Canad. J. Math. Vol. 58 (3), 2006 pp. 643-672

Centralizers and Twisted Centralizers:
Application to Intertwining Operators

Xiaoxiang Yu

Abstract. The equality of the centralizer and twisted centralizer is proved based on a case-by-case
analysis when the unipotent radical of a maximal parabolic subgroup is abelian. Then this result is
used to determine the poles of intertwining operators.

1 Introduction

The purpose of this paper is to prove the equality of the centralizer and twisted cen-
tralizer (defined in Section 2.1, originally defined by Shahidi [8]), when the unipotent
radical of a maximal parabolic subgroup is abelian. In that case it is known that the
adjoint action of the Levi subgroup on the Lie algebra of the unipotent radical has a
finite number of orbits, the union of which is an open dense subset [4, 11]. Then it
allows the treatment in [8] of determining the poles of intertwining operators.

To be more precise, let F be a non-archimedean local field of characteristic zero
and F its algebraic closure. Suppose G is a split connected reductive algebraic group
over F, T a maximal split torus of G. Let A be a set of simple roots, § = A\ {a},
where « is a simple root. Let P = MN = MyN be a maximal parabolic subgroup
of G. Denote by {#;} a set of representatives for the corresponding open orbits of M
in N under the adjoint action of M on 9t = Lie(N). Let N~ be the opposite of N and
suppose one can write walni = mini’nf where m; € M, nl-’ € N,n; € N” and wy
is a representative for wy, the longest element in the Weyl group of A, (the maximal
split torus of T in G) modulo that of A in M.

Define

M,, = {m € M | Int(m) o n; = n;},

1

M, ={meM | wy(m)mm~" = m;}.

Observe that M, C M;, (cf. [8]).

It is clear that each n; determines m; uniquely (as well as n/ and 7;”). But the con-
verse with respect to m; is not true: several n; could have the same m;. The primary
result of this paper proves this converse if N is abelian. This is the case where the
number of open orbits {;} is finite [11]. The main result of Section 3 is:

Theorem 1.1  IfN is abelian, then M,, = M, .
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Our proof of the main theorem is based on a case-by-case analysis; all the cases
where N can be abelian have been listed and proved. For the exceptional groups G,,
F, and Eg, there is no maximal parabolic subgroup P such that its unipotent subgroup
N is abelian. So these groups are not listed nor considered.

The method we adopt to prove this theorem is an extension of Gaussian elimi-
nation. Namely, for each orbit, we find a representative for it under Ad(M), which
is a single element from a one dimensional subgroup corresponding to a positive
root in N or a product of two elements from two unipotent subgroups, attached to
the longest and shortest roots in N, respectively. Explicitly computing the Bruhat
decomposition and using the uniqueness of this decomposition, we can show that
M,, = M;,,.

This result is crucial in determining the poles of intertwining operators in [8]. To
be more precise, let X(M)r be the group of F-rational characters of M. Denote by A
the split component of the center of M. Then A C A,. Let

a = Hom(X(M)r), R) = Hom(X(A)g, R)

be the real Lie algebra of A. Set a* = X(M)r ®z R and ag = a* ®p C to denote its
real and complex dual.
For v € a¢ and o an irreducible admissible representation of M, let

I(v,0) = Indynig 0 ® q<”’H”(')> ® 1,

where Hp is the extension of the homomorphism Hy;: M — a = Hom(X(M)g, R)
to P, extended trivially along N, defined by g¢"*") = |y (m)| for all x € X(M)g.
Let V(v, o) be the space of I(v, o), for h € V (v, 0), let

A(v,o,w)h(g) = h(w_lng) dn,

Ny

where Ny = U N wN~w™!, be the standard intertwining operator from I(v, o) into
I(w(v), w(o)).

Determining the reducibility of I(v, o) at v = 0 is equivalent to determining the
pole of fN h(wgln) dn at v = 0 for any h in V (v, o) which is supported in PN,
cf. [6-8]. For the purpose of computing the residue we may assume that there ex-
ists a Schwartz function ¢ on 9t~, the Lie algebra of N—, such that h(exp(n™) =
¢~ )h(e), where n™ € N~. Let n; = exp(n; ) with n; € N~. Given a repre-
sentation o, let ¢ (m) be among the matrix coefficients of o, i.e, choose an arbitrary
element 7 in the contragredient space of o, let ¢(m) = (o(m)h(e), 7).

With these notations and by Theorem 2.2, M}, /M, = 1, (not merely finite as
suggested in [8]). Proposition 2.4 [8] can be refined as:

Proposition 1.2 Let o be an irreducible admissible representation of M. Then the
poles of A(v, o, wy) are the same as those of

2 / gl O (A (g Y (wo (m)mm ™) diin,
M/M,,

m€0;
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where O; runs through a finite number of open orbits of i under Ad(M), n; is a rep-
resentative of O; under the correspondence that wy "nj = min/n; with n; = exp(m;),

n; = exp(n; ). Furthermore dii is the measure on M /M, induced from d*n;.

Let A be the center of M. Then there exists a function f € C>°(M) such that
Y(m) = [; f(am)w™"(a) da, where w is the central character of 5.
Define
0: M — M, 0(m) = Wo_lmwo, Vm € M.

Given f € C2°(M) and my € M, define the f-twisted orbit integral for f at mj by:

Golmo, ) — / FOm)mom™") dri,

M /Mg m,

where
My, = My, (F) = {m € M(F) | O(m)ymom™—" = mo }

is the O-twisted centralizer of mq in M(F), di is the measure on M /My ,,, induced
from dm.
Applying Theorem 2.2, we can restate Theorem 2.5 of [8] as:

Proposition 1.3  Assume o is supercuspidal and wy(o) = o. The intertwining opera-
tor A(v, o, wp) has a pole at v = 0 if and only if

3 /  ulems, PN @) dz £ 0,
~ J2(6)/2(G)nwo(HA

for f as above. Here Z(G) is the center of G and

dozms, f) = / FB(m)mim™") drin,

M/M,,

is the O-twisted orbital integral for f at zm;, where m; corresponds to the representatives
{n;} for the open orbits in N under Int(M) with wo_ln,- = myn{n; as n; runs through
the finite number of open orbits in N.

2 Preliminaries

Let F be a non-Archimedean local field of characteristic zero. Denote by O its ring of
integers and let P be the unique maximal ideal of O. Let g be the number of elements
in O/? and fix a uniformizing element @ for which || = g~!, where || = |- |r
denotes an absolute value for F normalized in this way. Let F be the algebraic closure
of F.

Let G be a split connected reductive algebraic group over F. Fix an F-Borel sub-
group B and write B = TU, where U is the unipotent radical of B and T is a maximal
torus there. Let Ay be the maximal split torus of T and let A be the set of simple roots
of Ay in the Lie algebra of U.
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Denote by P = MN a maximal parabolic subgroup of G in the sense that N C U.
Assume T C M and let § = A\ {a} such that M = My. As usual, we use W =
W(Ay) to denote the Weyl group of Ay in G. Given w € W, we use w to denote
a representative for w. Particularly, let w, be the longest element in W modulo the
Weyl group of Ag in M.

We use G,P,M,N,B, T, U, Ay to denote the subgroups of F-rational points of the
groups G, P, M,N, B, T, U, Ay, respectively. We also use G,P, M, N, B, T, U, A, to
denote the F points of G, P, M, N, B, T, U, A, respectively.

For any g € G, we will use Int(g) to denote the inner morphism of G induced by
g i.e., forany u € G,Int(g) ou = gug~'. Let § = Lie(G), the Lie algebra of G. We
will use Ad(g) to denote the adjoint action on g induced from Int(g).

