h) !ﬁu((x—i)h)}, x=12 ...
i=1

1+6
The lower bounds are evaluated by a recurrence equation:
. 1 g .
93 ¥Yxh= — {K(x h)— Z AK (i h) Y’u((x—i)h)} x=1,2,.
1+6+4K(0) i=1
Since
® 1—-F
(94) K(s) = j ——(y)dy, s>0,
s P
we have
’ (DR |- F
95) —dAKGh) = j' 7()))dy>0.
ih P1

Therefore, the recursions (92) and (93) are indeed strongly stable in
evaluating the desired ruin probability.

RaMSAY [18] recently commented that his numerical result did not agree
with that of GOOVAERTS and DE VYLDER [9] and was unable to explain the
difference ([18], p. 58). Now it becomes clear that, the instability that RAM-
sAY [18] discussed about was not from inherent rounding error accumulations
by using recursions (92) and (93), but from the unstable evaluation of the
coefficients AK(ih) = K((i+1) h)— K(i h) by subtracting two nearly equal
numbers. Also, the inaccuracy in the numerical results of GOOVAERTS and DE
VYLDER [9] can be explained by the slow convergence (as proved by Ramsay)
of the approximation scheme of Goovaerts and De Vylder, and not because of
the instability of the recursions.
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11.5. Probability of finite time ruin

In their paper[5], Dickson and Waters suggested a method of recursive
evaluation of finite time ruin probabilities. DiCksON and WATERS [5] (p. 211)
commented that they experienced some numerical instabilities when using a
combination of two recursions. One (see (4.2) of DicksoN and WATERS [5],
p. 208) is now known as strongly stable; the other recursion (see (3.2) of
DicksoN and WATERS [5], p. 206) involves many differencing terms. It can be
verified that, (3.2) of DicksoN and WATERS is unstable in evaluating the
desired probabilities.

The basic ideas and results in this paper can be extended and applied to
other recursions (not necessarily in actuarial field). For unstable recursions,
alternative methods of evaluation merit further research.
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