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SOME NORMS ON UNIVERSAL ENVELOPING ALGEBRAS

LEONARD GROSS

ABsTRACT.  The universal enveloping algebra, U(g), of a Lie algebra g supports
some norms and seminorms that have arisen naturally in the context of heat kernel
analysis on Lie groups. These norms and seminorms are investigated here from an
algebraic viewpoint. It is shown that the norms corresponding to heat kernels on the
associated Lie groups decompose as product norms under the natural isomorphism
U(a1 @ a2) = U(g1) ® U(g2). The seminorms corresponding to Green's functions are
examined at a purely Lie algebralevel for d (2, C). It is also shown that the algebraic
dual space U’ is spanned by its finite rank elements if and only if g is nilpotent.

1. Introduction. The present, essentially algebraic, work is motivated by somere-
cent developmentsin “heat kernel analysis’ on Lie groups. Supposethat G isacomplex,
connected, simply connected Lie group, that g isits Lie algebra, that U is the universal
enveloping algebraof g and that U’ isthe algebraic dual of U. A holomorphic function
u on G defines an element 0 of U’ by means of the pairing U > 3 — (0, 3) = (Bu)(e),
wherein 3 isto be interpreted as a left invariant differential operator on G. Given aHer-
mitian inner product on g there is naturally associated to it aleft invariant second order
elliptic differential operator, A, on G, and for each real number t > Othereisassociated a
unique probability measure ; on G, convolution by which givesthe semigroup /4. In
thisway the given inner product on g determines a Hilbert space L2,,,(G, ut), consisting
of those holomorphic functions on G which are square integrable with respect to p;. At
the same time the inner product on g determines a natural inner product on a subspace
U of U’ inamanner which will be described explicitly in Section 4. It isshownin [DG]
that the preceding map u — @, restricted to L2,,,(G, i), is a unitary operator onto U;.
Similar unitary maps have also appeared for real Lie algebras of compact type and are
closely linked with analysis over loop groups[D, DG, G1,2,3,4, GM, Hal,2, Hij1,2].

The existence of these unitary isomorphisms raises some questions of an essentially
algebraic nature concerning the subspaces U;. It is the purpose of the present work to
explore some of these questions. This paper will be concerned entirely with the algebraic
side, Uf, of this isomorphism.

In Section 2 the structure of the algebraic dual U’ will be investigated with the help of
akind of dual (Theorem 2.7) to the Poincaré-Birkhoff-Witt theorem. Asan applicationit
will beshownthat U’ isgenerated linearly by itsfinite rank elements(cf. Definition 2.12)
if andonly if g isnilpotent. ¢ may betakento beal iealgebraover afield of characteristic
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zero in Section 2. In Section 3 it will be shown that the isomorphism in Theorem 2.7
amounts to a description of the element O € U’ given above, in terms of the element
(uoexp)”, whichisin thedual of the universal enveloping algebra of the additive group
g.

In Section 4 two kinds of norms (or seminorms) on U and on subspaces of U’ will
be discussed. The main theorem of Section 4 asserts that the usua isomorphism [B,
Chapter 1, Section 2.2] between the universal enveloping algebra of adirect sum of real
(or complex) Lie algebras on the one hand and the tensor product of their respective
universal enveloping algebras on the other is isometric with respect to certain natural
norms on the universal enveloping algebras.

Itisapleasureto thank D. Barbasch and B. Speh for useful discussionsand to thank
Brian Hall for communication of Lemma 4.1 to the author. The author also wishes to
thank the referee for providing the proof of Theorem 4.15 and the illuminating Re-
mark 2.10.

2. Thedual of the univer sal enveloping algebra.

NOTATION 2.1. In this section g will denote a finite or infinite dimensional Lie al-
gebraover afield F of characteristic zero. For any vector space W over F denote by W
the algebraic dual space and by W= the algebraic tensor product, with W0 = F. Let
T := 22, 6% be the tensor algebra over g. Then we may identify its algebraic dual
space T/ with T2 o(a“)’, in the pairing

@1 <a,5>=k2§o<ak,gk> aeT, feT
where
2.2) a:kfoak o € @Y, k=0,1,2,...
and
(2.3) ﬁ:ngjogk B €q®% k=0,1,2,...,N.

