
Canad. J. Math. Vol. 58 (3), 2006 pp. 643–672

Centralizers and Twisted Centralizers:
Application to Intertwining Operators

Xiaoxiang Yu

Abstract. The equality of the centralizer and twisted centralizer is proved based on a case-by-case

analysis when the unipotent radical of a maximal parabolic subgroup is abelian. Then this result is

used to determine the poles of intertwining operators.

1 Introduction

The purpose of this paper is to prove the equality of the centralizer and twisted cen-

tralizer (defined in Section 2.1, originally defined by Shahidi [8]), when the unipotent

radical of a maximal parabolic subgroup is abelian. In that case it is known that the

adjoint action of the Levi subgroup on the Lie algebra of the unipotent radical has a

finite number of orbits, the union of which is an open dense subset [4, 11]. Then it

allows the treatment in [8] of determining the poles of intertwining operators.

To be more precise, let F be a non-archimedean local field of characteristic zero

and F̄ its algebraic closure. Suppose G is a split connected reductive algebraic group

over F, T a maximal split torus of G. Let ∆ be a set of simple roots, θ = ∆ \ {α},

where α is a simple root. Let P = MN = MθN be a maximal parabolic subgroup

of G. Denote by {ni} a set of representatives for the corresponding open orbits of M

in N under the adjoint action of M on N = Lie(N). Let N− be the opposite of N and

suppose one can write w−1
0 ni = min

′
i n−

i where mi ∈ M, n ′
i ∈ N , n−

i ∈ N− and w0

is a representative for w̃0, the longest element in the Weyl group of A0 (the maximal

split torus of T in G) modulo that of A0 in M.
Define

Mni
= {m ∈ M | Int(m) ◦ ni = ni},

Mt
mi

= {m ∈ M | w0(m)mim
−1

= mi}.

Observe that Mni
⊂ Mt

mi
(cf. [8]).

It is clear that each ni determines mi uniquely (as well as n ′
i and n−

i ). But the con-

verse with respect to mi is not true: several ni could have the same mi . The primary

result of this paper proves this converse if N is abelian. This is the case where the

number of open orbits {ni} is finite [11]. The main result of Section 3 is:

Theorem 1.1 If N is abelian, then Mni
= Mt

mi
.
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Our proof of the main theorem is based on a case-by-case analysis; all the cases

where N can be abelian have been listed and proved. For the exceptional groups G2,

F4 and E8, there is no maximal parabolic subgroup P such that its unipotent subgroup

N is abelian. So these groups are not listed nor considered.

The method we adopt to prove this theorem is an extension of Gaussian elimi-

nation. Namely, for each orbit, we find a representative for it under Ad(M), which

is a single element from a one dimensional subgroup corresponding to a positive

root in N or a product of two elements from two unipotent subgroups, attached to

the longest and shortest roots in N , respectively. Explicitly computing the Bruhat

decomposition and using the uniqueness of this decomposition, we can show that

Mni
= Mt

mi
.

This result is crucial in determining the poles of intertwining operators in [8]. To

be more precise, let X(M)F be the group of F-rational characters of M. Denote by A

the split component of the center of M. Then A ⊂ A0. Let

a = Hom(X(M)F),R) = Hom(X(A)F ,R)

be the real Lie algebra of A. Set a∗ = X(M)F ⊗Z R and a∗
C

= a∗ ⊗R C to denote its

real and complex dual.

For ν ∈ a∗
C

and σ an irreducible admissible representation of M, let

I(ν, σ) = IndMN↑G σ ⊗ q〈ν,HP(·)〉 ⊗ 1,

where HP is the extension of the homomorphism HM : M → a = Hom(X(M)F ,R)

to P, extended trivially along N , defined by q〈χ,HP(m)〉
= |χ(m)|F for all χ ∈ X(M)F .

Let V (ν, σ) be the space of I(ν, σ), for h ∈ V (ν, σ), let

A(ν, σ,w)h(g) =

∫

Nw̃

h(w−1ng) dn,

where Nw̃ = U ∩ wN−w−1, be the standard intertwining operator from I(ν, σ) into

I(w(ν),w(σ)).

Determining the reducibility of I(ν, σ) at ν = 0 is equivalent to determining the

pole of
∫

N
h(w−1

0 n) dn at ν = 0 for any h in V (ν, σ) which is supported in PN−,

cf. [6–8]. For the purpose of computing the residue we may assume that there ex-

ists a Schwartz function φ on N−, the Lie algebra of N−, such that h(exp(n−) =

φ(n−)h(e), where n− ∈ N−. Let n−
i = exp(n−

i ) with n−
i ∈ N−. Given a repre-

sentation σ, let ψ(m) be among the matrix coefficients of σ, i.e, choose an arbitrary

element ṽ in the contragredient space of σ, let ψ(m) = 〈σ(m)h(e), ṽ〉.
With these notations and by Theorem 2.2, Mt

mi
/Mni

= 1, (not merely finite as

suggested in [8]). Proposition 2.4 [8] can be refined as:

Proposition 1.2 Let σ be an irreducible admissible representation of M. Then the

poles of A(ν, σ,w0) are the same as those of

∑

ni∈Oi

∫

M/Mni

q〈ν,HM (w0(m)mi m
−1)〉φ(Ad(m−1)n−

i )ψ(w0(m)mim
−1) dṁ,
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where Oi runs through a finite number of open orbits of N under Ad(M), ni is a rep-

resentative of Oi under the correspondence that w−1
0 ni = min

′
i n−

i with ni = exp(ni),

n−
i = exp(n−

i ). Furthermore dṁ is the measure on M/Mni
induced from d∗ni .

Let Ã be the center of M. Then there exists a function f ∈ C∞
c (M) such that

ψ(m) =
∫

Ã
f (am)ω−1(a) da, where ω is the central character of σ.

Define

θ : M → M, θ(m) = w−1
0 mw0, ∀m ∈ M.

Given f ∈ C∞
c (M) and m0 ∈ M, define the θ-twisted orbit integral for f at m0 by:

φθ(m0, f ) =

∫

M/Mθ,m0

f (θ(m)m0m−1) dṁ,

where

Mθ,m0
= Mθ,m0

(F) = {m ∈ M(F) | θ(m)m0m−1
= m0}

is the θ-twisted centralizer of m0 in M(F), dṁ is the measure on M/Mθ,m0
induced

from dm.

Applying Theorem 2.2, we can restate Theorem 2.5 of [8] as:

Proposition 1.3 Assume σ is supercuspidal and w0(σ) ∼= σ. The intertwining opera-

tor A(ν, σ,w0) has a pole at ν = 0 if and only if

∑

i

∫

Z(G)/Z(G)∩w0(Ã)Ã−1

φθ(zmi , f )ω−1(z) dz 6= 0,

for f as above. Here Z(G) is the center of G and

φθ(zmi , f ) =

∫

M/Mni

f (zθ(m)mim
−1) dṁ,

is the θ-twisted orbital integral for f at zmi , where mi corresponds to the representatives

{ni} for the open orbits in N under Int(M) with w−1
0 ni = min

′
i n−

i as ni runs through

the finite number of open orbits in N.

2 Preliminaries

Let F be a non-Archimedean local field of characteristic zero. Denote by O its ring of

integers and let P be the unique maximal ideal of O. Let q be the number of elements

in O/P and fix a uniformizing element ̟ for which |̟| = q−1, where | · | = | · |F
denotes an absolute value for F normalized in this way. Let F̄ be the algebraic closure

of F.

Let G be a split connected reductive algebraic group over F. Fix an F-Borel sub-

group B and write B = TU, where U is the unipotent radical of B and T is a maximal

torus there. Let A0 be the maximal split torus of T and let ∆ be the set of simple roots

of A0 in the Lie algebra of U.
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Denote by P = MN a maximal parabolic subgroup of G in the sense that N ⊂ U.

Assume T ⊂ M and let θ = ∆ \ {α} such that M = Mθ. As usual, we use W =

W (A0) to denote the Weyl group of A0 in G. Given w̃ ∈ W , we use w to denote

a representative for w̃. Particularly, let w̃0 be the longest element in W modulo the

Weyl group of A0 in M.

We use G, P,M,N,B,T,U ,A0 to denote the subgroups of F-rational points of the

groups G,P,M,N,B,T,U,A0, respectively. We also use G̃, P̃, M̃, Ñ, B̃, T̃, Ũ , Ã0 to

denote the F̄ points of G,P,M,N,B,T,U,A0, respectively.

For any g ∈ G, we will use Int(g) to denote the inner morphism of G induced by

g, i.e., for any u ∈ G, Int(g) ◦ u = gug−1. Let g = Lie(G), the Lie algebra of G. We

will use Ad(g) to denote the adjoint action on g induced from Int(g).

Suppose R is the root system of G. For each root β ∈ R we choose a root vector gβ
in g. For β ∈ R, let Uβ be the one dimensional root subgroup of β and for x ∈ F, let

Uβ(x) = exp(xgβ).

Let N = Lie(N), the Lie algebra of N . Then N =
⊕

Ni , where Ni is graded

according to α. M acts on N by adjoint action. In particular, each Ni is invariant

under Ad(M).