Suppose R is the root system of G. For each root 3 € R we choose a root vector gz
in g. For 3 € R, let U be the one dimensional root subgroup of 3 and for x € F, let
Up(x) = exp(xg3).

Let = Lie(N), the Lie algebra of N. Then :t = @ N;, where N; is graded
according to . M acts on N by adjoint action. In particular, each N; is invariant
under Ad(M).

For each root 3 € R, there is a one dimensional subtorus Hg(F), dual to 3, such
that the subgroup generated by Hg, Ug and U_p is a simply connected group of rank
one which is split over F. So it is isomorphic to SL,(F). Let ®3 be the isomorphism
from SL(F) to the subgroup generated by Hz, Ug and U_g. Then for any v € R and

t € F*,
t 0 ‘
7 <% (0 t—1)> =i,

Lemma 2.1 ( 10, Proposition 8.2.3])  Let 3,7 € R, with 8 # ~. Then there exist
constants Cg ;i j € F, such that

(Up(x), Uy () = H Uig+ iy (Caysi X' '),
i+jy€ER
i,j>0
where the order of the factors in the right side are prescribed by a fixed ordering of R.
Actually, the constants Cg ,; ; can be normalized so that Cg,; ; € L. Moreover, if 7y is
the longer element in the two dimensional root space spanned by 3 and ~y. Then Cg ;i ;
can be normalized such that Cg ;11 = 1if B+7v € R (ThenC, 511 = —1).

2.1 Centralizer and Twisted Centralizer

Let n; € N, suppose Walnl € PN—, and write W(jlnl = piny = mnin; with
m; € M, n] € Nandn; € N~. Let Centy(n;) = M, be the centralizer of n; in M,
ie.,

M,, ={me M | Int(m) o n; = m },

and let M,,; = Centy(n;) and M, —= Centy(n; ), respectively. Let M;, = Cent), =
{m € M | wo(m)m;m™' = m;} be the twisted (by means of wy) centralizer of m,

in M. Then by the uniqueness of PN~ decomposition of w, 'ny, it is not hard to see
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that the groups M,,,, Mn; and M, are all equal and are all contained in M;, , cf. [8].

Let n; = exp(n;),; € N, and assume the set {1;} generates a dense subset of N
under the action of M.
The main result in this paper is the following:

Theorem 2.2 Let n; = exp(ny), where vy € {n;} is one of the generators of a dense
subset of Wt under the action of M. Then M, = M;, .

From the above notations, we have:
(2.1) wy 'ny = mynjny .

If m € Mj, , then
(2.2) Walmnlm_l = (Wo(m)mlm_l)(mn{m_l)(mnfm_l)

= my(mnim™ ") (mn; m™").
For convenience of notation, Let
ny = Int(m) ony, ny =Int(m)onj, n, =Int(m)on;.

Then equation (2.2) will be changed to:
(2.3) wy 'y = mynyn; .
Multiplying the inverse of equation (2.3) by equation (2.1), we have:
(2.4) ny tny = (ny) " H(nh) " tniny .

Let

si=n'm €N, sy =) 'eN;
s; =) ' eENT, s=(n) 'n{€N.

Then equation (2.4) becomes

(2.5) 515 =S, S2.
Let
ny = exp(iy), ny = exp(1);
s1 = exp(ry), s = exp(n);
s; = exp(ry ), s, =exp(r;y ).

Then n, = Ad(m) o 1, is one of the generators of a dense orbit of 9t under Ad(M)

since 1, is. Similarly it is not hard to see that both ;" and r, are generators of a dense
orbit of M.
Our goal is to prove:

Claim Under the assumption in Theorem 2.2, we must have: s; =, .

https://doi.org/10.4153/CJM-2006-027-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-027-4

648 X. Yu

Once this has been proved, it implies n; = n, , which will lead to n, = n, by the
uniqueness of PN~ decomposition. Since m € M;, and n, = Int(m) o n;, we get
m e M, ifm € M;, . So M, C M, . Butwe already have M,, C M;, , cf. [8]. So
M,, = M, as desired.

Remark We can always assume that s, # 1, since otherwise there is nothing that
needs to be done. We are going to prove the claim according to the type of Dynkin
diagram of G since the Gaussian elimination essentially depends on the structure of
the root system.

Strategy of Proof Except for some simple cases (like A;, C;), our proof relies on
Gaussian elimination for 9. Namely, 9t can be generated by g with [ a positive
root in N, or by g3, g, under Ad(M), where g3, g, are root vectors attached to the
shortest and longest roots in N. Thus by acting with a suitable m € M on both sides
of equation (2.5), we can always assume that s, = Ug(a;)U,(a,) or Ug(a1).

We will multiply both sides of equation (2.5) by Ug(x)U, (y) from the right, where
x, y are variables. Then the M-parts of s;5; Ug(x)U,(y) and s; s,U3(x)U,(y) can be
calculated and compared explicitly since they are in the simplest form. We can then
conclude that their M-parts will never be equal unless s; =s; .

3 Proof of the Main Theorem

Now suppose N is abelian, then Ad(M) acts on N having finite number of orbits,
cf. [4,11].

3.1 Roots in Unipotent Radical
Lemma 3.1 Suppose N is abelian. If

5:ca+Zciai

a;Fa

is a positive root of N where ;s are simple roots from 0, then ¢ = 1.

Proof Using [3, Corollary of Lemma A §10.2], 3 can be written in the form 3; +
Ba + -+ + B with 8; € A (8 not necessary distinct) such that each partial sum
Bi+ B+ -+ Bjisaroot (1 < j < k). Suppose ¢ > 2, then there is j such that
Bj = avand in the remaining partial sum ) + 3, + - - - + 3;_1, there is still one a. Let
v=0B1+B2+---+Bj-1, theng,, g5 € N,and [g,,a5,] = §5,+p,+...+5; # 0. This is
a contradiction to 9t being abelian. ]

If

k
P = Z (107

a; EA
i=1
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is a root, choose k points in a plane representing each «; and draw a line connecting
aj, aj, if (o, dj) # 0. Then the graph obtained is obviously a subgraph of the
Dynkin diagram and is composed of several connected pieces. For each connected
piece C; of this graph, we set

P,‘ == Z GOy

a; €C;

P:ijp,»,

where m is the number of connected pieces. All the C;’s are disjoint. We call P; a
connected piece of P. Call P; positive if each ¢; is positive, and negative if each ¢;
is negative. In particular, we call P a connected root if P is composed of only one
connected piece.

Then

Lemma 3.2 Every positive root is connected.

Proof Let
k
r= Z P,'
i=1

be a positive root with all P;’s being positive connected and disjoint with each other.
Then by [3, Corollary of Lemma A §10.2], r can be written as

n
r= E Qj,
i=1

such that every partial sum

s
=Y o, 1<s<n,
i=1

is a root. If k > 1, then there must be one s, s > 1, and one i, 1 < i < k, such that
in the sum for r;, there is only one element, say aj,1 < j < s, which comes from
P;. Then for all a;,1 < i < s,i # j, (o, dj) = 0 since o, cvj are not in the same
connected piece. So

S N

Sa, (1) = 1o = (1, @j)arj = Zai —2aj = Zai - aj,
P i—1
i7#j

where S,,, is the reflection about «; in the Weyl group of G. Since none of the «;’s in

the sum
N
> o

i=Litj
can be aj, and all o; are simple roots, S, (r;) is not a root. This is a contradiction to
Sa; (rs) being a root since 7, is a root. [ |
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3.2 Type A

Equation (2.5) implies exp(r;) exp(r; ) = exp(r; ) exp(ra).
Since 17 = r3 = (r] )* = (r; )* = 0, we have:

(3.1) ntr tnr =r, trtrn.
Choose t € T and let Ad(t) act on both sides of equation (3.1). We get
a(t)r; + a_l(t)rf +rnr = a_l(t)r; +a(t)ry + 1, 1.