In particular this identifies (¢%) as a subspace of T'. An element « given by (2.2) will

be said to be zero in rank k if ax = 0 and will be said to be of finite rank if oy, = O for

all sufficiently large k. For any two tensorsu and vwriteUAV=U® V—V®® U.
Denote by J the two sided ideal in T generated by

{Enn—1&n]:&n e gl

Denoteby | thetwo sidedideal in T generated by {¢ A1 &, € g} andlet Iy = I N
a®, k=0,1,2,....If S denotesthe space of symmetric tensorsin g¢“* and S = 3°; S¢
then gk = I, +S, k=0,1,...,andT = | +S.
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Thereisathird ideal which will be needed. DefineNy = JN g%k fork =0, 1, ... and
letN =520 Ni. If 3 € Nandy € g® then 3@ andy @ 8 arebothin N.j. SON is
a2-sided ideal in T. By the Poincaré-Birkhoff-Witt theorem [B, Chapter |, Lemma 7.3]
Ny C I foral k. HenceN c I.

EXAMPLE 2.2. If q iscommutativethend =1 =N .

EXAMPLE 2.3. Supposethat a, b, c,dareing. Then3 := (aAb—[a,b]) @ (cAd)—
(anb)@(cAad—[c,d]) isinJ. But expandinggives g = —[a, b]®@(cAd)+(anb)@]c,d],
which is a homogeneoustensor of rank 3. Hence 3 € Ns. Moreover if ¢ = su(2), if ey,
&, es areelements such that [&, g] = e for (i, j,K) cyclic,andifa= e, b=e,c=e3
andd = ey, then astraightforward computation showsthat 8 # 0. Thusevenfor asimple
LiealgebraN isnot zero.

Denote by J°, 19, N © the annihilators of these idealsin T’. Writing U = T/J for
the universal enveloping algebraof g, it is clear that one may identify the algebraic dual
space U’ with J°. It is J° that will actually be used, rather than U’. Note that | © consists
exactly of the symmetric tensorsin T'.

DEFINITION 2.4. By the Poincaré-Birkhoff-Witt theorem one has a direct sum de-

composition

(2.4 T=S+J
Define alinear map

(2.5) Ve 10— 20

asfollows. Lety € 19 andlet u € T. By (2.4) we may write uniquely u = ug + u; with
us € S and u; € J. Define

(2.6) (Va)(u) = 7(us)

Then VY € J° becauseif uisin Jthen ug = 0. Since 19 is naturally isomorphic to
(T/1), V4 may be regarded as a map from (T/1)' to (T/J). It isin fact the adjoint
of the natural map A:T/J — T/I described in [V, Theorem 3.3.4]. We will need an
inductive algorithm for constructing V. Thisis the goal of Theorem 2.8.

DerINITION 2.5.  Define alinear map
B:T—T/N

asfollows. If 3 € S defineBg = 0. If g € Iy and there exists 3’ € g®*~Y such that
8 — 3 € JthendefineB3 = 5’ + N . Such an element 3’ always exists when 3 < I,
becauseany element 3 in |y isasum of k-tensors of the form u® (¢ An) @ v with £ and
ning.Sinceu® (EAn)@vV—u®[&,n] @v e J, ' can be chosen to be a corresponding
sum of elementsu @ [¢, 1] @ v. Biswell defined on I becauseif 3’ and 3" are both in
g%« while 3 — 3 and 3 — 8" areboth in Jthen 3/ — 8" € IN g“&D = N, ;. s0
3" = ' modN . Therefore B iswell defined on all of | and henceon all of T.

We may and will identify (T/N )" with N ©. Then the adjoint map B* may and will
be regarded asamap from N © into T".
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PrROPOSITION 2.6. ThemapsB: T — T/N and B*: N ° — T’ satisfy the following:
a) Bg® c ¢®* D modN .

b) BN =0modN .

c) BN°c NO.

d) B*(N N (g@k)’) c N O (g&k+Dy,

€) Therestriction B*Y|S = Ofor all v € N °.

PrOOF. @) ispart of the definitionof B. If 3 € Nyand 3’ = Otheng — 3 € J. So
B3 = 0modN , whichisbh).1fy € N®andn e N then (B*y,n) = (v,Bn) = 0 by b).
So ¢) holds. d) follows from @). If ¥ € N © then (B*,s) = (7,Bs) = Ofor al sin S by
Definition 2.5. This proves the assertion €). L]

LEMMA 2.7. Lety € 0. Define

(2.7) wzf(mw
k=0

Then vy € J°.