For each root β ∈ R, there is a one dimensional subtorus Hβ(F), dual to β, such

that the subgroup generated by Hβ ,Uβ and U−β is a simply connected group of rank

one which is split over F. So it is isomorphic to SL2(F). Let Φβ be the isomorphism

from SL2(F) to the subgroup generated by Hβ ,Uβ and U−β . Then for any γ ∈ R and

t ∈ F∗,

γ

(
Φβ

(
t 0

0 t−1

))
= t〈γ,β〉.

Lemma 2.1 ( [10, Proposition 8.2.3]) Let β, γ ∈ R, with β 6= γ. Then there exist

constants Cβ,γ;i, j ∈ F̄, such that

(Uβ(x),Uγ(y)) =

∏

iβ+ jγ∈R
i, j>0

Uiβ+ jγ(Cβ,γ;i, j x
i y j),

where the order of the factors in the right side are prescribed by a fixed ordering of R.

Actually, the constants Cβ,γ;i, j can be normalized so that Cβ,γ;i, j ∈ Z. Moreover, if γ is

the longer element in the two dimensional root space spanned by β and γ. Then Cβ,γ;i, j

can be normalized such that Cβ,γ;1,1 = 1 if β + γ ∈ R. (Then Cγ,β,1,1 = −1).

2.1 Centralizer and Twisted Centralizer

Let n1 ∈ N , suppose w−1
0 n1 ∈ PN−, and write w−1

0 n1 = p1n−
1 = m1n ′

1n−
1 with

m1 ∈ M, n ′
1 ∈ N and n−

1 ∈ N−. Let CentM(n1) = Mn1
be the centralizer of n1 in M,

i.e.,

Mn1
= {m ∈ M | Int(m) ◦ n1 = n1},

and let Mn ′

1
= CentM(n ′

1) and Mn−

1

= CentM(n−
1 ), respectively. Let Mt

m1
= Centt

m1
=

{m ∈ M | w0(m)m1m−1
= m1} be the twisted (by means of w0) centralizer of m1

in M. Then by the uniqueness of PN− decomposition of w−1
0 n1, it is not hard to see
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that the groups Mn1
, Mn−

1

and M ′
n1

are all equal and are all contained in Mt
m1

, cf. [8].

Let ni = exp(ni), ni ∈ N, and assume the set {ni} generates a dense subset of N

under the action of M.

The main result in this paper is the following:

Theorem 2.2 Let n1 = exp(n1), where n1 ∈ {ni} is one of the generators of a dense

subset of N under the action of M. Then Mn1
= Mt

m1
.

From the above notations, we have:

(2.1) w−1
0 n1 = m1n ′

1n−
1 .

If m ∈ Mt
m1

, then

(2.2) w−1
0 mn1m−1

= (w0(m)m1m−1)(mn ′
1m−1)(mn−

1 m−1)

= m1(mn ′
1m−1)(mn−

1 m−1).

For convenience of notation, Let

n2 = Int(m) ◦ n1, n ′
2 = Int(m) ◦ n ′

1, n−
2 = Int(m) ◦ n−

1 .

Then equation (2.2) will be changed to:

(2.3) w−1
0 n2 = m1n ′

2n−
2 .

Multiplying the inverse of equation (2.3) by equation (2.1), we have:

(2.4) n−1
2 n1 = (n−

2 )−1(n ′
2)−1n ′

1n−
1 .

Let

s1 = n−1
2 n1 ∈ N, s−1 = (n−

1 )−1 ∈ N−;

s−2 = (n−
2 )−1 ∈ N−, s2 = (n ′

2)−1n ′
1 ∈ N.

Then equation (2.4) becomes

(2.5) s1s−1 = s−2 s2.

Let

n1 = exp(n1), n2 = exp(n2);

s1 = exp(r1), s2 = exp(r2);

s−1 = exp(r−1 ), s−2 = exp(r−2 ).

Then n2 = Ad(m) ◦ n1 is one of the generators of a dense orbit of N under Ad(M)

since n1 is. Similarly it is not hard to see that both r−1 and r−2 are generators of a dense

orbit of N−.

Our goal is to prove:

Claim Under the assumption in Theorem 2.2, we must have: s−1 = s−2 .
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Once this has been proved, it implies n−
1 = n−

2 , which will lead to n1 = n2 by the

uniqueness of PN− decomposition. Since m ∈ Mt
m1

and n2 = Int(m) ◦ n1, we get

m ∈ Mn1
if m ∈ Mt

m1
. So Mt

m1
⊂ Mn1

. But we already have Mn1
⊂ Mt

m1
, cf. [8]. So

Mn1
= Mt

m1
as desired.

Remark We can always assume that s−2 6= 1, since otherwise there is nothing that

needs to be done. We are going to prove the claim according to the type of Dynkin

diagram of G since the Gaussian elimination essentially depends on the structure of

the root system.

Strategy of Proof Except for some simple cases (like Al,Cl), our proof relies on

Gaussian elimination for N. Namely, N can be generated by gβ with β a positive

root in N , or by gβ , gγ under Ad(M), where gβ , gγ are root vectors attached to the

shortest and longest roots in N . Thus by acting with a suitable m ∈ M on both sides

of equation (2.5), we can always assume that s2 = Uβ(a1)Uγ(a2) or Uβ(a1).

We will multiply both sides of equation (2.5) by Uβ(x)Uγ(y) from the right, where

x, y are variables. Then the M-parts of s1s−1 Uβ(x)Uγ(y) and s−2 s2Uβ(x)Uγ(y) can be

calculated and compared explicitly since they are in the simplest form. We can then

conclude that their M-parts will never be equal unless s−1 = s−2 .

3 Proof of the Main Theorem

Now suppose N is abelian, then Ad(M) acts on N having finite number of orbits,

cf. [4, 11].

3.1 Roots in Unipotent Radical

Lemma 3.1 Suppose N is abelian. If

β = cα +
∑

αi 6=α

ciαi

is a positive root of N where αi ’s are simple roots from θ, then c = 1.

Proof Using [3, Corollary of Lemma A §10.2], β can be written in the form β1 +

β2 + · · · + βk with βi ∈ ∆ (βi not necessary distinct) such that each partial sum

β1 + β2 + · · · + β j is a root (1 ≤ j ≤ k). Suppose c ≥ 2, then there is j such that

β j = α and in the remaining partial sum β1 + β2 + · · ·+ β j−1, there is still one α. Let

γ = β1 + β2 + · · · + β j−1, then gγ, gβ j
∈ N, and [gγ , gβ j

] = gβ1+β2+···+β j
6= 0. This is

a contradiction to N being abelian.

If

P =

k∑

αi∈∆

i=1

ciαi

https://doi.org/10.4153/CJM-2006-027-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-027-4


Centralizers and Twisted Centralizers: Application to Intertwining Operators 649

is a root, choose k points in a plane representing each αi and draw a line connecting

αi , α j , if 〈αi, α̂ j〉 6= 0. Then the graph obtained is obviously a subgraph of the

Dynkin diagram and is composed of several connected pieces. For each connected

piece Ci of this graph, we set

Pi =

∑

αi∈Ci

ciαi.

Then

P =

m∑

i

Pi ,

where m is the number of connected pieces. All the Ci ’s are disjoint. We call Pi a

connected piece of P. Call Pi positive if each ci is positive, and negative if each ci

is negative. In particular, we call P a connected root if P is composed of only one

connected piece.

Lemma 3.2 Every positive root is connected.

Proof Let

r =

k∑

i=1

Pi

be a positive root with all Pi ’s being positive connected and disjoint with each other.

Then by [3, Corollary of Lemma A §10.2], r can be written as

r =

n∑

i=1

αi ,

such that every partial sum

rs =

s∑

i=1

αi, 1 ≤ s ≤ n,

is a root. If k > 1, then there must be one s, s > 1, and one i, 1 ≤ i ≤ k, such that

in the sum for rs, there is only one element, say α j , 1 ≤ j ≤ s, which comes from

Pi . Then for all αi, 1 ≤ i ≤ s, i 6= j, 〈αi, α̂ j〉 = 0 since αi , α j are not in the same

connected piece. So

Sα j
(rs) = rs − 〈rs, α̂ j〉α j =

s∑

i=1

αi − 2α j =

s∑

i=1
i 6= j

αi − α j ,

where Sα j
is the reflection about α j in the Weyl group of G. Since none of the αi ’s in

the sum
s∑

i=1,i 6= j

αi

can be α j , and all αi are simple roots, Sα j
(rs) is not a root. This is a contradiction to

Sα j
(rs) being a root since rs is a root.
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3.2 Type Al

Equation (2.5) implies exp(r1) exp(r−1 ) = exp(r−2 ) exp(r2).

Since r2
1 = r2

2 = (r−1 )2
= (r−2 )2

= 0, we have:

(3.1) r1 + r−1 + r1r−1 = r−2 + r2 + r−2 r2.

Choose t ∈ T and let Ad(t) act on both sides of equation (3.1). We get

α(t)r1 + α−1(t)r−1 + r1r−1 = α−1(t)r−2 + α(t)r2 + r−2 r2.

Since this is true for all t ∈ T, we must have r1 = r2, r
−
1 = r−2 . Consequently,

s−1 = s−2 .

3.3 Type Bl

In this case, we may assume that T can be chosen to be the set of matrices of the form:

diag(x1, x2, . . . , xl, x
−1
1 , x−1

2 , . . . , x−1
l , 1),

since the unipotent subgroups remain unchanged in every adjoint action.