Since this is true for all t+ € T, we must have r; = r,,r; = r, . Consequently,
s =5, .

3.3 Type B
In this case, we may assume that T can be chosen to be the set of matrices of the form:
diag(x1,x2, . .. ,xl,xfl,xgl, . ,xfl, 1),

since the unipotent subgroups remain unchanged in every adjoint action.
The Dynkin diagram of G is:

o Py Py . ————0———————>@
(€31 (e%) Qa3 s Q)2 ap—q Qaj

Let e; € Hom(T,F*),1 < i < Isuch that ¢;(T) = x;. Then o;; = ¢; — ej31,1 <
i <1—1; oy = ¢;. The only case when N can be abelian is & = «a;. Then the positive
rootsin N are: {e; - ¢; | 2 <i <I}U{e}.
We choose a root vector for each positive root in G as follows:
8ei—e; = Ei j — Etjivis 1<i<j<],
Qeire; = Eiprj — Ej i, 1<i<j<l

Qe;, = Ei,zl+1 — By, 1< i<l
We also choose a root vector for each negative root in G as follows:

O—cve; = Eji — Erviejs 1<i<j<l,
8—ci—e; = Evji — Eiviij, 1<i<j<l,

8—¢; = Errinin — Eyprg, 1 <1<,

where the E; ;’s are elementary matrices in M(111)x 21+1) such that its (i, j) entry is 1,
all other entries are 0.
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Lemma 3.3  Given any nonzero element

1 1
r= Z ;e —¢; T Z bigeﬁ—e; tcQe € ER,
i=2 i=2

there is an m € M, such that Ad(m) o r = cyQe,—e, + €10¢,+¢, With ¢g # 0.
Proof Thisis [9, Lemma 4.2]. [ |

Lemma 3.4  For an element r = o8¢, —e, +C18e,e, € N from Lemma 3.3 with ¢; # 0,
there is m € M such that Ad(m) o r = ag,, witha # 0.

Proof Choose x € Fsuch that $cox? = ¢;. Let m = U_, (1) U,,(x). Then Ad(m) o

X
r = —coxge,. Setting a = —cox finishes the proof. [ |

We start with equation (2.5). If s, = 1, then it immediately follows s; = s, ,
and there is nothing to do. So suppose s, # 1. By the above two lemmas, applying
a suitable Int(m), m € M on both sides if necessary, we can assume s, = U, (a)
or U, _,(a) with a # 0. By taking a suitable finite extension of F, we can always
assume that m € M and consequently a € F. Without loss of generality, we assume
s, = U, (a).

Suppose

I 1
5; = H U,e],ek (ak) H Ufel+ek(bk)Ufel (xO)a

k=2 k=2

1 1
55 = [[U-ci—elco) ] U-crra (d)U—c, (30).

k=2 k=2

Multiply both sides of (2.5) by u = U, (x) € N on the right, where x € F. Decom-
pose both ;57 # and s, s,u into PN~ form, and compare their M part. Their M part
will never be equal unless s; = s, . The reason for multiplying u is to exclude the
possibility of occurrence of some Weyl group elements (when ay, = —1).

First we have

U ao)Ua(a+) = Uy (Y U (20—,

1+ yo(a+x) 1+ yo(a+x)

where

1 0

I’lzx = (I)e 1+yo(a+x) e T.
’ ! 0 1+ yo(a+x)
Set
a+x
ay= ——.
1+ yo(a +x)
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Forany k,2 < k < [, by Lemma 2.1,

U—el+ek (dk)Uel(ax) = Uel(ax)Uek(dkax)U—eﬁek (dk)a
Ufelfek(ck)Uel (ax) = Uel (ax)Ufek (Ckax)Ufelfek(Ck)

Then by recursively applying Lemma 2.1 and using the fact that N and N~ are normal
in P and P~ respectively, it can be calculated that the M part of s; syu is:

1 I
my = [ [ U—e.(ckax) [ | Ue,(dkae) o

k=2 k=2

Similarly, if we set

b =
* 1+ xpx

1
— 0
and e =P <1+60X 1 +xox> €r

then the M part of s;s; u is:

1 1

my = [ [ U—e(ab) [ [ Ua (bibi) o x.

k=2 k=2

From equation (2.5), 5157 # = s, s;u. By the uniqueness of MNN~ decomposi-
tion, we must have m; = m,. Since m; and m;, are products of unipotent groups
attached to roots in M in the same order, we must have cya, = ayb, and dya, = biby
for almost all x € F and all k, 2 < k < I. These equations lead to:

(3.2) (cxxg — akyo)x2 + (ckxo + ackxg — ax — aagy)x + acy = 0,
(3.3) (dyxo — bryo)x® + (dyxo + adixg — by — abyyo)x + ady = 0.
For equations (3.2) and (3.3) to have infinitely many solutions, one must have a5 =

by = ¢ = dy = 0,Vk,2 < k < I, since a # 0 by assumption. Moreover, we have
hi x = hyx for almost all x, which means the equation

(yo —x0)x+ay, =0

has infinitely many solutions, thus yo = 0, s0s, = 1, which is a contradiction. So in
order that equation (2.5) holds, we must have s, = 1, which leads to s; =s, . When
s, = U, —¢,(a), we can also prove that s; = s, in a similar way. That finishes the
proof of the main theorem in case G is of type B;.
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3.4 Type(C

In this case, we may assume T is the set of matrices of the form:
. -1 -1 -1
diag(xy, %2, ..o, X0, X1 %5 .y X)),

since the unipotent subgroups remain unchanged in every adjoint action.
Lete; € Hom(T, F*) such that ¢;(H) = x;. ThenR = {%e;fe;j | i # jtU{£2e}.
N is abelian only in case o = 2¢;. In this case, A = {e; —e;1; | 1 <i <I—1}U{2¢}.
The positive roots in N are: R* \ 0% = {e; +e; | i # j} U{2¢ | 1 < i <I}. And N is
all the 2 x 2] matrices of the form:
0 Y
6 o)

where Y € M)(F) and Y* = Y. So for eachn € %, n> = 0, and for each n~ €
N~,n~" = 0. It can be seen that the proof for the A; case also applies in this case
which impliess;” =55 .

3.5 Type D,

In this case, again T may be considered to be the set of matrices of the form:
. -1 1 -1
diag(xy, %, ..., X1, % 1%, ..., X ),

because the unipotent subgroups remain unchanged in every adjoint action.

Let ¢, € Hom(T,F*) such that ¢;(H) = x;. Then R = {%e; ¢; | i # j},
A={eg—en |1 <i<I—-1}U{e_1+e} Leta; = ¢ —ejpyfor1 <i <I1—1,
and let oy = ¢;_; + ¢;. For N to be abelian, o must be o, a;_; or ag. If & = «y_1,
then every element 11 € N has the form:

6 )

where

o O
[l
- O O
oS O
Q D
[\

000 --- 0 a
o000 --- 0 O
and B € M;_,(F), B = —B'. Then it is easily checked that n* = 0 and consequently
for eachn™ € 9t—, n?
prove thats; =s, .
The symmetry between oy and o takes care of the case & = «.
If & = oy, then N does not have the property that for each 1 € N, n? = 0. In this
case, the positive roots in N are: {e; —¢; | 1 <i <[} U{e +e; |1 < j<I}

= 0. Again we can use the same method as in A; or C; to
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We choose a root vector for each positive root in G as follows:

Qe—e; = Eij — Eijivi, 1<i<j<1

Qeire; = Eiprj — Eji, 1<i<j<lL
We also choose a root vector for each negative root in G as follows:

O—ete; = Eji — Enijy, 1<i<j<|

O—¢i—e; = Eiji — Enij, 1<i<j<l

where the E;;’s are elementary matrix in My 2. Then {ge,+¢|1 < i < I} is a basis
for N.