Proor. SinceN c I, 19 c N° Soif v € 10 then B*y is well defined, and, by
Proposition 2.6¢), so is (B*)X for all k. If 3 is given by (2.3) then BXg = O for k > N. So
the seriesZﬁ‘;()((B*)kw, 3) hasonly finitely many nonzero terms. HenceV iswell defined.
Moreover all summandsin (2.7) arein N °. Hence VY € N ©. Let ¢ and i bein g and let
u and v be homogeneouselementsof T. Letw = u® (¢ A1) ® v. To provethat VY € J°
it sufficesto show that (Vy,w—u® [&,57] @ v) = 0. But

(Vyw—ue[gn@v) = (Vy,w=Bw) = (( - B)(V),w) = (7,W)

by collapsing the two (finite) sums that appear after the second equality. Sincew < |,

(v,w) =0. n
THEOREM 2.8. Themap V: 1% — J° defined by (2.7) is a one to one map of | ° onto

JO. Moreover

(2.8) (VNS =7|S forallyel®.

andV = V,.

LEMMA 2.9. If o € J%and o|S = Othen a = 0.

PROOF. Assumea € J°and «|S = 0. Then « = Oinranks zero and one. Let n > 2
and assume, for an induction proof, that o« = Oinrank k for all k < n. If 3 € |, then, as
noted in the definition of B, there exists an element 5 € ¢V suchthat 3 — 3’ € J.
Thus (a, 3 — ') = 0. But {«, 8’) = 0 by the induction assumption. Hence («, 3) = 0.
Soa = 0onboth I, andon S, hence on g*". "

PROOF OF THEOREM 2.8. In view of Lemma 2.7 it must be shown that V is injec-
tive and surjective. First observe that by Proposition 2.6€) ((B*)'W)|S = 0fork > 1.
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Therefore (2.8) follows from (2.7). Thusif ¥ € 1° and Vy = 0 then (2.8) shows that
7|S = 0.Butsincey|l = 0and T = S + | it follows that v = 0. So V is injective.
To prove V is surjective supposethat o € J°. Definey € T’ to be o on S and zero on
I.Theny € 1% Let o/ = V7. Then o’ € J° by Lemma2.7. But «'|S = VIS = «|S
by (2.8) and the definition of 7. Hence o' = o by Lemma2.9. So « = V7. Finally, to
show that V = V, lety € 1°. Using (2.6), (2.8) and the fact that VY € J° we have

(Van(U) = 7(us) = (VY)(us) = (V7)(u). n

REMARK 2.10. The equation (2.7) can be interpreted as providing an inductive al-
gorithm for computing V,u, as defined in (2.6), when u isin ¢“". Choose an element
up € ¢®™ 1 in the equivalence class Bu, an element u, € g2 in the equivalence
class Buy, etc. Then u,—; isin g and is therefore symmetric. So u, = Bup—; = 0. Let
Ps denote the symmetrization projection on T and define v = (ux — PsUy) — Uks+1. Since
Uk — Psu € Iy and s, = Buy = B(u, — Psuy) it follows from Definition 2.5 that vy € J.
Thus, writing Up = u, we have ux — U1 = PsUk + V. Summing fromk = Oton— 1 we
get

n-1 n-1
(2.9) u=> Psuc+ > Vi
k=0 k=0

Thefirst sumisin S while the second sumisin J. Therefore the unique decomposition
u = Ug + Uy used in Definition 2.4 may be accomplished by taking us = S-3—3 Psuy. But
if yisin 19 theny o Ps = 7. So (V,7)(u) = =% ¥(ux), which agreeswith (2.7).

COROLLARY 2.11. If @ € J°andisgivenby (2.2) with o = Ofork=0,1,...,m—1
then o, is symmetric. i.e. am € 1°.

PROOF. By Theorem 2.8 there exists an elementy € 1° suchthat o = V. Suppose
that k < m. Then by (2.8), V«|Sk = «|Sk = 0 and therefore v, = 0. Equation (2.7) now
showsthat o = Ym, whichisin I°. "

The following remark has been made in [G2, Remark 3.5] but bears repeating here
because of the next theorem.

REMARK 2.12. If [g, g] = g then J° contains no elements of finite rank except those
of rank zero. Forif 3° 3 o = S ; g with o € (¢%K), andif i+j+1 = m, withu € g“,
ve g, candy € gand¢ = [€, 1], then (am, URCRV) = —(a, U (EA—[E, n])@V) = 0.
Since such ¢ span g, am = 0 if m > 1. The assertion now follows by induction on m.