The Dynkin diagram of G is:

◦ • • · · · • • +3•
α1 α2 α3 · · · αl−2 αl−1 αl

Let ei ∈ Hom(T, F∗), 1 ≤ i ≤ l such that ei(T) = xi . Then αi = ei − ei+1, 1 ≤
i ≤ l− 1; αl = el. The only case when N can be abelian is α = α1. Then the positive

roots in N are: {e1 ± ei | 2 ≤ i ≤ l} ∪ {e1}.

We choose a root vector for each positive root in G as follows:

gei−e j
= Ei, j − El+ j,l+i, 1 ≤ i < j ≤ l,

gei +e j
= Ei,l+ j − E j,l+i , 1 ≤ i < j ≤ l,

gei
= Ei,2l+1 − E2l+1,l+i, 1 ≤ i ≤ l.

We also choose a root vector for each negative root in G as follows:

g−ei +e j
= E j,i − El+i,l+ j , 1 ≤ i < j ≤ l,

g−ei−e j
= El+ j,i − El+i, j , 1 ≤ i < j ≤ l,

g−ei
= El+i,2l+1 − E2l+1,i, 1 ≤ i ≤ l,

where the Ei, j ’s are elementary matrices in M(2l+1)×(2l+1) such that its (i, j) entry is 1,

all other entries are 0.
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Lemma 3.3 Given any nonzero element

r =

l∑

i=2

aige1−ei
+

l∑

i=2

bi ge1+ei
+ cge1

∈ N,

there is an m ∈ M, such that Ad(m) ◦ r = c0ge1−e2
+ c1ge1+e2

with c0 6= 0.

Proof This is [9, Lemma 4.2].

Lemma 3.4 For an element r = c0ge1−e2
+ c1ge1+e2

∈ N from Lemma 3.3 with c1 6= 0,

there is m ∈ M̃ such that Ad(m) ◦ r = age1
with a 6= 0.

Proof Choose x ∈ F̄ such that 1
2
c0x2

= c1. Let m = U−e2

(
1
x

)
Ue2

(x). Then Ad(m)◦
r = −c0xge1

. Setting a = −c0x finishes the proof.

We start with equation (2.5). If s2 = 1, then it immediately follows s−1 = s−2 ,

and there is nothing to do. So suppose s2 6= 1. By the above two lemmas, applying

a suitable Int(m), m ∈ M̃ on both sides if necessary, we can assume s2 = Ue1
(a)

or Ue1−e2
(a) with a 6= 0. By taking a suitable finite extension of F, we can always

assume that m ∈ M and consequently a ∈ F. Without loss of generality, we assume

s2 = Ue1
(a).

Suppose

s−1 =

l∏

k=2

U−e1−ek
(ak)

l∏

k=2

U−e1+ek
(bk)U−e1

(x0),

s−2 =

l∏

k=2

U−e1−ek
(ck)

l∏

k=2

U−e1+ek
(dk)U−e1

(y0).

Multiply both sides of (2.5) by u = Ue1
(x) ∈ N on the right, where x ∈ F. Decom-

pose both s1s−1 u and s−2 s2u into PN− form, and compare their M part. Their M part

will never be equal unless s−1 = s−2 . The reason for multiplying u is to exclude the

possibility of occurrence of some Weyl group elements (when ay0 = −1).

First we have

U−e1
(y0)Ue1

(a + x) = Ue1

( a + x

1 + y0(a + x)

)
h2,xU−e1

( y0

1 + y0(a + x)

)
,

where

h2,x = Φe1

(
1

1+y0(a+x)
0

0 1 + y0(a + x)

)
∈ T.

Set

ax =
a + x

1 + y0(a + x)
.
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For any k, 2 ≤ k ≤ l, by Lemma 2.1,

U−e1+ek
(dk)Ue1

(ax) = Ue1
(ax)Uek

(dkax)U−e1+ek
(dk),

U−e1−ek
(ck)Ue1

(ax) = Ue1
(ax)U−ek

(ckax)U−e1−ek
(ck).

Then by recursively applying Lemma 2.1 and using the fact that N and N− are normal

in P and P− respectively, it can be calculated that the M part of s−2 s2u is:

m2 =

l∏

k=2

U−ek
(ckax)

l∏

k=2

Uek
(dkax)h2,x.

Similarly, if we set

bx =
x

1 + x0x
and h1,x = Φe1

(
1

1+x0x
0

0 1 + x0x

)
∈ T,

then the M part of s1s−1 u is:

m1 =

l∏

k=2

U−ek
(akbx)

l∏

k=2

Uek
(bkbx)h1,x.

From equation (2.5), s1s−1 u = s−2 s2u. By the uniqueness of MNN− decomposi-

tion, we must have m1 = m2. Since m1 and m2 are products of unipotent groups

attached to roots in M in the same order, we must have ckax = akbx and dkax = bkbx

for almost all x ∈ F and all k, 2 ≤ k ≤ l. These equations lead to:

(ckx0 − ak y0)x2 + (ckx0 + ackx0 − ak − aak y0)x + ack = 0,(3.2)

(dkx0 − bk y0)x2 + (dkx0 + adkx0 − bk − abk y0)x + adk = 0.(3.3)

For equations (3.2) and (3.3) to have infinitely many solutions, one must have ak =

bk = ck = dk ≡ 0, ∀ k, 2 ≤ k ≤ l, since a 6= 0 by assumption. Moreover, we have

h1,x = h2,x for almost all x, which means the equation

(y0 − x0)x + ay0 = 0

has infinitely many solutions, thus y0 = 0, so s−2 = 1, which is a contradiction. So in

order that equation (2.5) holds, we must have s2 = 1, which leads to s−1 = s−2 . When

s2 = Ue1−e2
(a), we can also prove that s−1 = s−2 in a similar way. That finishes the

proof of the main theorem in case G is of type Bl.
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3.4 Type Cl

In this case, we may assume T is the set of matrices of the form:

diag(x1, x2, . . . , xl, x
−1
1 , x−1

2 , . . . , x−1
l ),

since the unipotent subgroups remain unchanged in every adjoint action.

Let ei ∈ Hom(T, F∗) such that ei(H) = xi . Then R = {±ei±e j | i 6= j}∪{±2ek}.

N is abelian only in case α = 2el. In this case, ∆ = {ei −ei+1 | 1 ≤ i ≤ l−1}∪{2el}.

The positive roots in N are: R+ \ θ+
= {ei + e j | i 6= j} ∪ {2ei | 1 ≤ i ≤ l}. And N is

all the 2l × 2l matrices of the form:

(
0 Y

0 0

)

where Y ∈ Ml(F) and Y t
= Y . So for each n ∈ N, n2

= 0, and for each n− ∈
N−, n−2

= 0. It can be seen that the proof for the Al case also applies in this case

which implies s−1 = s−2 .

3.5 Type Dl

In this case, again T may be considered to be the set of matrices of the form:

diag(x1, x2, . . . , xl, x
−1
1 , x−1

2 , . . . , x−1
l ),

because the unipotent subgroups remain unchanged in every adjoint action.

Let ei ∈ Hom(T, F∗) such that ei(H) = xi . Then R = {±ei ± e j | i 6= j},

∆ = {ei − ei+1 | 1 ≤ i ≤ l − 1} ∪ {el−1 + el}. Let αi = ei − ei+1 for 1 ≤ i ≤ l − 1,

and let αl = el−1 + el. For N to be abelian, α must be α1, αl−1 or αl. If α = αl−1,

then every element n ∈ N has the form:

(
A Y

0 −At

)

where

A =




0 0 0 · · · 0 a1

0 0 0 · · · 0 a2

...
...

...
...

...

0 0 0 · · · 0 al−1

0 0 0 · · · 0 0



, Y =

(
B 0

0 0

)
,

and B ∈ Ml−1(F),B = −Bt . Then it is easily checked that n2
= 0 and consequently

for each n− ∈ N−, n−2
= 0. Again we can use the same method as in Al or Cl to

prove that s−1 = s−2 .

The symmetry between αl and αl−1 takes care of the case α = αl.

If α = α1, then N does not have the property that for each n ∈ N, n2
= 0. In this

case, the positive roots in N are: {e1 − ei | 1 < i ≤ l} ∪ {e1 + e j | 1 < j ≤ l}.
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We choose a root vector for each positive root in G as follows:

gei−e j
= Ei, j − El+ j,l+i, 1 ≤ i < j ≤ l,

gei +e j
= Ei,l+ j − E j,l+i , 1 ≤ i < j ≤ l.

We also choose a root vector for each negative root in G as follows:

g−ei+e j
= E j,i − El+i,l+ j , 1 ≤ i < j ≤ l,

g−ei−e j
= El+ j,i − El+i, j , 1 ≤ i < j ≤ l,

where the E j,k’s are elementary matrix in M2l×2l. Then {ge1±ei
|1 < i ≤ l} is a basis

for N.

Theorem 3.5 (Gaussian Elimination) For any nonzero r ∈ N, there exist m ∈ M

and k0, k1 ∈ F, with k0 6= 0, such that Ad(m) ◦ r = k0ge1−e2
+ k1ge1+e2

.

