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EMBEDDINGS INTO FINITE IDEMPOTENT-GENERATED
SEMIGROUPS: SOME ARITHMETICAL RESULTS
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A semiband is defined as a semigroup generated by idempotents. It is known that every finite semigroup is
embeddable in a finite semiband. For a class C of semigroups and an integer nS2 , the number <rc (n) is
defined as the smallest k with the property that every semigroup of order n in the class C is embeddable in a
semiband of order not exceeding k. It is shown that for the class Gp of groups aGf{n) = nq(pGfl{n)), where

<j(m) = min{(r+l ) (s+l ) : rsgm}

and

pc(n) = max {rank (S):SeC,|S| = n}.

Estimates are known (and are quoted) for the function q. Estimates are considered for the function p c for
various C

It is shown also that if COS, CS denote respectively the classes of completely 0-simple and completely simple
semigroups, then
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It has been known for some time [6] that every finite semigroup can be embedded in
a finite semigroup generated by idempotents—i.e. in a finite semiband, to use the
terminology of Benzaken and Mayr [1] and Pastijn [12]. The question of how
efficiently (in an arithmetical sense) this can be done was raised and partly answered in
[8]. The purpose of this note is to extend and develop some of the ideas in that paper.

The first stage, of course, is to make the question more precise. We borrow from [8]
the definition that if n ̂  2 is an integer and C is a class of semigroups then the integer k
(£ ri) is a C-semiband-cover of n if every semigroup of order n in the class C can be
embedded in a semiband of order not greater than k. Then <xc(") is defined as the
smallest C-semiband cover of n.

In this paper we shall be interested in the classes Sg (semigroups), Gp (groups), Nilp
(nilpotent groups, Ab (abelian groups), EAb (elementary abelian groups), CS (completely
simple semigroups), OGp (0-groups) and COS (completely 0-simple semigroups).

*This work was done partly during a visit to the Universidade Nova de Lisboa by the second author.
Financial assistance from the British Council, the Universidade Nova and the Instituto Nacional de
Investigacao Cientifica is gratefully acknowledged.
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260 E. GIRALDES AND J. M. HOWIE

1. Preliminaries

If S is a finite semigroup then as usual we define r{S), the rank of S, by

The rank of the trivial semigroup with just one element is defined to be 0. We shall be
interested also in the smallest possible number of non-idempotents in a generating set of
S: if E is the set of idempotents of S then

The numbers r(S) and g(S) may well be different: for example, if S is a semiband then
g(S)=0, while r(S) may be quite large. (See, for example, [5], [9].) However, we do have:

Lemma 1. / / S has a single idempotent, then g(S) = r(S).

Proof. From the definition it is clear that g(S)^r(S) for every finite semigroup. To
show this opposite inequality, let S be a semigroup with a single idempotent element e.
If r{S) = 0 (so that S = {e}) or if r(S) = 1 (so that S = (a}, a2^a) then the result is trivial.
Suppose that r{S)^2 and let A~{gu...,gk) be a generating set for S, with k^r(S)^2.
At most one of gu...,gk is idempotent. If (say) gx = e then gt is superfluous within the
generating set A, since some power of g2 (being idempotent) must equal e. Thus
{#2.-••»£*} generates S in this case and so \A\E\ = k — l^r(S).

In particular, g(S) = r(S) if S is a group

If C is a class of semigroups we may define

pc(n) = max {r(S): S e C, \S\ = n}

and

yc(n) = max {g(S): S e C, \S\ = n}.

It is a consequence of Lemma 1 that for every class C of groups

Vc(«) = Pc(«). (1)

In the study of the function ac(n) (for various classes C of semigroups) in [8] both
pc(n) and the arithmetical function

(2)

were found to play an important part, but it was not fully realised how intimately the
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behaviour of <rc(n) is bound up with the behaviour of these two functions and of the
function yc(n). In [2], by a method suggested in a letter from Professor Norman R.
Reilly, it was shown that for every class of semigroups

). (3)

(4)

If C is a class of monoids this upper bound can be improved:

2. Groups

In the case where C is a class of groups we can in fact specify the function ac

completely in terms of the functions q and pc:

Theorem 1. If C is a class of groups then for all n~2i2

ac(n) = nq{pc(n)).

Proof. We begin with a lemma.

Lemma 2. / / G is a subgroup of a finite group H then

\G\q(r(G))l\H\q(r(H)).