REMARK 2.13. In view of the preceding remark the space J° is a particularly com-
plicated space in the interesting case that g is semi-simple. The isomorphism of Theo-
rem 2.8 “parametrizes’ J° by the simpler space | © of symmetric tensors over g’. Yet it
is the simple norm, (4.4), on J° which plays a key role in the recently developed heat
kernel analysis on both compact Lie groups and complex Lie groups [D, DG, G1,2,3,4,
GM, Hal,2, Hij1,2]. The norm on | % induced from (4.4) by V does not seem useful. But
the isomorphism V will be used as a technical tool in the next theorem. Its role in the
chain rule for the exponential map: ¢ — G will be explained in Section 3.
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DEFINITION 2.14.  J%isgenerated by itsfiniterank elementsif for any element o € J°
and any nonnegative integer n there exists an element o’ € J° of finite rank such that
a—a =0inall ranks < n.

THEOREM 2.15. Suppose that g is finite dimensional. J° is generated by its finite
rank elementsif and only if g is nilpotent.

DEFINITION 2.16. Let g beanilpotent Lie algebra. Write ¢° = g and g" = [g, g"]
forn = 1,2,.... Letr be the largest integer such that g" # 0. (So g isanr + 1-step
nilpotent Lie algebra.) Define a weight function on g as follows: definew(0) = 21, If
¢ # 0define

(2.10) W) =2" if¢eqbuté ¢ g™
For any decomposable k tensor define its weight by

k
(2.11) WEL @ ®@&) = QW(&') k> 1.
J:

LEMMA 2.17. If ¢ # O0andn # Oarein g then
(2.12) W([E, n]) = W(E) +w(n).

PROOF. Suppose W(¢) = 2" and w(i;) = 2X. We may assumek < n < r. Then
[€,1] € g™ Hencew([&,n]) > 2™ > 2n + 2K, n

LEMMA 2.18. Suppose g is a nilpotent Lie algebra. Let v € N°. Let m > 1 and
k > 1. Suppose that (v, u) = 0 for any decomposable k-tensor u of weight > m. Then
((B*Y),Vv) = 0 for any decomposablek + 1 tensor v of weight > m.

PROOF. Supposev = £1® - -+ @ &keq. If v= 0then (B*y,v) = 0. So supposev # 0
andw(v) > m. Let 1 <i < k. The permutation o = (i,i + 1) actson {1,...,k+ 1} and
also actson v. One has

V=oVv=§ @ @&-1® (i N &) @& @+ @ ket
So, modN , one has

BV—oV) =61®@ - @ &1 @ [&, vl @ &2 @ - @ Epaa
This decomposabletensor hasweight > mby (2.11) and (2.12). Hence ((B*Y),v—oV) =
(7,B(v—oV)) = 0. Therefore

(B™Y,0V) = (B*Y, V).
Sinceov # 0andw(ov) = w(v) > mthe sameargument canbeapplied to ov to conclude,
by induction, that
(B,01- - 0jv) = (B, V)

for any set of nearest neighbor transpositions (i,i + 1) of {1,...,k + 1}. Since these
generate the permutation group S it follows that (B*y,7v) = (B*Y,V) V7 € Sa1.
Summing this identity over all 7 € S and dividing by (k + 1)! shows that (B*v,Vv) =
(B*Y, Pxs1V) Wherein Py, is the symmetrization projection on g“&*9, Since B*y is by
definition zero on symmetric tensors the lemma follows. ]
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COROLLARY 2.19. Supposethat g is anr + 1-step nilpotent Lie algebra and that
v € (@*%)Y NN °. Then

(2.13) By =0 ifn>k@ —1)+1.

PROOF.  Since any non-zero vector £ in g has weight at most 2" a decomposable k-
tensor u has weight at most k2" by (2.11) unless u is zero. Thus (y,u) = Oif uisa
decomposable k tensor of weight > k2" + 1. By induction and Lemma 2.18 it follows
that ((B*)™,v) = 0if vis adecomposablen + k tensor of weight w(v) > k2" + 1. But
every element of g hasweight at least 2° = 1. Hencew(v) > n+k for any decomposable
n+ktensor v. Soif n+k > k2" +1 then ((B*)"v, v) = Ofor all decomposablen+k tensors
v and therefore for all n + k tensorsv. ]

ExampLE 2.20. If g isthe Heisenberg Lie algebrathen r = 1. In this case (2.13)
assertsthat (B*)™ = Owheny € NN (%K) if n > k + 1.