Proof Suppose

r =

l−1∑

i=1

ai ge1−ei+1
+

l−1∑

i=1

a ′
i ge1+ei+1

.

We first prove that by applying a suitable m ′ ∈ M on r if necessary, we can always

assume that a1 6= 0.

Assume a1 = 0. Let

m ′
=





U−e2+ei+1
(1) ∃ i, 2 ≤ i ≤ l − 1, such that ai 6= 0,

U−e2−ei+1
(1) ∃ i, 2 ≤ i ≤ l − 1, such that a ′

i 6= 0,

se2
otherwise,

where se2
is a representative of the Weyl group element Se2

, which is the reflection

about e2.

By applying the formula Ad(exp(xgβ)) = ead(xgβ) for each root β ∈ R, it is easily

checked that the coefficient of ge1−e2
in Ad(m ′) ◦ r is nonzero.

Let k0 = a1, and

m =

[ l∏

i=3

exp
( a ′

i−1

k0

ge2+ei

)]
·

[ l∏

i=3

exp
( ai−1

k0

ge2−ei

)]
.

Then a direct calculation shows that

Ad(m) ◦ r = k0ge1−e2
+

(
a ′

l−1 +

l∑

i=3

ai−1 · a ′
i−1

k0

)
ge1+e2

.

Let k1 denote the coefficient of ge1+e2
from the right-hand side of the above equation,

then Ad(m) ◦ r = k0ge1−e2
+ k1ge1+e2

as desired.
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Considering equation (2.5), if s2 6= 0, by Theorem 3.5, applying an m ∈ M on

both sides, we can assume s2 = Ue1−e2
(k0) ·Ue1+e2

(k1) with k0 6= 0.

Suppose

s−1 =

l∏

i=2

U−e1−ei
(ai)

l∏

i=2

U−e1+ei
(bi),

s−2 =

l∏

i=2

U−e1−ei
(ci)

l∏

i=2

U−e1+ei
(di).

We will adopt the strategy we have used in the case of Bl: multiply both sides of

(2.5) by u = Ue1−e2
(x)Ue1+e2

(y) ∈ N on the right, where x, y are variables in F.

Decompose both s1s−1 u and s−2 s2u into PN− form and compare their M parts.

Now let us consider the PN− decomposition of s1s−1 u and s−2 s2u. For s−1 Ue1−e2
(x),

first we have:

(3.4) U−e1+e2
(b2)Ue1−e2

(x) = Ue1−e2
(x ′)h0,xU−e1+e2

( b2

1 + b2x

)
,

where

x ′
=

x

1 + b2x
and h0,x = Φe1−e2

(
1

1+b2x
0

0 1 + b2x

)
∈ T.

For each i, 3 ≤ i ≤ l, by applying Lemma 2.1, we get:

U−e1+ei
(bi)Ue1−e2

(x ′) = Ue1−e2
(x ′)U−e2+ei

(bix
′)U−e1+ei

(bi),(3.5)

U−e1−ei
(ai)Ue1−e2

(x ′) = Ue1−e2
(x ′)U−e2−ei

(aix
′)U−e1−ei

(ai).(3.6)

And Ue1−e2
commutes with U−e1−e2

.

From equations (3.5), (3.6) and using the fact that both N and N− are normal in

P and P−, respectively, we reach the following:

(3.7) s−1 Ue1−e2
(x) = Ue1−e2

(x ′)

l∏

i=3

U−e2−ei
(aix

′)

l∏

i=3

U−e2+ei
(bix

′)h0,xs−1
′.

for a suitable s−1
′ ∈ N−. When s−2 s2u = s−2 Ue1−e2

(k0 + x)Ue1+e2
(k1 + y), a similar

calculation shows that

(3.8) s−2 Ue1−e2
(k0 + x) = Ue1−e2

(k0,x)

l∏

i=3

U−e2−ei
(cik0,x)

l∏

i=3

U−e2+ei
(dik0,x)h ′

0,xs−2
′

for a suitable s−2
′ ∈ N−, where

k0,x =
k0 + x

1 + d2(k0 + x)
and h ′

0,x = Φe1−e2

(
1

1+d2(k0+x)
0

0 1 + d2(k0 + x)

)
∈ T.
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Suppose

s−1
′
=

l∏

i=2

U−e1−ei
(ai

′)

l∏

i=2

U−e1+ei
(bi

′),

s−2
′
=

l∏

i=2

U−e1−ei
(ci

′)

l∏

i=2

U−e1+ei
(di

′).

Then with a similar calculation as above, by applying Lemma 2.1 recursively, we

get:

(3.9) (s−1 ) ′Ue1+e2
(y) = Ue1+e2

(y ′)

l∏

i=3

Ue2−ei
(−a ′

i y ′)

l∏

i=3

Ue2+ei
(−b ′

i y ′)h1,ys−1
′ ′

with a suitable s−1
′ ′ ∈ N−, where

y ′
=

y

1 + a ′
2 y

and h1,y = Φe1+e2

( 1
1+a ′

2
y

0

0 1 + a ′
2 y

)
∈ T.

While

(3.10)

(s−2 ) ′Ue1+e2
(k1 + y) = Ue1+e2

(k1,y)

l∏

i=3

Ue2−ei
(−c ′i k1,y)

l∏

i=3

Ue2+ei
(−d ′

i k1,y)h ′
1,ys−2

′ ′

with a suitable s−2
′ ′ ∈ N−, where

k1,y =
k1 + y

1 + c ′2(k1 + y)
and h ′

1,y = Φe1+e2

( 1
1+c ′

2
(k1+y)

0

0 1 + c ′2(k1 + y)

)
∈ T.

Thus from (3.7), (3.9), the M-part of s1s−1 u is:

m1 =

l∏

i=3

U−e2−ei
(aix

′)

l∏

i=3

U−e2+ei
(bix

′)h0,x

l∏

i=3

Ue2−ei
(−a ′

i y ′)

×

l∏

i=3

Ue2+ei
(−b ′

i y ′)h1,y .

While from (3.8) (3.10), the M-part of s−2 s2u is:

m2 =

l∏

i=3

U−e2−ei
(cik0,x)

l∏

i=3

U−e2+ei
(dik0,x)h ′

0,x

l∏

i=3

Ue2−ei
(−c ′i k1,y)

×

l∏

i=3

Ue2+ei
(−d ′

i k1,y)h ′
1,y.
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Because both m1 and m2 are products of one dimensional unipotent subgroups of

different root vectors in the same order, for m1 = m2 to be true, then aix
′
= cik0,x

and bix
′

= dik0,x must hold for all i, 3 ≤ i ≤ l, and for almost all x ∈ F. These

equations lead to:

(cib2 − aid2)x2 + (cik0 + cib2 − aid2k0 − ai)x + cik0 = 0,(3.11)

(dib2 − bid2)x2 + (dik0 + dib2 − bid2k0 − bi)x + dik0 = 0.(3.12)

For equations (3.11) and (3.12) to have infinitely many solutions, since k0 6= 0, we

must have ai = bi = ci = di ≡ 0 for all i, 3 ≤ i ≤ l. Moreover, we must

have h0,xh1,y = h ′
0,xh ′

1,y , which implies h0,x = h ′
0,x for almost all x ∈ F, since

h0,x(h ′
0,x), h1,y(h ′

1,y) are dual to e1 − e2, e1 + e2, respectively. So (d2 − b2)x + d2k0 = 0

has infinitely many solutions in F, and consequently d2 = b2 = 0.

So s−1 = U−e1−e2
(a2), s−2 = U−e1−e2

(c2). And it can be easily calculated that

m1 = h1,y , m2 = h ′
1,y with a ′

2 = a2 in h1,y and c ′2 = c2 in h ′
1,y . Thus for m1 = m2

to be true for almost all y ∈ F, we must have (c2 − a2)y + c2k1 = 0. Since s−2 6=
0, c2 6= 0, so we must have k1 = 0 and a2 = c2. So s−2 s2 = U−e1−e2

(c2)Ue1−e2
(k0) =

Ue1−e2
(k0)U−e1−e2

(c2) = s2s−2 = s1s−1 .

By the uniqueness of Bruhat decomposition, s−1 = s−2 . That finishes the proof of

the main theorem for the case G is of type Dl.

3.6 Type E6

c s s s s

α1 α2 α3 α5 α6

s

α4

In this case, N is abelian only when α = α1 or α6 by Lemma 2.1. Since α1 is sym-

metric to α6 on the Dynkin diagram, we need only prove the claim when α = α1.

Let

θ1 = {α1; α1 + α2; α1 + α2 + α3; α1 + α2 + α3 + α5; α1 + α2 + α3 + α4;

α1 + α2 + α3 + α5 + α6; α1 + α2 + α3 + α4 + α5;

α1 + α2 + α3 + α4 + α5 + α6; α1 + α2 + 2α3 + α4 + α5;

α1 + α2 + 2α3 + α4 + α5 + α6; α1 + α2 + 2α3 + α4 + 2α5 + α6; }

θ2 = {α1+2α2 + 2α3 + α4 + α5; α1 + 2α2 + 2α3 + α4 + α5 + α6;

α1 + 2α2 + 2α3 + α4 + 2α5 + α6; α1 + 2α2 + 3α3 + α4 + 2α5 + α6;

α1 + 2α2 + 3α3 + 2α4 + 2α5 + α6.}

Then the positive roots in N are R+ \ θ+
= θ1 ∪ θ2. Notice that for each root β ∈

θ1, β − α1 is still a root, while for β ∈ θ2, β − α1 is not a root. Also notice that the

coefficient of α2 of roots in θ1 is 1, while the coefficient of α2 of roots in θ2 is 2.
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Let β1, β2, . . . , β11 be the roots in θ1 according to the order listed in θ1, and let

γ1, γ2, . . . , γ5 be the roots in θ2 accordingly. Let τi = βi − α1, i = 1, . . . , 11; νi =

γi − α1, i = 1, . . . , 5, (νi is not a root).