Theorem 3.5 (Gaussian Elimination)  For any nonzero r € N, there exist m € M
and ko, k; € F, with kg # 0, such that Ad(m) o r = koQe,—e, + k1Ge,+e,-

Proof Suppose
1-1 -1
I
r= § aigelfem + E a; gel+€:+1'
i=1 i=1

We first prove that by applying a suitable m’ € M on r if necessary, we can always
assume that a; # 0.
Assume a; = 0. Let

U_epte,, (1) 3,2 <i <I—1,suchthata; #0,
m' = U_¢—p, (1) Fi,2<i<I-—1,suchthata #0,
otherwise,

Se,

where s,, is a representative of the Weyl group element S,,, which is the reflection
about e;.

By applying the formula Ad(exp(xgg)) = e ) for each root 3 € R, it is easily
checked that the coefficient of g,, _, in Ad(m’) o r is nonzero.

Let ky = a;, and

m= [gexp(%geﬁe,)} . {Qexp(ﬁ—olghel_)],

Then a direct calculation shows that

ad(xgs

) ’
a1 a;_
Ad(m) or = koGe,—e, + (al’_l + E lkill) Oe,+e, -
i=3 0

Let k; denote the coefficient of g,, +., from the right-hand side of the above equation,
then Ad(m) o r = koQe,—e, + k10, +e, as desired. [ |
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Considering equation (2.5), if s # 0, by Theorem 3.5, applying an m € M on
both sides, we can assume s, = U, _, (ko) - Ue,+e, (k1) with ko # 0.
Suppose

1 1
st = [ U-er—e(@) [ Uerve (B0),
i=2 i=2

1 1
5 = [[U-er—e (@) [ Uerre ().
i=2 i=2

We will adopt the strategy we have used in the case of B;: multiply both sides of
(2.5) by u = U —¢,(x)Ue4e,(¥) € N on the right, where x, y are variables in F.
Decompose both s;s; 1 and s, s,u into PN~ form and compare their M parts.

Now let us consider the PN~ decomposition of s;s; « and s, s,u. For s; Ue, —, (x),
first we have:

b
(34) Ufel+ez(b2)Uelfez (x) = Uelfez (x/)ho,foe] +e; ( ﬁ) )
2

where

1
) x L 9
= d hoy =P, [ H0* T
Y TOT byx an 0% ame ( 0 1+ b2x) €

For each i,3 < i <[, by applying Lemma 2.1, we get:

(35) U—eﬁe,-(bi)Uel—ez (x/) = Uel—ez(xl)U—eere,'(bixl)U—elJre,(bi)7
(3-6) U—el—e,'(ai)Uel—ez (X/) = Uel—ez(xl)U—ez—ei(aixl)U—el—ei(ai)-
And U,,_,, commutes with U_,, _,,.

From equations (3.5), (3.6) and using the fact that both N and N~ are normal in
P and P, respectively, we reach the following:

1 1
B7) 5 Ug0() =Upye,(&) [[ Uty (@ix’) [ U—erre (bixhousy -

i=3 i=3
for a suitable s;’ € N~. When s, su = 55 Uy, ¢, (ko + X)Up e, (k1 + ¥), a similar
calculation shows that

1 1
(3.8) 5, Uy—e (ko + %) = Uy, (ko) [ [ U—ermes (ciko) [ [ U—ere (diko ) g 55 !

i=3 i=3
for a suitables; * € N—, where
ko +x —L 0
kno— —— = h/ =, 1+d, (ko+x) T.
T T gk P Hox = Pae ( 0 1+dyk +x)> <
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Suppose

1 I
S;/ = H Ufelfei(ai/) H U*€1+€i(bi/)7
i=2 i=2

i 1
52_/ = H U—el—ei(ci/) H U—€1+€;(di/)'
i=2 i=2

Then with a similar calculation as above, by applying Lemma 2.1 recursively, we
get:

1 1
(39 (57) Ueres(9) = Uase, () [ [ Uer—er(—a/y") T [ Ueyve, (= b1y V1 y577 "

i=3 =3

with a suitable s; /' € N—, where

w0
y' = Y and Iy, = D e, (”“ﬂ > eT

1+ayy 0 1+ayy

While

(3.10)

1 1
(5;)/Uel+ez (kl + }/) - Uel+ez (kl,y) H Uezfe,-(_ci/kl,y) H Uez+e,-(_di/k1,y)h{7y527 "
i=3 i=3
with a suitable s, /' € N—, where
ki+y e 0
ki, = ———— d W =90 ey (kity) eT.
VT Tk +y) G Ty T Pate < 0 1+ +7)

Thus from (3.7), (3.9), the M-part of 5,57 u is:

) 1 I
my = H Ufezfe,-(aixl) H Ufez+e,-(bix/)h0,x H Uezfe,'(_ai/)/l)
i=3 i=3 i=3

I
< [ [ Uepre(=b]y" V.

i=3

While from (3.8) (3.10), the M-part of s; s,u is:

1 I 1
nmy = H Ufezfe,(ciko,x) H Ufez+e,-(dik0,x)h67x H Uezfe,-(_ci/kl,y)

=3 i=3 i=3
1
X [ [ Uepse,(—diki )i .

i=3
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Because both m; and m;, are products of one dimensional unipotent subgroups of
different root vectors in the same order, for m; = m, to be true, then a;x’ = cikox
and bix" = diky, must hold for all i,3 < i < I, and for almost all x € F. These
equations lead to:

(3.11) (ciby — ajdy)x* + (ciko + ciby — aidykg — a;)x + ciky = 0,
(3.12) (diby — bidy)x* + (diko + d;by — bidako — b;)x + dikg = 0.

For equations (3.11) and (3.12) to have infinitely many solutions, since ky # 0, we
must have a; = b; = ¢ = d; = 0foralli,3 < i < I Moreover, we must
have ho<hi, = hg hi,, which implies hoy = hy, for almost all x € F, since
hoﬁx(héﬁx), hlﬁy(h{’y) are dual to e; — e, e + e,, respectively. So (dy — by)x + dyko = 0
has infinitely many solutions in F, and consequently d, = b, = 0.

Sos; = U_g—¢(a2), s, = U_g_¢(c2). And it can be easily calculated that
my = hy,y, my = h{,y with a) = a, in hy, and ¢; = ¢, in h{’y. Thus for m; = m,
to be true for almost all y € F, we must have (c; — a,)y + c,k; = 0. Since s, #
0,c, # 0,50 we must have k;y = 0and a, = ;. S0's; 55 = U_; ¢, (2)Ue —e, (ko) =
Uey—e,(ko)U ¢, —¢,(02) = 525, = 515 .

By the uniqueness of Bruhat decomposition, s; = s, . That finishes the proof of
the main theorem for the case G is of type D.