PROOF OF THEOREM 2.15.  Assumefirst that g isanr + 1-step nilpotent Lie algebra.
Supposethat o € J° and is given by (2.2). Let ko = inf{k : ay # 0}. It sufficesto show
that there exists an element o’ in J° such that o is of finite rank while « — o’ is zeroin
rank < Ko. Now ay, is symmetric by Corollary 2.11. That is, o, isin 19, Let o' = V.
Then @) o isin J° by Lemma 2.7 and b) the sumin (2.7) is finite because all terms are
zero from m = kg(2" — 1) + 1 onward by Corollary 2.19. So o’ is of finite rank. Clearly
(a — o) = 0for k < kg. Thus J° isfinitely generated.

Conversely suppose that g is not nilpotent. Then there exists an integer s > 1 such
that ¢" = g # (O)foraln > s. Sog" D g°foral n > 0. Choosern # 0in g®and
choosey € g’ 3 (7,1) # 0. Let o = V7. By Theorem 2.8 « isin J°. Clearly o = Qiin
rank Oand o = v inrank 1. In particular, (o, 1) # 0. It sufficesto show that there exists
no element o in J° of finite rank which agreeswith « in rank one. Let ¢3,..., &, € g.
Let

U= {([-- [0, &) G A &) A - ANén k=1,...,n.

Thenup = {--- (&1 AE) A -} A&nisin Iy whileuy = [+ [€1,€2], ..., &n] iSing.
Moreover u, — Uy isinJfork = 1,...,n — 1. Thereforeif o/ isin J° and is zero in
rank n then (¢, u;) = 0 while (/,u; — uz) = 0. So (&, uz) = 0. Continuing in this
way we concludethat (o, u,) = 0. Hence (¢, %) = 0. Butif o/ = «inrank 1 we get
(a,m) = 0, which isacontradiction. "

REMARK 2.21. Thefinite dimensionality of g was required only in the proof of the
“only if” part of Theorem 2.15. The finite dimensionality can clearly be replaced in the
converse by the hypothesisthat for somes {0} # q° C g" for all n.

https://doi.org/10.4153/CJM-1998-019-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-019-4

UNIVERSAL ENVELOPING ALGEBRAS 363

3. Taylor coefficients. Consider now a Lie group G with (finite dimensional) Lie
algebrag := Te(G). Suppose that W is an open neighborhood of the identity ein G and
u e CO(W). Let f(&) = u(exp&). It will be shown that the Taylor coefficients, 7, of f
at ¢ = 0and the “Taylor coefficients’ (see (3.1)) of u at e are related by the equation
(2.6). The notation of Section 2 will be continued. The content of this sectionisalgebraic
because convergence questionswill not be considered. The main theorem, Theorem 3.2,
can be consideredto beasystematization of the chainrulefor thecompositionf = uoexp.

NOTATION 3.1. Let W bean open neighborhood of ein G andlet u € C>*(W). Define
(DPu)(a) = u(a) for a € W and, for k > 1, let (D¥u)(a) be the unique element of (g=*)’
such that

B2 (O*u)@), 1@ @ &) = Er... &)@, &1,...,ékEgaEW

wherein % denotestheleft invariant extension of £ to G. The Taylor coefficientsof uat a
constitute the set {(D*u)(a) }32,. It is useful to describe this set asa single element of T.
The following suggestive notation of Driver [D] will be used for this element. Define

3.2) (1—D)lu= > (0@ ueC W)
k=0

Thus (1— D)3 *uisan element of T" whoserank k componentis (D¥u)(a). It follows from
(3.2), (3.2), (2.1) and the definition of Lie bracket that

(3.3) (1-D);'ue

If g is acomplex Lie algebra and u is holomorphic then the right side of (3.1) is
automatically complex linear. In this case the pairing on the left side of (3.1) should
be taken to be the complex bilinear pairing between ¢©* and its dual space as complex
vector spaces. Thisis the case of interest in [D, DG, G4, GM]. The algebraic identities
of this section are applicablein this complex case without change. However u must then
be taken to be holomorphic. We will focus on the real casein the rest of this section.

g isalsoaliegroup under addition and its Lie algebrawill be identified with g itself,
as usual, with zero Lie bracket. So if f is a smooth function on a neighborhood of O ing
then its Taylor coefficients, at O say, define an element (1 — D), *f in T’ also. But since
the Lie bracket is zero one has

(3.4 (L-D)y* € 1° f € C®(neighborhood of 0'in g).