Proof. The result is immediate if G = H. Suppose that G <= H. By the definition (2) of
the function q.

where uv^r(H). So

, (5)

where

Now
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262 E. GIRALDES AND J. M. HOWIE

Now, from [8, p. 327], we have that

\H\r(H)^\G\r(G);

hence u'v^.r(G) and so from (5)

as required.

To prove the theorem, consider a finite group G and suppose that it is embedded in a
finite semiband B. By the argument in [8, p. 330] we may assume that B is simple or 0-
simple and that G is contained in a single ^f-class of B. Thus B = M[H; 7,A; P] or
M°[H; I, A; P] with Gg/f. Again by the argument in [8, p. 330] we have

hence

\B\7>\H\\l\\A\^\H\q(r(H)^\G\q(r(G)).

If we now choose G to be a group in C of order n and of greatest possible rank pc(n)
we get

\B\Znq(pc(n)),

giving

as required.

This is not the end of the story, of course, for the functions q and pc are not
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elementary, and there is obviously some interest in estimating them in terms of more
familiar functions. The study of q was begun in [8], where it was shown that

m + ijm + 1 ^ q{m) <^m + 3^/m + 1

for all m ^ 1. The lower bound is best possible, being attained (for example) whenever m
is a square. The upper bound was much less satisfactory, and has been substantially
improved in [10], where it is shown that

for all but 4 values (namely m = 73, 601, 1261 and 4063) of m.
As for the function pc, we can find bounds in terms of the arithmetical functions X, n

defined as follows. If

n = p\>pr
2\..Pk\ (6)

where plt...,pk are distinct primes and r j , . . . , / ^ 1, let

X(n) = ry + • • • + rk, /i(n) = m a x { r l v . . , r k } .

Then we have:

Theorem 2. Let C be a class of groups and let n^.2. Then pc(ri)^k{n). If C contains
the class EAb of elementary abelian groups, then pc{n) ^ n{n)-

Proof. Both of these inequalities are fairly easy exercises in group theory and are
probably well-known. A precise reference is, however, somewhat elusive. Suppose that G
is a group of order n given by (6), and let {gi,...,gr} be a generating set for G, where
r = r(G). In the sequence

where Gi = (gl,...,giy, all inclusions are proper, and so

G2

is a product of r non-trivial factors. Hence r£rl+r2 + \-rk = k(r).
Suppose now that C z> EAb. Then among the groups of order n in C is the abelian

group

A = Ai x - x A k .
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where Aj is the direct product of r, cyclic groups of order pj. Thus r(Aj) = rj and the
required inequality now follows from the following lemma, easily proved by methods to
be found in [11]:

Lemma 3. Let A,B be finite groups such that \A\, \B\ are coprime. Then r(AxB) =
max{r(A),r(B)}.

Examples.

Next, we have:

Theorem 3. Let C be a class of groups such that

EAbsCsNilp.

Then pc(n) = n{n) for all n^>2.

Proof. Let GeC be of order n, given by (6). Then G, being nilpotent, is a direct
product of its Sylow subgroups:

G = PlxP2x-xPk,

where Pj is a p,-group of order pr/. By Theorem 2 we have

and by Lemma 3 it follows that

r(G) ̂  max {ry. 1 g ; g/c}=/i(n).

Thus pc(ri)^n(n) and the result now follows from Theorem 2.

The result does not extend to soluble groups. S3, the symmetric group on 3 symbols,
provides an example.

From Theorems 1 and 3 we now have:

Corollary. IfC is a class of groups such that EAbsCeNilp, then oc(n) = nq(n(n)).
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3. Completely 0-simple semigroups

Theorem 2 gives a useful upper bound for pc(n) when C is a class of groups. For the
class Sg of all semigroups it is not possible to assert anything stronger than the trivial
remark that

for it is perfectly possible for a semigroup of order n to have rank n. As remarked in
[4], however, if S is such a semigroup then S must consist entirely of idempotents and
so g(S) = 0. Accordingly we can say that

This bound cannot be improved, since, for example, a null semigroup S =
{0,x1,... ,xB_1} of order n has g(S) = n — 1. Semigroups for which r(S) = n— 1 have been
extensively studied in [4] and [3].

As a consequence, the upper bound given by (3) is less effective when applied to a
class C not contained in Gp. However, in view of the fairly good information we have
obtained for <rGp, it is reasonable to seek results expressing ac (for suitably restricted
class C) in terms of <xCp. The main theorem of this section is:

Theorem 4. Let COS be the class of completely 0-simple semigroups. Then for all n ^ 3

Proof. We show first that

and we do this by means of a lemma.

Lemma 1. Let OGp be the class of 0-groups. Then, for all n^.