3.6 Type Eg

ap Gy a3 05 Qg

g

Qg

In this case, N is abelian only when & = oy or ag by Lemma 2.1. Since o is sym-
metric to o on the Dynkin diagram, we need only prove the claim when o = ;.
Let

91:{011; a1+a2; a1+a2+oz3; a1+az+o¢3+a5; al+a2+a3+a4;
o toayt+toasz+os+ o ooy + a3+ oyt sy
apt+oaptaztastastag ot 203+ oy + as;

o)+ 203+ gt as+ag oty + 203 + g+ 2as + ag; |

0y = {an+20n + 203 + g + as; g + 200 + 203 + g + a5 + Qs
o) + 20 + 203 +ay 205 + s ap + 200 + 303 + g + 20 + s
oy + 20 + 303 + 204 + 205 + 6. }

Then the positive roots in N are R* \ 8 = 6, U 6,. Notice that for each root § €
01,0 — ay is still a root, while for 3 € 6,, 3 — «; is not a root. Also notice that the
coefficient of a; of roots in 6, is 1, while the coefficient of v, of roots in 0, is 2.
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Let 31, B2, - . ., 411 be the roots in 0 according to the order listed in 6;, and let
1,%2, - - -, Y5 be the roots in 6, accordingly. Let ; = 5, —ay,i = 1,..., 1L v; =
v —ap,i=1,...,5, (v is not a root).

The roots of N are divided into these two sets because each element in Uy with
B € 01, 8 # oy can be eliminated by an element in U,,, and each element in U, with
i # 5 can be eliminated by an element in U.,. Elements in U,,, cannot be eliminated
directly by elements in U, since v; — « is not a root.

We will define an order on R: suppose 3,7 € R and

6
f—v= Z Gt
i=1
If
6
Z ¢ >0,
i=1

then 3 > ~. If

and if the first nonzero coefficient is > 0, then (3 > -y, otherwise § < +. In particular,
if 3 € Risapositive root, then 3 > 0. Itis easily verified that this order is well defined
and we have 8; < 3;if 1 <i<j<1land~y; <v;ifl <i<j<5.

Let
11 5
le{HU{gi}GN, NZ:{HU%.} € N.
i=1 i=1

be the subgroups (because N is abelian) of N consisting of the unipotent subgroups
of roots in 6y, 6,, respectively. We will prove that Ny can be generated by U, = U,,
and N, can be generated by U,,, under the adjoint action of M.

For each pair of roots 3,y € R, by Lemma 2.1 we know that

(3.13) Us()Us(U(=x) = [ ] Uisjser(Cy0:6 yHUs(p).
i,7>0

Suppose the structure constants are normalized as in Lemma 2.1.

Lemma 3.6 Foreachu € N, ifu = ujuy, u; € Ni,i = 1,2, withu; # 1. Then
there exists m € M such that

11 5
Int(m) o u = H Ug,(x]) H U, (y))

i=1 i=1

with x{ # 0.
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Proof Suppose
11 5
u=wmuy = [[Us0) [ U2 00)-
i=1 i=1

If x; # 0, then there is nothing we need to do. Otherwise, let k be the smallest i such
that x; # 0. Notice such i exists since u; # 1, and by the assumption,

11
u = H Uﬂ,('xl)
i=k

Let m = U_,(1). For any pair {i, j} of positive integers, i3 + j(—7x) is a root
onlywheni = j = 1, and S + (—7x) = (1. So we apply equation (3.13):

Int(m) o Ug, (xx) = Up, (xx)Up, (1),

since C_, g,1,1 is normalized to be 1.

For any n > k,n < 11, there is no pair {i, j} of positive integers such that i3, +
j(—7x) is a root. To verify this, we need only to check the coefficients of oy and
in i3, + j(—7). Namely, since N is abelian, the coefficient of a; in any root in N
must be 1, so i = 1. Meanwhile the coefficient of a;; of i3, + j(—7x)is1 — j < 0,
so j must be 1, too, and if this is the case, the coefficient of «, in 3, — 7% is 0. Then
By — Tk = 1, since [ is the only root in N that has coefficient of «; equal to 0. But
Bn > Bk = 1 + Ty, this is a contradiction. So by Lemma 2.1 Int(m) fixes Ug,.

Also for each n with 1 < n < 5, i7, + j(—7%) can possibly be a root only when
i = j = 1. (Since N is abelian, i must be 1 and we can exclude the possibility j = 2
since 7y, + 2(—7x) would not be connected by just applying Lemma 3.2.) If v, — 7y is
aroot, then v, — 7¢ > a; = ;. So by Lemma 2.1

Int(m) o U,, C H Us.
B>

With these facts,
Int(m) o u € Ug, (xx) H Us. [ |
B>

Lemma 3.7 Foreach u; # 1 € N, there exists an m € M such that Int(m) fixes Ug,
and

5
Int(m) ou, = H U, (yi), withys#0.
i=1

Proof Suppose
5
U = H U, (x:).
i=1

If x5 # 0, then nothing needs to be done. Otherwise, let k be the smallest i such that
x; 7 0. Sox; # 0onlywhenk <i < 4.Lety =5 — Y andm = U,(1).
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For each pair {i, j} of positive integers, i+ j7 can be aroot only wheni = j =1,
since otherwise iy + jy > 75, and s is the longest element in R such that its o part
is nonzero. Moreover, in this case v + ¢ = 7s. So by applying Lemma 2.1, we have:
Int(m) o Uy, (x) = Uy, (x%)U~,(C ~,.1,1%), where C, -, 1 1 is a structure constant, so
is nonzero.

For all other g with k < g < 4, iy + jy, could not be a root since iy + jy, = 75
for any positive integers 7, j. So Int(m) fixes all these U, .

With these two facts, it is easily calculated that Int(m)ou = uU,,(C, ,,1,1%). Now,
set y5 = Cy,.1,1%. Then ys # 0 as we have shown. Because v C span{as, oy, as,
o }, for each pair {i, j} of positive integers, iy + j3; cannot be a root by Lemma 3.2.
So Int () fixes U, by Lemma 2.1. ]

Theorem 3.8 (Gaussian Elimination)  For each u # 1 € N, there exists m € M such
that Int(m) o u = Upg, (ko)U-, (k1).

Proof We can write u as

u= H Up,(x;) H Uy (x)) = wiua, 1y € Ny, up € Ny.
Bi€t Vi €6y

If u; = 1, then just set m; = 1. If u; # 1, by applying Lemma3.6 and a suitable
Int(m’), if necessary, we can assume x; # 0.
Let

Then

Int(m;) ou = [ H Int(m;) o U@.(xi)} . [ H Int(m;) o U, (x])| .

Bi€b 7 €0,
For each fixed k, with 2 < k < 11, i3} + j7 is a root for 7, j > 0 only when
i = j = 1, and in this case ) + 7x = . So by applying Lemma 2.1,
Xk
tnt (U (2) ) 0 Us,(0) = U (1) - Us (=0,
1

For each q,2 < q < 11,9 # k, and each pair of positive integers {i, j}, i3, + j7k
can possibly be a root only when i = j = 1. And in this case 3, + 74 € 0, ifitisa
root, since the coefficient of o, in 3, + 7% is 2. So

Int(UTk(§) ) o Ug,(xg) = Up,(xg) - ng  withny € N,.
1

For each pair of positive integers {i, j}, none of i3y + j7i can be a root. So also by
Lemma 2.1,

Int(UTk ( ﬂ) ) fixes Ug, .
X1
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With these facts, one can conclude from

m(om) = i (v ()
i=2

that
11

Int(m;) o Up, (x1) = Up, (x1) [ [ Up (=x:) - mi with ny € Ny,
i=2

Int(m;) o U, (x;) = Up(x;) - n!  withn] € Ny, Vi,2 <i<11.
By the last two equations, one can get

1
Int(m;) o (u1) = Up,(x1) -n’  wheren’ =n, - H n! € N,.
i—2

For each v € 6,, none of iTy + j is a root for any pair of positive integers {i, j},
since in the decomposition of iy + j7; as a summation of simple roots, the coefficient
of a; will be i +2j > 3, which is not possible. So Int(m1;) o u; = u,.