(That is, for a smooth function on a linear space the order of differentiations can be
interchanged.)

THEOREM 3.2. Suppose that W is an open neighborhood of e in G and that u €
C>(W). Let (&) = u(exp&). Define

(3.5 a=(1—-D);lu and 7= (1-D),.
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Then

(3.6) o = VgY
whereV, is defined by (2.6).

PrROOF.  Since an element of 1 ° is determined by its valueson S the equation (2.6)
showsthat anelement Y € 19 can be recovered from VY by restricting VY to S. Thusit
sufficesto prove that if o and Y are defined by (3.5) then «|S = 7. Inrank 0 (3.5) gives
ag = u(e) and o = f(0), which isjust u(e). So ag = 7Yo. Inrank k > 1 observe that
Sk is spanned by {¢%K : ¢ € g} because this span contains the coefficient of s;s; - - - §¢
in (X, §¢)°% where all the s are real. This coefficient, which is the k-th derivative

0%/ds; - - - 05 of thispolynomial ats; = $ = - - - = § = 0, isasymmetrization of £; ®
-+ @&k Soit sufficesto show that (e, ) = (v, £7%). But (v, £7%) = d*/dtf (t¢)|_, =
d*/dtu(expt)| _, = (o, £°). .

ExAMPLE 3.3. Choose a neighborhood M of 0 in g and aneighborhood W of ein G
such that exp: M — W is a diffeomorphism. Write log = (exp) %:W — M. Let¢ € ¢’
and defineu(x) = (¢,logx) for x € W. Thusif f(¢) = u(exp¢) thenf(&) = (¢, &). The
Taylor coefficients of f are clearly given by

(3.7) Y:=@Q-D)=¢eT.

The Taylor coefficients at e of u are therefore
(3.8) (1 - D)g*{¢ log()) = kZO(B*)kﬁ-

The right side of (3.8) will be a finite sum, by Corollary 2.19, if g is nilpotent. But in
general it will be an infinite sum. A similar argument shows that the Taylor series for
powers of the { component of the logarithm may be computed as

(3.9 (1 — D);1(m!) (¢, log())™ = é(mkc@m.

REMARK 3.4. Thereisasimpleintertwining identity that is well known, but seems
worthwhile repeating here in the present “local” context. For { € g defineR:: T — T
by Reu = u® ¢. Then R:J C J. So the adjoint R:: T/ — T’ carries J° into J°. Define
A= R’g|J°. A clearly lowersrank by one. It follows from the definitions (3.1) and (3.2)
that

(3.10) A1-D);'=(1-D);X for¢eq.

See [DG, Section 7] for a discussion of how the identity (3.10) essentially determines
the map (1 — D), * from functionsto T’ uniquely.
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4. Normson universal envelopingalgebras. Any norm, || ||, onthetensor algebra
T of areal or complex Liealgebrainducesasemi-norm, || ||, on the universal enveloping
agebraU := T/J, by theusual rule:

(4.1) 18+ 3]l = inf{[I3 +j]| :j € I}.

The induced seminorm || ||, might actually be anorm on U or, in the opposite extreme,
might have such alargekernel that U/ ker || || isfinite dimensional. There are two natu-
raly arising familiesof normson T for which the nature of ker || ||.. hasbeeninvestigated.
Chooseareal, respectively Hermitian, inner product on areal, respectively complex, Lie
algebra g. Define, for 3 given by (2.3), the norms

N
(4.2) 181l = > tX82, BET, t>0
=0
N
(4-3) 1611% = kZf%)(«':‘\z)kﬂl,b’k 2., BeT, a>o0.
If g is commutative then, in the notation of Section 2, J = | and the decomposition

T = S + Jisan orthogonal decomposition for both of the norms (4.2) and (4.3). Thus,
identifying T/J with S, it follows that the induced seminorms on T /J agree with the
restrictionsof thegivennormsto S. Hencetheinduced seminormson U arealwaysnorms
when g iscommutative. The commutative case, with the norm (4.2), isthe classical case,
which has been explored thoroughly, especially in the context of quantum field theory.
Seee.g. [BSZ, Co, K, P] and their bibliographies.