The roots of N are divided into these two sets because each element in Uβ with

β ∈ θ1, β 6= α1 can be eliminated by an element in Uα1
and each element in Uγi

with

i 6= 5 can be eliminated by an element in Uγ5
. Elements in Uγi

cannot be eliminated

directly by elements in Uα1
since γi − α1 is not a root.

We will define an order on R: suppose β, γ ∈ R and

β − γ =

6∑

i=1

ciαi .

If
6∑

i=1

ci > 0,

then β ≻ γ. If
6∑

i=1

ci = 0,

and if the first nonzero coefficient is> 0, then β ≻ γ, otherwise β ≺ γ. In particular,

if β ∈ R is a positive root, then β ≻ 0. It is easily verified that this order is well defined

and we have βi ≺ β j if 1 ≤ i < j ≤ 11 and γi ≺ γ j if 1 ≤ i < j ≤ 5.

Let

N1 =

{ 11∏

i=1

Uβi

}
∈ N, N2 =

{ 5∏

i=1

Uγi

}
∈ N.

be the subgroups (because N is abelian) of N consisting of the unipotent subgroups

of roots in θ1, θ2, respectively. We will prove that N1 can be generated by Uβ1
= Uα1

and N2 can be generated by Uγ5
under the adjoint action of M.

For each pair of roots β, γ ∈ R, by Lemma 2.1 we know that

(3.13) Uγ(x)Uβ(y)Uγ(−x) =

∏

i, j>0

Uiγ+ jβ∈R(Cγ,β,i, j x
i y j)Uβ(y).

Suppose the structure constants are normalized as in Lemma 2.1.

Lemma 3.6 For each u ∈ N, if u = u1u2, ui ∈ Ni , i = 1, 2, with u1 6= 1. Then

there exists m ∈ M such that

Int(m) ◦ u =

11∏

i=1

Uβi
(x ′

i )

5∏

i=1

Uγi
(y ′

i )

with x ′
1 6= 0.
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Proof Suppose

u = u1u2 =

11∏

i=1

Uβi
(xi)

5∏

i=1

Uγi
(yi).

If x1 6= 0, then there is nothing we need to do. Otherwise, let k be the smallest i such

that xi 6= 0. Notice such i exists since u1 6= 1, and by the assumption,

u1 =

11∏

i=k

Uβi
(xi).

Let m = U−τk
(1). For any pair {i, j} of positive integers, iβk + j(−τk) is a root

only when i = j = 1, and βk + (−τk) = β1. So we apply equation (3.13):

Int(m) ◦Uβk
(xk) = Uβ1

(xk)Uβk
(xk),

since C−τk,βk,1,1 is normalized to be 1.

For any n > k, n ≤ 11, there is no pair {i, j} of positive integers such that iβn +

j(−τk) is a root. To verify this, we need only to check the coefficients of α1 and α2

in iβn + j(−τk). Namely, since N is abelian, the coefficient of α1 in any root in N

must be 1, so i = 1. Meanwhile the coefficient of α2 of iβn + j(−τk) is 1 − j ≤ 0,

so j must be 1, too, and if this is the case, the coefficient of α2 in βn − τk is 0. Then

βn − τk = β1, since β1 is the only root in N that has coefficient of α2 equal to 0. But

βn ≻ βk = β1 + τk, this is a contradiction. So by Lemma 2.1 Int(m) fixes Uβn
.

Also for each n with 1 ≤ n ≤ 5, iγn + j(−τk) can possibly be a root only when

i = j = 1. (Since N is abelian, i must be 1 and we can exclude the possibility j = 2

since γn + 2(−τk) would not be connected by just applying Lemma 3.2.) If γn − τk is

a root, then γn − τk ≻ α1 = β1. So by Lemma 2.1

Int(m) ◦Uγn
⊂

∏

β≻β1

Uβ.

With these facts,

Int(m) ◦ u ∈ Uβ1
(xk)

∏

β≻β1

Uβ .

Lemma 3.7 For each u2 6= 1 ∈ N2, there exists an m ∈ M such that Int(m) fixes Uβ1

and

Int(m) ◦ u2 =

5∏

i=1

Uγi
(yi), with y5 6= 0.

Proof Suppose

u2 =

5∏

i=1

Uγi
(xi).

If x5 6= 0, then nothing needs to be done. Otherwise, let k be the smallest i such that

xi 6= 0. So xi 6= 0 only when k ≤ i ≤ 4. Let γ = γ5 − γk, and m = Uγ(1).
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For each pair {i, j} of positive integers, iγ+ jγk can be a root only when i = j = 1,

since otherwise iγ + jγk ≻ γ5, and γ5 is the longest element in R such that its α1 part

is nonzero. Moreover, in this case γ + γk = γ5. So by applying Lemma 2.1, we have:

Int(m) ◦Uγk
(xk) = Uγk

(xk)Uγ5
(Cγ,γk,1,1xk), where Cγ,γk,1,1 is a structure constant, so

is nonzero.

For all other q with k < q ≤ 4, iγ + jγq could not be a root since iγ + jγq ≻ γ5

for any positive integers i, j. So Int(m) fixes all these Uγq
.

With these two facts, it is easily calculated that Int(m)◦u = uUγ5
(Cγ,γk,1,1xk). Now,

set y5 = Cγ,γk,1,1xk. Then y5 6= 0 as we have shown. Because γ ⊂ span{α3, α4, α5,
α6}, for each pair {i, j} of positive integers, iγ + jβ1 cannot be a root by Lemma 3.2.

So Int(m) fixes Uβ1
by Lemma 2.1.

Theorem 3.8 (Gaussian Elimination) For each u 6= 1 ∈ N, there exists m ∈ M such

that Int(m) ◦ u = Uβ1
(k0)Uγ5

(k1).

Proof We can write u as

u =

∏

βi∈θ1

Uβi
(xi)

∏

γi∈θ2

Uγi
(x ′

i ) = u1u2, u1 ∈ N1, u2 ∈ N2.

If u1 = 1, then just set m1 = 1. If u1 6= 1, by applying Lemma3.6 and a suitable

Int(m ′), if necessary, we can assume x1 6= 0.

Let

m1 =

11∏

i=2

Uτi

( xi

x1

)
.

Then

Int(m1) ◦ u =

[ ∏

βi∈θ1

Int(m1) ◦Uβi
(xi)

]
·
[ ∏

γi∈θ2

Int(m1) ◦Uγi
(x ′

i )
]
.

For each fixed k, with 2 ≤ k ≤ 11, iβ1 + jτk is a root for i, j > 0 only when

i = j = 1, and in this case β1 + τk = βk. So by applying Lemma 2.1,

Int
(

Uτk

( xk

x1

))
◦Uβ1

(x1) = Uβ1
(x1) ·Uβk

(−xk).

For each q, 2 ≤ q ≤ 11, q 6= k, and each pair of positive integers {i, j}, iβq + jτk

can possibly be a root only when i = j = 1. And in this case βq + τk ∈ θ2 if it is a

root, since the coefficient of α2 in βq + τk is 2. So

Int
(

Uτk

( xk

x1

))
◦Uβq

(xq) = Uβq
(xq) · nq with nq ∈ N2.

For each pair of positive integers {i, j}, none of iβk + jτk can be a root. So also by

Lemma 2.1,

Int
(

Uτk

( xk

x1

))
fixes Uβk

.
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With these facts, one can conclude from

Int(m1) =

11∏

i=2

Int
(

Uτi

( xi

x1

))

that

Int(m1) ◦Uβ1
(x1) = Uβ1

(x1)

11∏

i=2

Uβi
(−xi) · n1 with n1 ∈ N2,

Int(m1) ◦Uβi
(xi) = Uβi

(xi) · n ′
i with n ′

i ∈ N2, ∀i, 2 ≤ i ≤ 11.

By the last two equations, one can get

Int(m1) ◦ (u1) = Uβ1
(x1) · n ′ where n ′

= n1 ·
11∏

i=2

n ′
i ∈ N2.

For each γ ∈ θ2, none of iτk + jγ is a root for any pair of positive integers {i, j},

since in the decomposition of iτk + jγi as a summation of simple roots, the coefficient

of α2 will be i + 2 j ≥ 3, which is not possible. So Int(m1) ◦ u2 = u2.

Now we have Int(m1) ◦ u = Int(m1) ◦ (u1u2) = Uβ1
(x1)n ′u2. Suppose

n ′u2 =

5∏

i=1

Uγi
(y ′

i ).

If n ′u2 = 1, i.e., yi = 0 for 1 ≤ i ≤ 5, then we are done. Otherwise, let m2 be the

element in m that comes from Lemma 3.7. Then

Int(m2m1) ◦ u = Uβ1
·

5∏

i=1

Uγi
(yi), with y5 6= 0.