Now we have Int(m;) o u = Int(m;) o (u14,) = Upg, (x1)n’u,. Suppose

5
n'uy = [T UL ().
i=1

Ifn'uy = 1,ie., y; = 0for 1 < i < 5, then we are done. Otherwise, let m, be the
element in m that comes from Lemma 3.7. Then

5
Int(mymy) ou = Up, - H U, (yi), withys #0.
i=1
Now let
4
Vi
msz = || Uy— 5(——).
3 11} y ys
Then by Lemma 2.1, for any fixed i,

Int(U%,_%(—i)) 0 Uns(ys) = Usu(ys) - Uy, (— ).

It can be easily shown, by checking the coefficients of o and a4, that for any pair
{j, k} of positive integers, and any g, with 1 < g < 4, none of j(v; — 7s) + kv, can
be a root. (Namely, for j(v; — 75) + k7, to be a root, k must be 1 since the coefficient
of ain j(vy; — 75) + kv, is k. Then the coefficient of a; in j(7; — 75) + kv, is 2, so
j(vi —75) + kv, € 0, if it is a root. Then the coefficient of oy in j(7y; — 7ys) + kg is
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1 — j < 0 which is not possible since every root in 6, has its coefficient of oy equal
to 1.) So again by Lemma 2.1, Int(U, ,, ) fixes all other U, (y,). Thus

4
Int(m3) 0 Uy, (y5) = Us, (75) [ [ Uni (=),

i=1

4 4
Int(ms3) o (HU%(%)> :HUWi()/i)'
i=1 i=1

So
5
nt(ms) o ([T U, () = Usul9).
i=1

Moreover, for each i,Int(U,,_,,) fixes Ug, since, from the proof of Lemma 3.7,
Vi —75 C span{as,ay, as,as}. Consequently, Int(ms) fixes Ug (x;). Now let
m = msmym;. Then Int(m) o u = Up, (x1)U,,(ys). Setting kg = x1,ki = s
proves the theorem. u

Returning to equation (2.5), by the above lemma and applying Int(#1) on both
sides, we can assume s, = Ug, (ko)U,, (k1). Since without loss of generality we can
always assume s, # 1 (otherwise nothing needs to be proved), we assume ko # 0.

Now suppose

11 5
st = [JU-nta) - JJU-- 00,
i=1 i=1

11 5
s = [[U-nte)- JJU-- ().
i=1 i=1

Multiply both sides of (2.5) by u = Ug, (x)U., (¥) on the right, where x, y are variables
in F. We will decompose both s;s; 1 and s; s,u into PN~ form, and compare their
M parts.

First for s;5; Ug, (x), we have:

g _a
(3.14) U_p,(a)Up, (x) = Up, (x )h"U‘ﬂl( 1+ alx) ’

where
;X
1+ax

For each k with 2 < k < 11, by Lemma 2.1 we have

1
SR
and =2, (Hglx 1+a1x) €T

(3.15) U_p(a)Ug (x") = U, (x"YU_r, (—axx")U_ 5, (ag).

Forany kwith 1 < k < 5, and any pair {i, j} of positive integers, none of i3, + j(—7x)
can be a root. So by Lemma 2.1, U, commutes with U_,, for all k.
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Since N~ is normal in P~ = MN ™, from equations (3.14), (3.15) and the above
fact, the PN~ decomposition of s; Ug, (x) is as follows:

11
(3.16) STU ) = Up, )| [T U (a7,

i=2
with a suitable (s; )’ € N~. Then for s, s,u = s, Ug, (ko + x)U,, (ki + y). Similarly,
the PN~ decomposition of s, Ug, (ko + x) is:

(3.17) U, (ko +x) = U, (ky) [HU k)| I3,

with a suitable (s, )’ € N—, where

ko + x — 0
ko= —0 X and b=y (Tt €T
T 1+ elky+x)’ an * A ( 0 1+ ¢ (ko +x)

For convenience of notation, we will set U,, = 1 if 7; is not a root. Suppose

11 5 11 5
s0) =JJU-sta) - JJU-®), () =[[U-s(c)-JJU-(@D.
i=1 i=1 i=1 i=1

Then with a similar discussion on roots and applying Lemma 2.1, following a similar
process of calculation, we get:

11 4
(3'18) (S;)IU%()/) = U%()’/) [H U‘/’sfﬁi(ai/y/)} [H U 5*%‘(171'/}//)} hy(sf)”’
i=1

i=1

with a suitable (s;)"" € N—, where

1
/ y 1+b! 0
=Y and h=a 7 €T
YT Tvely M ”5< 0 1+bgy>

Meanwhile,

11 4
(3.19) (57)'Us, (ki +9) = U (k)| T s )| | TT Unsos Gyt 357

i=1 i=1
with a suitable (s, )" € N, where
bty o 0
k= —— 2 d KW = [ 1kt
P Txdlk+y) O WS( 0 1+ditk+y) S
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Thus, from equations (3.16) and (3.18), the M-part of s;s u is:

Aﬁﬁny)—[filkwx—me}M{fiUg_QMQ/ﬂ{Iﬁl%rqiMyﬁ}hy
=2 i=1 i=1

While from equation (3.17) and (3.19), the M-part of s, s,u is:

Mi(x, y) = [f[ U (k)| B [ﬁ Use i (kyc))] [f[ Useny ()| 1,
i=2

i=1 i=1

Notice that all —7; are distinct negative roots while all 75 — §; and s — ~; are
distinct positive roots (if they are roots). For M;(x, y) = M,(x, y), the unipotent
groups of the corresponding root vector must be equal, and their T parts must be
equal as well, as in the previous cases.

So we have a;x’ = k,c;, forall 1,2 < i < 11, and almost all x € F. Moreover,
hy = hl since h,(h)), hy(h)’,) are dual to 31, s, respectively. As an analog of the proof
in the By(Dy) case, we geta; = ¢; = 0, V1 < i < 11. Thus from equation (3.16) and
(3.17),

5 5
s=s5 = [[U-s ), 55 =5 =[[U-(d)
i=1 i=1
and from equations (3.18), (3.19),
4 4
Mi(x,9) = [T U0 By Mo, ) = [ T] Uik 1,
i=1 i=1

Since s, # 1, thereis onei,1 < i < 5, such that d; # 0. Together with the fact that
M, (x,y) = M;(x, y) for almost all x, y € F, following the previous proofs, we can
getk; = 0. So

5 5
S5 = [H U_%(di)} U, (ko) = Up, (ko) [H U_%(di)} = 55 = 5157

i=1 i=1

By the uniqueness of Bruhat decomposition, it must have s; =s, .
If at the beginning of this proof, we assume k; # 0 instead of assuming ko # 0,
the proof will be similar.