If g is not commutative the situation is quite different. The decomposition T = S +J
still holds by the Poincaré-Birkhoff-Witt theorem, and in fact the corresponding projec-
tion on S is known explicitly [So]. But this decomposition is no longer orthogonal. So
the argument of the preceding paragraph no longer applies. In fact if g isthe Lie algebra
of acompact, simply connected Lie group, G, and the given inner product on g isAdG
invariant, then on the one hand, O. Hijab has shown [Hij1] that the seminorms induced
on U by the norms (4.2) are still norms, while on the other hand, the present author has
shown [G4] that the seminorms induced on U by the norms (4.3) have such alarge ker-
nel that the quotient space U / ker || || is finite dimensional. The dimension in this case
depends on a as well as on certain features of the representation ring of G. All of these
results have been obtained using harmonic analysis over the group G. The norms (4.3)
will be discussed in Section 5 in the simplest example at a purely Lie algebra level to
show how || ||.. can have akernel. But B. Hall has pointed out to the author that akey step
in Hijab's proof of the nondegeneracy of the quotient normsinduced by (4.2) isvalid for
ageneral finitedimensional Lie algebra. One hasthe following lemmaof Hijab and Hall.

LEMMA 4.1 (HiJaB [H131], HALL [HAS]). Let (, ) beaninner product on areal or
complex finite dimensional Lie algebra g. Fixt > 0 and let J denote the closure of J in
T with respect to the norm (4.2). Then

J=1J.
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PROCOF. Any Lieagebrarepresentation ¢: ¢ — End(V) on afinite dimensional vec-
tor space V extends uniquely to a representation »: T — End(V) of the associative al-
gebraT. Moreover »(J) = 0. It sufficesto show that ¢ is continuousin the norm (4.2),
becauseif 3 € J then continuity impliesthat (3) = 0, whereas by [Di, Theorem 2.5.7],
if 3 ¢ J there exists afinite dimensional representation  such that »(3) # 0. O. Hijab
proved the continuity of @ in case g isthe Lie algebra of a compact group G by mak-
ing use of harmonic analysis on G, [Hij1]. But for ageneral Lie algebra one may prove
continuity asfollows, [Ha3].

For any fixed inner product on V let ¢ = sup{||©(&)|lenav : €] < 1}. 1t will first be
shown that if d = dimg then

12(3)llenaqyy < €4d/?|]gex.

Indeedif ey, ..., ey isanorthonormal basisof g and 3 = Za;,..;,€,®- - -®@8, € q®* then

12B)l|endv) = (128540 (8,) - - p (&)l Enaev)
< fTla, i | < dV2(Z|a,. 4 ]A)Y?
= 2|3 .
Next, if 8 isgiven by (2.3) then

N
| 26lendvy < l;)Ck@lk/2|5k|g®k

1/2

< (%{dek/Z(tk/k!)l/Z}z) (ﬁ(k!/tk)wk i&k)l/z
k=0 k=0 :
= exp(tc*d)|| 3]

Lemma 4.1 settles completely the conjecture made in [G2, Equation (3.4)].

Denoting now by J the closure of J in T with respect to some arbitrary norm ||| on
T, it is elementary that the induced seminorm, || ||.., on T/J isanorm and that T /J and
U/ ker|| ||« areisometrically isomorphicin anatural way. It is the topological dual space
of T/jin theinduced norm that hasbeen aprimary object of interestin [D, DG, G1,2,3,4,
GM, Hij1,2] for the norms (4.2), and in [G4] for the norms (4.3). The topological dual
space of T/J clearly consists of those linear functionals on T which are continuousin
the given norm || || and which are zero on J (and afortiori on J). Theresulting subspace
of J° can be characterized explicitly for the norms (4.2) and (4.3) with the help of the
dual space norms given asfollows. Denote by g* the dual space of g asan inner product
spacewith the inner product dual to that given on g. In the pairing (2.1), the dual norms

are then given respectively by
(4.4) |a]|Z = kz(tk/k!)|ak|ﬁr)gk aeT
=0
(45) lallz = > @) ®arfy a €T
k=0
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when « is defined by (2.2). The topological dual space of T/ Jisthen givenin the two