Proof. Let G° be a 0-group of order n. Then G is a group of order n — 1 and is
em beddable in a semiband B of order aGf{n — 1). Hence G° is embedded in B°, of order
at most <JGp(n-1) + 1. Hence

To prove the opposite inequality, suppose that a 0-group G° is embedded in a
semiband B. The elements of G must lie within a single Jf -class H of B and must be
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expressible as products of idempotents from within the ./-class J of B containing H.
The order of J must be at least (n — l)q(r(G)), and so must be at least (n — l)q(pGp(n— 1))
if we choose G to have maximum possible rank among the groups of order n— 1. By
Theorem 1 we thus have that

Now if e is the identity of G'then e>0 in B and so 0$J. Hence

as required.

Since OGpsCOS it now follows that

To show the reverse inequality, consider a completely 0-simple semigroup

S = M°[G;/,A;P] (1)

of order n, where |G| = m, |/| = r, |A| = s and mrs = n— 1. It is convenient to consider first
the case where m = 1 and so G = {1}, the trivial group. Let

where qXi = p^, for A 6 A, i e / and where

, ie/).

Certainly T contains S. Moreover T is a semiband, since for all /i in A u {£}, j in
/ u {x} the element (;, 1,/x) is a product

of idempotents.
As for the order of T, it is clear that

since max {r + s: rs = n — 1} = n. Certainly
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Suppose now that the completely 0-simple semigroup given by (1) has the property
that m>\. We may suppose that the sandwich matrix P is normal in the sense of
Tamura (see [13], [8]), which certainly implies that for all iel there exists AeA such
that pu — 1 (the identity of G) and for all ke A there exists iel such that pXi=l. There is
in fact no loss of generality in naming / and A so that / n A = {1} and so that p u = l.

We now construct a completely 0-simple semigroup

T=M°\;G;J,M;Q1

We suppose without loss of generality that sj^r, and we take J=>I with |y| = r + M,
M = Au{^} (so that |M| = s+l) . The matrix Q = (qflJ) includes the matrix P in the sense
that qXi = Pxt for ke A, iel. The extra entries of Q are defined as follows:

qu=\ UeJ\I);

the entries q j(^ieM\{l},jeJ\I) form a set of generators for G.

6 =

For this to be possible for an arbitrary group of order m we require that

so we may take

The semigroup T is of order

m(s+

(1)

(2)

(3)

It is clear that S^T. The next stage in the argument is to prove:

Lemma 2. T is a semiband.

Proof. By Theorem 1 in [7] (and in the notation of that theorem) we must show
that Tis connected and that Vxy=G for some x,y in JvM. First, for every j in J and
// in M we have a path
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(with keJ\I) since q^q^q^ a r e a " non-zero. Thus T is connected.
To show the other property it is convenient to draw a temporary notational

distinction between 1 as an element of A and 1 as an element of /. Writing 1A and \,,
we note that for each X in A we can by the normal property choose i in / so that qXi = 1.
Hence for each k in J\I and each X in A we have a path

with value

9iil (lulul qxkq7k =1 .1 .1 -qxk-1 =1xk-

The simple path

has value qik.
It follows that Kta contains q^ for all /i in M\{1} and all k in J\I. Hence VlA

and so T is a semiband.

From (2) and (3) the order of T is

m(s+ l ) [ ( r -

If m = n— 1 this reduces to

the value we have already obtained for a O-group.
If m = (n — 1 )/2 or (n — 1 )/3 then (r — 1) (s +1) = 0 and we get a semiband T of order

mq(pC9{m))+l.

Since PGpC"1) = PGP(
M ~ 1) t n i s ' s certainly less than oGp(n— 1)+ 1.

Suppose now that 1 <m^(n— l)/4. Then

< mrs + mq(pCp(m)) (since (r — 1) (s -I-1) < rs)

= (n-l) + mq(pGf(m))

= ( n - k
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This completes the proof.

Corollary. acs(n) = aGf(n).

Proof. Since Gp £ CS we certainly have acs{ri) ̂  <xGp(
n)-

Conversely, let S = M [G; /, A; P] be a completely simple semigroup of order n. Then
S° = M°[G; I, A; P] is a completely 0-simple semigroup of order n+l, and the matrix P
has no zero entries. By the method of the theorem we embed S° in a semiband
T=M°[G; J,M;Q\ of order not greater than oGf(ri) + l, and Q has no zero entries.
Then T\{0} is a semiband of order not exceeding o~Cv{ri) containing S.
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