3.7 TypeE;

ap Gy a3 Qs Qg Q7

s

Qg
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The longest root in this case is 2 + 3a; + 4a3 + 24 + 3as + 206 + a7, by Lemma
3.1; N is abelian only when o = «;.
Let

0 ={; atas at+as+as at+taz+as+as a+as+agt+as+as
atoaytaztas+oag at+ay+azt+agtast s
at+ar+toap+az+ast+ag at oyt 203+ oy + s+ g
at+arta;taztagtast+ag at+ar+2a3 + g+ 205 + g
at+ar+op+203+as+as+ag atap+ar+ 205+ oy + 205 + s
a+ap+20n F203 s+ a5+ o+ o+ 2an + 205 + oy + 205 + Qs

a+ag+20 4305+ g+ 205 + o a+ag + 20 + 303 + 204 + 205 + a3 }

0, = {a+2a; + 30, + 4as + 204 + 3as + 203
a+ap +3a; +4as + 204 + 35 + 205 a+ o + 20 + 4oz + 20 + 3ais + 2005
a+ap +20; + 303+ 204 + 35 + 205 o+ oy + 20 + 33 + oy + 30 + 2003
a+ap +20;p + 303+ 204 + 205 + 205 o+ oy + 20 + 33 + ay + 205 + 2005
a+ap +20;p + 203 + g + 205 + 20065 o+ +ap + 203 + oy + 205 + 203

a+ o+ 203+ ay+2as + 206}

Then the positive roots in N are R* \ 67 = 6, U 6,.

Let 81, Ba, . . . , 817 denote the roots in #; as the order listed, v, 7, . . . , 710 denote
the roots in 6, similarly. Forany 8 € 6, 3—«aisaroot (asis Eg); fori = 2,...,9,v,—
~; is a root while ; — 7y is not; for each i, 1 < i < 10,; — [ is not a root. Notice
for each root in 6}, the coefficient of a is 1, and for each root in 6,, the coefficient of
o 18 2.

We will define an order on R: suppose 3,v € R and

7
f—v= Z G,
i=1
If
7
Z ¢ >0,
i=1

then 3 > ~; if

and if the first nonzero coefficient is > 0, then 3 > ~, otherwise 8 < ~. In particular,
if 3 € Risapositive root, then 3 > 0. Itis easily verified that this order is well defined
and we have 8; < 3;if 1 <i < j<17and~; = v;if1 <i < j < 10.
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Suppose the root vectors are so chosen that the structure constants are normalized
as in Lemma 2.1. Let

17 10
le{HU@}CN, sz{HU‘}CN.
im1 i—1

Every element of u € N can be written as u = uju, with u; € N;,i = 1,2. And we
can similarly define N; , N, as subgroups of N~. The roots of N are divided into
these two sets because, as we will prove, U, generates N; and U, generates N, under
the adjoint action of M. Each element in U,,, with 1 < i < 10, cannot be eliminated
directly by an element in Ug, since v; — (; is not a root.

Lemma 3.9 Foreachu € N, ifu = ujuy, u; € Ni,i = 1,2, with uy # 1. Then there
exists m € M, such that

Int(m) o u = {ﬂ U, (x{)} { ﬁ U%(y;)} with x| # 0.
i—1 i1

Proof This is analogous to Lemma 3.6, since for each 7,2 < i < 17, 3; — B is a
root, the proof is almost the same as of the proof for Lemma 3.6. The indices are the
only changes. ]

Lemma 3.10 If
10
U = {H U’y,-(xi)} C N,
i=1

and u, # 1, we can find an m € M such that Int(m) o u, = U, (ay) with a, # 0 and
Int(m) fixes every element in Ug,.
Proof First we prove the following claim:

Claim Thereis m; € M, such that

10
Int(m;) o up = H U, (x!) withx] # 0,x, # 0.
-1

(This claim is needed because y; — ¢ is not a root, and U.,,, cannot be eliminated
directly through U.,,. So we use U, to eliminate it.)

Let k be the smallest positive integer such that x; # 0. If k = 1, i.e., x; # 0. And if
x; # 0, then the claim is trivial.

Casek = 1,x, = 0: Letm; = U,,_, (1). Foranyi,3 <i < 10, by Lemma 2.1,

Int(U,,—, (1)) 0 Uy, (xi) = ( H Uk(w—m)ﬂl%(C*,z—mm.,k.,nx?)) Uy (i),
k,n>0
k(va—m)+myi€R
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where the C.,, ., -, k'S are structure constants.

Since v, — 1 € span{ay, aa, a3, a4, s }, for any pair of positive integers {k, n},
the coefficient of a in k(7 —~1)+ny; is 2n. For it to be a root, n must be 1. Moreover,
if this is the case, then k(y, — 1) +; € 6,.

Since v, — 71 < 0,k(yv2 — 1) + 7% < 7. So

Int(m,;) o U,,(x;) C H Uy,
j=i

consequently,
10 10
Int(m;) o (H U%(x,‘)) - H U,.
i=3 i=3

And by Lemma 2.1, Int(m,) o Uy, (x1) = U, (x1)Us,(x1). Therefore, Int(mm,) o u =
Uy, (x1)Ux, (x1) - u’ with

10
u' e HU .
i=3

Set x{ = x5 = x1, and the claim is proved.

Casek = 2: Letm; = U, _,,(1) = U, (1). Foreachi,3 < i < 10, and each pair
{k, n} of positive integers, the coefficient of v; in kav; + n; is k + n. So for ko + n;
to be a root, we must have k = n = 1. But it is easily checked that «; ++; is not a root
when i > 3. So by Lemma 2.1, Int(U,, (1)) o Uy, (x;) = U, (x;). Also for any pair
{k,n} of positive integers, k(y; — 72) + 1y, can be a root only when k = n = 1. So
by applying Lemma 2.1, Int(U,, (1)) o U, (x;) = U, (22)U+, (x2), with x; # 0. Then

10

Int(Us, (1)) 0 = U, (8)Us, ()| [T U, (0]

i=3
Setting x; = x, will prove our claim.

Case3 < k < 10: Let m; = U,,_,,(1)U,,—,,(1), with a similar discussion as the
second case, but this time take the coefficients of «; and «a;, into account. We can
figure out that the U,, U,, part of Int(m,) o u is U, (xx) U, (x%).

Case k = 10: This case is handled separately because v; — 79 is not a root. Let
my = U,,—y, (1), then Int(m;) o u = Int(m;) o Uy, (x10) = Un,(x10)Us,(x10) by
Lemma 2.1, since for any positive integers k and #, k(~; — v10) + ny10 is a root only

when k = n = 1. Now it will fall into the second case which has already been proved.

Now
10

Int(m;,) ou = H U, (x/) withx{ # 0,x; # 0.

i=1
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Let

x/
my; = U’)lo—ﬁz(_x_?) .
It can be checked for any i > 3, and any pair of positive integers {k,n}, that
k(10 — 72) + ny; is not a root. So Int(m1,) fixes all U.,.
For any pair of positive integers {k, n}, ky; + n(y10 — 72) or kv, + n(y10 — 72) can
be aroot only when k = n = 1. And v, + (710 — 72) = Vo5 72 + (Y10 — 712) = Y1o0-
By Lemma 2.1,

Int(my) o U, (x3) = U, (—x10)U,, (x3),

1.7
X1%10

Int(my) o U, (x]) = U%( . ) U, (x).
2

Consequently,

Int(rmz) o (H U x)) = [H 06| U (3 - S22,

For convenience of notation, let the right side of the above equation be

9
H U’h‘(yi)-
i=1

Let .
Ji
ms = U’;—’l(__)'
i:HZ ’ yl

By Lemma 2.1, we have:
(3'20) Int(U%,% (_ﬁ) ) © le (}’1) = U’yl (yl)U'yg(_}@)-
1

Remark Foralliwith i # 1, and any pair {k, n} of positive integers, the coefficient
of ain k(9 — 1) + ny; is n. So for it to be a root, n must be 1. Then the coefficient
of ajink(yg —y1)+nvy;isn—k =1—k. For k(y9 — ;) +ny; tobearoot, 1 —k =1
or 2 which is impossible. So Int(U,,—-,) fixes all U, with i # 1.