Now let

m3 =

4∏

i=1

Uγi−γ5

(
−

yi

y5

)
.

Then by Lemma 2.1, for any fixed i,

Int
(

Uγi−γ5

(
−

yi

y5

))
◦Uγ5

(y5) = Uγ5
(y5) ·Uγi

(−yi).

It can be easily shown, by checking the coefficients of α and α4, that for any pair

{ j, k} of positive integers, and any q, with 1 ≤ q ≤ 4, none of j(γi − γ5) + kγq can

be a root. (Namely, for j(γi − γ5) + kγq to be a root, k must be 1 since the coefficient

of α in j(γi − γ5) + kγq is k. Then the coefficient of α2 in j(γi − γ5) + kγq is 2, so

j(γi − γ5) + kγq ∈ θ2 if it is a root. Then the coefficient of α4 in j(γi − γ5) + kγq is
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1 − j ≤ 0 which is not possible since every root in θ2 has its coefficient of α4 equal

to 1.) So again by Lemma 2.1, Int(Uγi−γ5
) fixes all other Uγq

(yq). Thus

Int(m3) ◦Uγ5
(y5) = Uγ5

(y5)

4∏

i=1

Uγi
(−yi),

Int(m3) ◦
( 4∏

i=1

Uγi
(yi)

)
=

4∏

i=1

Uγi
(yi).

So

Int(m3) ◦
( 5∏

i=1

Uγi
(yi)

)
= Uγ5

(y5).

Moreover, for each i, Int(Uγi−γ5
) fixes Uβ1

since, from the proof of Lemma 3.7,

γi − γ5 ⊂ span{α3, α4, α5, α6}. Consequently, Int(m3) fixes Uβ1
(x1). Now let

m = m3m2m1. Then Int(m) ◦ u = Uβ1
(x1)Uγ5

(y5). Setting k0 = x1, k1 = y5

proves the theorem.

Returning to equation (2.5), by the above lemma and applying Int(m) on both

sides, we can assume s2 = Uβ1
(k0)Uγ5

(k1). Since without loss of generality we can

always assume s2 6= 1 (otherwise nothing needs to be proved), we assume k0 6= 0.

Now suppose

s−1 =

11∏

i=1

U−βi
(ai) ·

5∏

i=1

U−γi
(bi),

s−2 =

11∏

i=1

U−βi
(ci) ·

5∏

i=1

U−γi
(di).

Multiply both sides of (2.5) by u = Uβ1
(x)Uγ5

(y) on the right, where x, y are variables

in F. We will decompose both s1s−1 u and s−2 s2u into PN− form, and compare their

M parts.

First for s1s−1 Uβ1
(x), we have:

(3.14) U−β1
(a1)Uβ1

(x) = Uβ1
(x ′)hxU−β1

( a1

1 + a1x

)
,

where

x ′
=

x

1 + a1x
, and hx = Φβ1

(
1

1+a1x
0

0 1 + a1x

)
∈ T.

For each k with 2 ≤ k ≤ 11, by Lemma 2.1 we have

(3.15) U−βk
(ak)Uβ1

(x ′) = Uβ1
(x ′)U−τk

(−akx ′)U−βk
(ak).

For any k with 1 ≤ k ≤ 5, and any pair {i, j} of positive integers, none of iβ1+ j(−γk)

can be a root. So by Lemma 2.1, Uβ1
commutes with U−γk

for all k.
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Since N− is normal in P−
= MN−, from equations (3.14), (3.15) and the above

fact, the PN− decomposition of s−1 Uβ1
(x) is as follows:

(3.16) s−1 Uβ1
(x) = Uβ1

(x ′)
[ 11∏

i=2

U−τi
(−aix

′)
]

hx · (s−1 ) ′,

with a suitable (s−1 ) ′ ∈ N−. Then for s−2 s2u = s−2 Uβ1
(k0 + x)Uγ5

(k1 + y). Similarly,

the PN− decomposition of s−2 Uβ1
(k0 + x) is:

(3.17) s−2 Uβ1
(k0 + x) = Uβ1

(kx)
[ 11∏

i=2

U−τi
(−kxci)

]
h ′

x(s−2 ) ′,

with a suitable (s−2 ) ′ ∈ N−, where

kx =
k0 + x

1 + c1(k0 + x)
, and h ′

x = Φβ1

(
1

1+c1(k0+x)
0

0 1 + c1(k0 + x)

)
∈ T.

For convenience of notation, we will set Uνi
≡ 1 if νi is not a root. Suppose

(s−1 ) ′ =

11∏

i=1

U−βi
(a ′

i ) ·

5∏

i=1

U−γi
(b ′

i ), (s−2 ) ′ =

11∏

i=1

U−βi
(c ′i ) ·

5∏

i=1

U−γi
(d ′

i ).

Then with a similar discussion on roots and applying Lemma 2.1, following a similar

process of calculation, we get:

(3.18) (s−1 ) ′Uγ5
(y) = Uγ5

(y ′)
[ 11∏

i=1

Uγ5−βi
(a ′

i y ′)
][ 4∏

i=1

Uγ5−γi
(b ′

i y ′)
]

hy(s−1 ) ′ ′,

with a suitable (s−1 ) ′ ′ ∈ N−, where

y ′
=

y

1 + b ′
5 y

and hy = Φγ5

(
1

1+b ′

5
y

0

0 1 + b ′
5 y

)
∈ T.

Meanwhile,

(3.19) (s−2 ) ′Uγ5
(k1 + y) = Uγ5

(ky)
[ 11∏

i=1

Uγ5−βi
(kyc ′i )

][ 4∏

i=1

Uγ5−γi
(kyd ′

i )
]

h ′
y(s−2 ) ′ ′,

with a suitable (s−2 ) ′ ′ ∈ N−, where

ky =
k1 + y

1 + d ′
5(k1 + y)

and h ′
y = Φγ5

(
1

1+d ′

5
(k1+y)

0

0 1 + d ′
5(k1 + y)

)
∈ T.
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Thus, from equations (3.16) and (3.18), the M-part of s1s−1 u is:

M1(x, y) =

[ 11∏

i=2

U−τi
(−aix

′)
]

hx

[ 11∏

i=1

Uγ5−βi
(a ′

i y ′)
][ 4∏

i=1

Uγ5−γi
(b ′

i y ′)
]

hy.

While from equation (3.17) and (3.19), the M-part of s−2 s2u is:

M2(x, y) =

[ 11∏

i=2

U−τi
(−kxci)

]
h ′

x

[ 11∏

i=1

Uγ5−βi
(kyc ′i )

][ 4∏

i=1

Uγ5−γi
(kyd ′

i )
]

h ′
y.

Notice that all −τi are distinct negative roots while all γ5 − βi and γ5 − γi are

distinct positive roots (if they are roots). For M1(x, y) = M2(x, y), the unipotent

groups of the corresponding root vector must be equal, and their T parts must be

equal as well, as in the previous cases.

So we have aix
′

= kxci , for all i, 2 ≤ i ≤ 11, and almost all x ∈ F. Moreover,

hx = h ′
x since hx(h ′

x), hy(h ′
y) are dual to β1, γ5, respectively. As an analog of the proof

in the Bl(Dl) case, we get ai = ci ≡ 0, ∀1 ≤ i ≤ 11. Thus from equation (3.16) and

(3.17),

s−1 = s−1
′
=

5∏

i=1

U−γi
(bi), s−2 = s−2

′
=

5∏

i=1

U−γi
(di)

and from equations (3.18), (3.19),

M1(x, y) =

[ 4∏

i=1

Uγ5−γi
(bi y ′)

]
hy, M2(x, y) =

[ 4∏

i=1

Uγ5−γi
(diky)

]
h ′

y.

Since s−2 6= 1, there is one i, 1 ≤ i ≤ 5, such that di 6= 0. Together with the fact that

M1(x, y) = M2(x, y) for almost all x, y ∈ F, following the previous proofs, we can

get k1 = 0. So

s−2 s2 =

[ 5∏

i=1

U−γi
(di)

]
Uβ1

(k0) = Uβ1
(k0)

[ 5∏

i=1

U−γi
(di)

]
= s2s−2 = s1s−1 .

By the uniqueness of Bruhat decomposition, it must have s−1 = s−2 .

If at the beginning of this proof, we assume k1 6= 0 instead of assuming k0 6= 0,

the proof will be similar.

3.7 Type E7

s s s s s c

α1 α2 α3 α5 α6 α7

s

α4
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The longest root in this case is 2α1 + 3α2 + 4α3 + 2α4 + 3α5 + 2α6 + α7, by Lemma

3.1; N is abelian only when α = α7.

Let

θ1 = {α; α + α6; α + α5 + α6; α + α3 + α5 + α6; α + α3 + α4 + α5 + α6;

α + α2 + α3 + α5 + α6; α + α2 + α3 + α4 + α5 + α6;

α + α1 + α2 + α3 + α5 + α6; α + α2 + 2α3 + α4 + α5 + α6;

α + α1 + α2 + α3 + α4 + α5 + α6; α + α2 + 2α3 + α4 + 2α5 + α6;

α + α1 + α2 + 2α3 + α4 + α5 + α6; α + α1 + α2 + 2α3 + α4 + 2α5 + α6;

α + α1 + 2α2 + 2α3 + α4 + α5 + α6; α + α1 + 2α2 + 2α3 + α4 + 2α5 + α6;

α + α1 + 2α2 + 3α3 + α4 + 2α5 + α6; α + α1 + 2α2 + 3α3 + 2α4 + 2α5 + α6; }

θ2 = {α + 2α1 + 3α2 + 4α3 + 2α4 + 3α5 + 2α6;

α + α1 + 3α2 + 4α3 + 2α4 + 3α5 + 2α6; α + α1 + 2α2 + 4α3 + 2α4 + 3α5 + 2α6;

α + α1 + 2α2 + 3α3 + 2α4 + 3α5 + 2α6; α + α1 + 2α2 + 3α3 + α4 + 3α5 + 2α6;

α + α1 + 2α2 + 3α3 + 2α4 + 2α5 + 2α6; α + α1 + 2α2 + 3α3 + α4 + 2α5 + 2α6;

α + α1 + 2α2 + 2α3 + α4 + 2α5 + 2α6; α + α1 + α2 + 2α3 + α4 + 2α5 + 2α6;

α + α2 + 2α3 + α4 + 2α5 + 2α6}.

Then the positive roots in N are R+ \ θ+
= θ1 ∪ θ2.

Let β1, β2, . . . , β17 denote the roots in θ1 as the order listed, γ1, γ2, . . . , γ10 denote

the roots in θ2 similarly. For any β ∈ θ1, β−α is a root (as is E6); for i = 2, . . . , 9, γ1−
γi is a root while γ1 − γ10 is not; for each i, 1 ≤ i ≤ 10, γi − β1 is not a root. Notice

for each root in θ1, the coefficient of α6 is 1, and for each root in θ2, the coefficient of

α6 is 2.

We will define an order on R: suppose β, γ ∈ R and

β − γ =

7∑

i=1

ciαi .

If
7∑

i=1

ci > 0,

then β ≻ γ; if
7∑

i=1

ci = 0,

and if the first nonzero coefficient is> 0, then β ≻ γ, otherwise β ≺ γ. In particular,

if β ∈ R is a positive root, then β ≻ 0. It is easily verified that this order is well defined

and we have βi ≺ β j if 1 ≤ i < j ≤ 17 and γi ≻ γ j if 1 ≤ i < j ≤ 10.
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Suppose the root vectors are so chosen that the structure constants are normalized

as in Lemma 2.1. Let

N1 =

{ 17∏

i=1

Uβi

}
⊂ N, N2 =

{ 10∏

i=1

Uγi

}
⊂ N.

Every element of u ∈ N can be written as u = u1u2 with ui ∈ Ni, i = 1, 2. And we

can similarly define N−
1 ,N

−
2 as subgroups of N−. The roots of N are divided into

these two sets because, as we will prove, Uβ1
generates N1 and Uγ1

generates N2 under

the adjoint action of M. Each element in Uγi
, with 1 ≤ i ≤ 10, cannot be eliminated

directly by an element in Uβ1
since γi − β1 is not a root.

Lemma 3.9 For each u ∈ N, if u = u1u2, ui ∈ Ni, i = 1, 2, with u1 6= 1. Then there

exists m ∈ M, such that

Int(m) ◦ u =

{ 17∏

i=1

Uβi
(x ′

i )
}{ 10∏

i=1

Uγi
(y ′

i )
}

with x ′
1 6= 0.

Proof This is analogous to Lemma 3.6, since for each i, 2 ≤ i ≤ 17, βi − β1 is a

root, the proof is almost the same as of the proof for Lemma 3.6. The indices are the

only changes.

Lemma 3.10 If

u2 =

{ 10∏

i=1

Uγi
(xi)

}
⊂ N2

and u2 6= 1, we can find an m ∈ M such that Int(m) ◦ u2 = Uγ1
(a2) with a2 6= 0 and

Int(m) fixes every element in Uβ1
.

Proof First we prove the following claim:

Claim There is m1 ∈ M, such that

Int(m1) ◦ u2 =

10∏

i=1

Uγi
(x ′

i ) with x ′
1 6= 0, x ′

2 6= 0.

(This claim is needed because γ1−γ10 is not a root, and Uγ10
cannot be eliminated

directly through Uγ1
. So we use Uγ2

to eliminate it.)

Let k be the smallest positive integer such that xk 6= 0. If k = 1, i.e., x1 6= 0. And if

x2 6= 0, then the claim is trivial.

Case k = 1, x2 = 0: Let m1 = Uγ2−γ1
(1). For any i, 3 ≤ i ≤ 10, by Lemma 2.1,

Int(Uγ2−γ1
(1)) ◦Uγi

(xi) =

( ∏

k,n>0
k(γ2−γ1)+nγi∈R

Uk(γ2−γ1)+nγi
(Cγ2−γ1,γi ,k,nxn

i )
)
·Uγi

(xi),
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where the Cγ2−γ1,γi ,k,n’s are structure constants.

Since γ2 − γ1 ∈ span{α1, α2, α3, α4, α5}, for any pair of positive integers {k, n},

the coefficient ofα6 in k(γ2−γ1)+nγi is 2n. For it to be a root, n must be 1. Moreover,

if this is the case, then k(γ2 − γ1) + γi ∈ θ2.

Since γ2 − γ1 ≺ 0, k(γ2 − γ1) + γi ≺ γi . So

Int(m1) ◦Uγi
(xi) ⊂

∏

j≥i

Uγ j
,

consequently,

Int(m1) ◦
( 10∏

i=3

Uγi
(xi)

)
⊂

10∏

i=3

Uγi
.

And by Lemma 2.1, Int(m1) ◦ Uγ1
(x1) = Uγ1

(x1)Uγ2
(x1). Therefore, Int(m1) ◦ u =

Uγ1
(x1)Uγ2

(x1) · u ′ with

u ′ ∈
10∏

i=3

Uγi
.

Set x ′
1 = x ′

2 = x1, and the claim is proved.

Case k = 2: Let m1 = Uγ1−γ2
(1) = Uα1

(1). For each i, 3 ≤ i ≤ 10, and each pair

{k, n} of positive integers, the coefficient of α1 in kα1 + nγi is k + n. So for kα1 + nγi

to be a root, we must have k = n = 1. But it is easily checked that α1 +γi is not a root

when i ≥ 3. So by Lemma 2.1, Int(Uα1
(1)) ◦ Uγi

(xi) = Uγi
(xi). Also for any pair

{k, n} of positive integers, k(γ1 − γ2) + nγ2 can be a root only when k = n = 1. So

by applying Lemma 2.1, Int(Uα1
(1)) ◦Uγ2

(x2) = Uγ1
(x2)Uγ2

(x2), with x2 6= 0. Then

Int(Uα1
(1)) ◦ u = Uγ1

(x2)Uγ2
(x2)

[ 10∏

i=3

Uγi
(xi)

]
.

Setting x ′
1 = x2 will prove our claim.

Case 3 ≤ k < 10: Let m1 = Uγ1−γk
(1)Uγ2−γk

(1), with a similar discussion as the

second case, but this time take the coefficients of α1 and α2 into account. We can

figure out that the Uγ1
Uγ2

part of Int(m1) ◦ u is Uγ1
(xk)Uγ2

(xk).

Case k = 10: This case is handled separately because γ1 − γ10 is not a root. Let

m1 = Uγ2−γ10
(1), then Int(m1) ◦ u = Int(m1) ◦ Uγ10

(x10) = Uγ2
(x10)Uγ10

(x10) by

Lemma 2.1, since for any positive integers k and n, k(γ2 − γ10) + nγ10 is a root only

when k = n = 1. Now it will fall into the second case which has already been proved.

Now

Int(m1) ◦ u =

10∏

i=1

Uγi
(x ′

i ) with x ′
1 6= 0, x ′

2 6= 0.
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Let

m2 = Uγ10−γ2

(
−

x ′
10

x ′
2

)
.

It can be checked for any i ≥ 3, and any pair of positive integers {k, n}, that

k(γ10 − γ2) + nγi is not a root. So Int(m2) fixes all Uγi
.

For any pair of positive integers {k, n}, kγ1 + n(γ10 − γ2) or kγ2 + n(γ10 − γ2) can

be a root only when k = n = 1. And γ1 + (γ10 − γ2) = γ9; γ2 + (γ10 − γ2) = γ10.

By Lemma 2.1,

Int(m2) ◦Uγ2
(x ′

2) = Uγ10
(−x ′

10)Uγ2
(x ′

2),

Int(m2) ◦Uγ1
(x ′

1) = Uγ9

( x ′
1x ′

10

x ′
2

)
Uγ1

(x ′
1).

Consequently,

Int(m2) ◦
( 10∏

i=1

Uγi
(x ′

i )
)

=

[ 8∏

i=1

Uγi
(x ′

i )
]

Uγ9

(
x ′

9 −
x ′

1x ′
10

x ′
2

)
.

For convenience of notation, let the right side of the above equation be

9∏

i=1

Uγi
(yi).

Let

m3 =

9∏

i=2

Uγi−γ1

(
−

yi

y1

)
.

By Lemma 2.1, we have:

(3.20) Int
(

Uγ9−γ1

(
−

y9

y1

))
◦Uγ1

(y1) = Uγ1
(y1)Uγ9

(−y9).