So by equation (3.20) and the above remark,

Int(U%,% (—f)) ° (f[U ,.(yi)) = f[U (i)
i=1 i=1

By induction, and with the same discussion on the cases of roots as in the remark,
we can prove:

o (TT0 - (<2) ) o (TTv200) =TTV 00
i=j i=1 i=1

V1
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And in particular when j = 1, then

9
nt(ms) o ([T U-,0) = Us, ().

i=1

Set m = msm,m;. We can then see from the above process that Int(m) o u =
UW] (}’1 )

Forany 1 < i,j < 10,v; — v € span{a;,a;,as,04,0s}). But for any v €
span{a, ay, as, g, s} and any pair {k, n} of positive integers, k3, + n-y cannot be
a root by Lemma 3.2. So each Int(U,,—,,) fixes Us, and consequently, all Int(m,),
Int(m;), Int(ms3) fix Ug, and therefore Int(m) fixes Ug, . [ |

Theorem 3.11 (Gaussian Elimination)  For any u € N, there exists m € M, such
that Int(m) o u = Up, (a1)U,,(a2), with a;,a, € F.

Proof Write u = u;u,, where

17

10
w=[[Ust) €N, w =] U, () €N,
i=1

i=1

If u; = 1, then it is the case of Lemma 3.10.
If u; # 1, by applying a suitable Int() on u from Lemma 3.9, we can assume

x; # 1. Let
17 X
nm = HUﬁf—ﬁl (x_;) :
i=2

then 3; — f3; is a positive root and the coefficient of ag in 3; — 3 is 1.

For any fixed j, with 2 < j < 17, and for each pair of positive integers {k, n}, the
coefficient of o in k(3; — B1) + nBjisk+n > 2,50 k(B; — 1) + nB; € 0, ifitisa
root. Moreover, for any y € 6,, the coefficient of a in k(3; — 1) + nyis k+2n > 3,
so k(B; — (1) + nry cannot be a root, hence Int(Up, g, ) fixes every element in N,.

So by Lemma 2.1, we have:

Int(Ug,,gl(ﬁ)) o Up,(xj) = Up,(x;) - nij, withn;; € N,.
X1 '

Consequently, Int(m,) o Ug, (x;) = Up, (xj)n; with

17
n; = Hﬂw’ € N,
i=2

and
17

Int(my) o Us,(x1) = Up, (x1) - [[Us(—x) - m1 withn, € N,
i=2
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So

17 17
Int(m;) o u; = Int(m,;) o (H Ugi(xi)) = Upg,(x1) - n wheren = H”i € N,.

i=1 i=1

Now let 4, = n - u, and apply Lemma 3.10 to uj. There exists m, € M such
that Int(m,) o u) = U, (a,) and Int(m,) o Ug, (x1) = Upg, (x1). Let m = mym; and
a; = x;. ThenInt(m) o u = Ug, (a1)U,, (ay). [ |

Now start from s;5; = s, s, acting on Int(m) on both sides, we can assume s, =
U, (a1)U,, (a2). The proof of the main theorem is almost the same as that of Eg. We
need only make a small justification of the fact that y; — ;0 is not a root, but this does
not make much difference. Each step in the proof of the Eg case can be paralleled to
finish the proof in the E; case.

4 Application to Intertwining Operators

Now by Theorem 2.2, M}, = M,,. This can be used to refine the main results in [8].
To be more precise, let X(M)r be the group of F-rational characters of M. Denote by
A the split component of the center of M. Then A C A,. Let

a = Hom(X(M)r), R) = Hom(X(A)f, R)

be the real Lie algebra of A. Set a* = X(M)r ®z R and ag = a* ®p C to denote its
real and complex duals.

For v € a¢ and ¢ an irreducible admissible representation of M, let I(v,0) =
Indyntg 0 ® q<”=H”(')> ® 1, where Hp is the extension of the homomorphism
Hy: M — a = Hom(X(M)p,R) to P, extended trivially along N, defined by
gt M) — |y (m)|p for all x € X(M)g. Let V(v,0) be the space of I(v, o), for
he V(v,o),and let

A(V,a,w)h(g):/ h(wilng)dn,

Ny

where Ny = U N wN~w™!, be the standard intertwining operator from I(v, o) into
I(w(v), w(o)).

Let I(o) = 1(0,0) and V(o) = V(0,0) be the induced representation and its
space at v = 0, respectively. Since wo(M) = M, I(0) is irreducible if and only
if A(v,0,wp) has a pole at v = 0 (¢f. [6-8]). By [7, Lemma 4.1], it is enough to
determine the pole of fN h(w&ln) dnatv = Oforany hin V (v, o) which is supported

in PN—.
For n; € N, suppose n; is inside an open orbit under Int(M), with W(;lni € PN™.
Write wo_lni = mn/n; as before, define d*n; = q(p"HM(’”"»dn where p is half the

summation of the positive roots in N. Then by [8, Lemma 2.3], the measure d*#; is
an invariant measure on M /M, and thus induces a measure on the quotient M/M,,..
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For the purpose of computing the residue we may assume that there exists a
Schwartz function ¢ on 9t 7, the Lie algebra of N7, such that

h(exp(n™)) = ¢(n™)h(e),

where 17 € N~ Let n; = exp(n; ), with n; € N~. Given a representation o,
let 1/ (m) be among the matrix coefficients of o, i.e, choose an arbitrary element 7 in
the contragredient space of 0. Let ¢(m) = (o(m)h(e), 7). With these notations and
applying Theorem 2.2, [8, Proposition 2.4] can be restated as:

Proposition 4.1  Let o be an irreducible admissible representation of M. Then the
poles of A(v, o, wy) are the same as those of

/ gt Hm o lmmim ™) 6 A (m = e (wo (m)mym ™) diin
n; €0; M/M"i

where O; runs through a finite number of open orbits of W under Ad(M); n; is a repre-
sentative of O;, under the correspondence that w,, ' = min/n;, with n; = exp(1;),

n; = exp(n; ) and din is the measure on M /M, induced from d*n;.

Let A be the center of M. Then there exists a function f € C>(M) such that
Y(m) = [; f(am)w™"(a) da, where w is the central character of 7.
Define
0: M — M, 6(m)= w(;lmwo,v meE M.

Given f € C2°(M) and my € M, define the f-twisted orbit integral for f at m, by:
ool )= [ fGmmm ) din,
M/Mg‘mo

where
Mp 1y = Mg, (F) = {m € M(F) | O(m)ymom™" = my}

is the O-twisted centralizer of mq in M(F), di is the measure on M /My ,,, induced
from dm.

Applying our Theorem 2.2, the main theorem in [8] (Theorem 2.5) can be modi-
fied as:

Proposition 4.2 Assume o is supercuspidal and wy (o) = o. The intertwining opera-
tor A(v, o, wy) has a pole at v = 0 if and only if

Z/ o bg(zm;, flw ' (z)dz # 0
— J2(6)/2(G)nwy (DA~

for f as above. Here Z(G) is the center of G and
onemis £) = [ fatmmon™)din,
M/M,,

is the 0-twisted orbital integral for f at zm;, where m; corresponds to the representatives
{n;} for the open orbits in N under Int(M), with wy 'n; = m;n/n;, as n; runs through
the finite number of open orbits in N.
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