Remark For all i with i 6= 1, and any pair {k, n} of positive integers, the coefficient

of α in k(γ9 − γ1) + nγi is n. So for it to be a root, n must be 1. Then the coefficient

of α1 in k(γ9 − γ1) + nγi is n− k = 1− k. For k(γ9 − γ1) + nγi to be a root, 1− k = 1

or 2 which is impossible. So Int(Uγ9−γ1
) fixes all Uγi

with i 6= 1.

So by equation (3.20) and the above remark,

Int
(

Uγ9−γ1

(
−

y9

y1

))
◦

( 9∏

i=1

Uγi
(yi)

)
=

8∏

i=1

Uγi
(yi).

By induction, and with the same discussion on the cases of roots as in the remark,

we can prove:

Int
( 9∏

i= j

Uγi−γ1

(
−

yi

y1

))
◦

( 9∏

i=1

Uγi
(yi)

)
=

j−1∏

i=1

Uγi
(yi).
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And in particular when j = 1, then

Int(m3) ◦
( 9∏

i=1

Uγi
(yi)

)
= Uγ1

(y1).

Set m = m3m2m1. We can then see from the above process that Int(m) ◦ u =

Uγ1
(y1).

For any 1 ≤ i, j ≤ 10, γi − γ j ∈ span{α1, α2, α3, α4, α5}. But for any γ ∈
span{α1, α2, α3, α4, α5} and any pair {k, n} of positive integers, kβ1 + nγ cannot be

a root by Lemma 3.2. So each Int(Uγi−γ j
) fixes Uβ1

and consequently, all Int(m1),

Int(m2), Int(m3) fix Uβ1
and therefore Int(m) fixes Uβ1

.

Theorem 3.11 (Gaussian Elimination) For any u ∈ N, there exists m ∈ M, such

that Int(m) ◦ u = Uβ1
(a1)Uγ1

(a2), with a1, a2 ∈ F.

Proof Write u = u1u2, where

u1 =

17∏

i=1

Uβi
(xi) ∈ N1, u2 =

10∏

i=1

Uγi
(yi) ∈ N2.

If u1 = 1, then it is the case of Lemma 3.10.

If u1 6= 1, by applying a suitable Int(m) on u from Lemma 3.9, we can assume

x1 6= 1. Let

m1 =

17∏

i=2

Uβi−β1

( xi

x1

)
.

then βi − β1 is a positive root and the coefficient of α6 in βi − β1 is 1.

For any fixed j, with 2 ≤ j ≤ 17, and for each pair of positive integers {k, n}, the

coefficient of α6 in k(βi − β1) + nβ j is k + n ≥ 2, so k(βi − β1) + nβ j ∈ θ2 if it is a

root. Moreover, for any γ ∈ θ2, the coefficient of α6 in k(βi − β1) + nγ is k + 2n ≥ 3,

so k(βi − β1) + nγ cannot be a root, hence Int(Uβi−β1
) fixes every element in N2.

So by Lemma 2.1, we have:

Int
(

Uβi−β1

( xi

x1

))
◦Uβ j

(x j) = Uβ j
(x j ) · ni, j , with ni, j ∈ N2.

Consequently, Int(m1) ◦Uβ j
(x j) = Uβ j

(x j)n j with

n j =

17∏

i=2

ni, j ∈ N2,

and

Int(m1) ◦Uβ1
(x1) = Uβ1

(x1) ·

17∏

i=2

Uβi
(−xi) · n1 with n1 ∈ N2.
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So

Int(m1) ◦ u1 = Int(m1) ◦
( 17∏

i=1

Uβi
(xi)

)
= Uβ1

(x1) · n where n =

17∏

i=1

ni ∈ N2.

Now let u ′
2 = n · u2 and apply Lemma 3.10 to u ′

2. There exists m2 ∈ M such

that Int(m2) ◦ u ′
2 = Uγ1

(a2) and Int(m2) ◦ Uβ1
(x1) = Uβ1

(x1). Let m = m2m1 and

a1 = x1. Then Int(m) ◦ u = Uβ1
(a1)Uγ1

(a2).

Now start from s1s−1 = s−2 s2 acting on Int(m) on both sides, we can assume s2 =

Uβ1
(a1)Uγ1

(a2). The proof of the main theorem is almost the same as that of E6. We

need only make a small justification of the fact that γ1−γ10 is not a root, but this does

not make much difference. Each step in the proof of the E6 case can be paralleled to

finish the proof in the E7 case.

4 Application to Intertwining Operators

Now by Theorem 2.2, Mt
mi

= Mni
. This can be used to refine the main results in [8].

To be more precise, let X(M)F be the group of F-rational characters of M. Denote by

A the split component of the center of M. Then A ⊂ A0. Let

a = Hom(X(M)F),R) = Hom(X(A)F ,R)

be the real Lie algebra of A. Set a∗ = X(M)F ⊗Z R and a∗
C

= a∗ ⊗R C to denote its

real and complex duals.

For ν ∈ a∗
C

and σ an irreducible admissible representation of M, let I(ν, σ) =

IndMN↑G σ ⊗ q〈ν,HP(·)〉 ⊗ 1, where HP is the extension of the homomorphism

HM : M → a = Hom(X(M)F,R) to P, extended trivially along N , defined by

q〈χ,HP(m)〉
= |χ(m)|F for all χ ∈ X(M)F . Let V (ν, σ) be the space of I(ν, σ), for

h ∈ V (ν, σ), and let

A(ν, σ,w)h(g) =

∫

Nw̃

h(w−1ng) dn,

where Nw̃ = U ∩ wN−w−1, be the standard intertwining operator from I(ν, σ) into

I(w(ν),w(σ)).

Let I(σ) = I(0, σ) and V (σ) = V (0, σ) be the induced representation and its

space at ν = 0, respectively. Since w0(M) = M, I(σ) is irreducible if and only

if A(ν, σ,w0) has a pole at ν = 0 (cf. [6–8]). By [7, Lemma 4.1], it is enough to

determine the pole of
∫

N
h(w−1

0 n) dn at ν = 0 for any h in V (ν, σ) which is supported

in PN−.

For ni ∈ N , suppose ni is inside an open orbit under Int(M), with w−1
0 ni ∈ PN−.

Write w−1
0 ni = min

′
i n−

i as before, define d∗ni = q〈ρ,HM (mi )〉dn where ρ is half the

summation of the positive roots in N . Then by [8, Lemma 2.3], the measure d∗ni is

an invariant measure on M/Mni
and thus induces a measure on the quotient M/Mni

.
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For the purpose of computing the residue we may assume that there exists a

Schwartz function φ on N−, the Lie algebra of N−, such that

h(exp(n−)) = φ(n−)h(e),

where n− ∈ N−. Let n−
i = exp(n−

i ), with n−
i ∈ N−. Given a representation σ,

let ψ(m) be among the matrix coefficients of σ, i.e, choose an arbitrary element ṽ in

the contragredient space of σ. Let ψ(m) = 〈σ(m)h(e), ṽ〉. With these notations and

applying Theorem 2.2, [8, Proposition 2.4] can be restated as:

Proposition 4.1 Let σ be an irreducible admissible representation of M. Then the

poles of A(ν, σ,w0) are the same as those of

∑

ni∈Oi

∫

M/Mni

q〈ν,HM (w0(m)mi m
−1)〉φ(Ad(m−1)n−

i )ψ(w0(m)mim
−1) dṁ

where Oi runs through a finite number of open orbits of N under Ad(M); ni is a repre-

sentative of Oi , under the correspondence that w−1
0 ni = min

′
i n−

i , with ni = exp(ni),

n−
i = exp(n−

i ) and dṁ is the measure on M/Mni
induced from d∗ni .

Let Ã be the center of M. Then there exists a function f ∈ C∞
c (M) such that

ψ(m) =
∫

Ã
f (am)ω−1(a) da, where ω is the central character of σ.

Define

θ : M → M, θ(m) = w−1
0 mw0, ∀ m ∈ M.

Given f ∈ C∞
c (M) and m0 ∈ M, define the θ-twisted orbit integral for f at m0 by:

φθ(m0, f ) =

∫

M/Mθ,m0

f (θ(m)m0m−1) dṁ,

where

Mθ,m0
= Mθ,m0

(F) = {m ∈ M(F) | θ(m)m0m−1
= m0}

is the θ-twisted centralizer of m0 in M(F), dṁ is the measure on M/Mθ,m0
induced

from dm.

Applying our Theorem 2.2, the main theorem in [8] (Theorem 2.5) can be modi-

fied as:

Proposition 4.2 Assume σ is supercuspidal and w0(σ) ∼= σ. The intertwining opera-

tor A(ν, σ,w0) has a pole at ν = 0 if and only if

∑

i

∫

Z(G)/Z(G)∩w0(Ã)Ã−1

φθ(zmi , f )ω−1(z) dz 6= 0

for f as above. Here Z(G) is the center of G and

φθ(zmi , f ) =

∫

M/Mni

f (zθ(m)mim
−1) dṁ,

is the θ-twisted orbital integral for f at zmi , where mi corresponds to the representatives

{ni} for the open orbits in N under Int(M), with w−1
0 ni = min

′
i n−

i , as ni runs through

the finite number of open orbits in N.
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