respective cases by

(4.6) (@) = {a € 3°: [|ofl < oo}
and

4.7) % ={a e |afa< oo}

Now it is an elementary yet fundamental theorem that the universal enveloping alge-
bra of adirect sum of Lie algebrasisisomorphic to the tensor product of their universal
enveloping algebras[B, Chapter |, Section 2.2]. The main result of this section will show
that this algebraic isomorphismis also a Hilbert space isomorphismin the norm induced
by (4.2) (for any t > 0.) The motivation for the product theorem in this case comes from
the fact that when g is complex and isthe Lie algebraof asimply connected Lie group G
then the Taylor map (1 — D);* : {holomorphic functionson G} — J°, described in Sec-
tion 3, isactually aunitary operator onto (J°); whenits domain isrestricted to the Hilbert
space of squareintegrable holomorphic functionson G sketched in the Introduction. This
theorem is part of the reason for interest in the norms (4.2) and (4.4). It also motivates
the product theorem because the heat kernel measure of the direct sum of Lie algebras
(with sum inner product) is the product of the heat kernel measures, while an L? space
of a product of measures is the tensor product of the L? spaces. The theorems of this
section could in this way be derived from the results in [DG]. But it seems worthwhile
to give an elementary combinatoric proof of this essentially algebraic theorem which
avoids the heat kernel analysis used in [DG]. The comultiplication that appears in the
algebraic proof (cf. (4.12)) can be understood as a replacement of the Leibnitz formula
for derivatives of a product of two functions.

NOTATION 4.2. g3 and g will denotetwo real Lie algebraswith real inner products
(,),i = 1,2ortwocomplex Liealgebraswith Hermitian inner products. Let g = g1Pq>
be the direct sum of Lie algebras and of inner product spaces. Thus the Lie bracket is
[€1+&2,m1 +m2] = [€1,m1] + [§2,n2] where §j and nj arein gj, ] = 1,2. Denote by Ty,
T, and T the respective tensor algebras over g1, g2 and g. Ji, J» and J will denote the
corresponding two sided ideals defined asin Section 2 and J2, J9 and J° their annihilators
in T;, T, and T’ respectively. There is a unique algebra homomorphism p;: T3 — T
defined by p1(1) = 1, p1(§) = £ ® 0 € g for £ in g1. Define p,: T — T similarly. Then
thereisalinear map p: T ® T, — T determined by

(4.8) p(B1 @ B2) = p1(B1)p2(B2) Bi €Ty i =12

Define (J°); asin (4.6) and definethe Hilbert spaces(J°);, i = 1, 2 similarly. Whereasten-
sor products have heretofore referred to the algebraic tensor product, the tensor product
of Hilbert spaces such as (3%); @ (39); will mean the Hilbert space tensor product.
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THEOREM 4.3. Thereisa uniquelinear isometry of Hilbert spaces

(4.9 L: (39) @ (3B) — ()
such that
(4.10) (Lw, pB) = (w,8) VB € T1@ TrandVw € (I @ (D).

L is surjective (hence orthogonal or unitary).

REMARK 4.4. The pairing (w, 3) on theright side of (4.10) iswell defined because
the map a1 — (oy, 41) is continuous on (J9); for each element 3, in Ty, and the same
for T,. So (w, 3) isafinite sum of continuous linear functionalsw — (w, 31 ® 32).

REMARK 4.5. Let g be afinite dimensional Lie algebra with an inner product. Fix
t > 0and denoteby T the completion of T in the norm (4.2). Denoteby P: T — T&J the
orthogonal projection. The kernel of P|T istheclosureof Jin T, which by Lemma4.1is
just J. Hence P induces an injective linear map T/J — TodIn this way the universal
enveloping algebra U := T/J inherits the inner product in ToJd

Now if g isadirect sum of Liealgebrasasin Notation 4.2 thenthemap p: T1 ® T, —
T defined in (4.8) descends to the standard algebra isomorphism U; ® U, — U for
universal enveloping algebras[B, Chapter I, Section 2.2]. The next theorem asserts that
this isomorphism is an isometry of inner product spaces.

THEOREM 4.6. Fixt > 0. LetU; = T;/J;, fori = 1,2and U = T/J be the uni-
versal enveloping algebraswith the inner products induced by the norm (4.2) asin Re-
mark 4.5. Then the map p of (4.8) induces a surjective isometry from the inner product
space U; ® U, onto U. Specifically, if n: Ty — Ui, i = 1,2and m:T — U arethe
canonical projectionsthen

(4.11) mpBllu = [I(m1 @ m2)Blluseu,, B € T1@ Ta.

Theorem 4.6 will be deduced from Theorem 4.3 by duality.

NOTATION 4.7. The comultiplication A: T — T ® T is the algebra homomorphism
satisfyingAl = 1@ land Al = (@ 1+ 1® (for € g [Sw]. The action of A on a
decomposabletensor is then given by the shuffle product [R, Sw, p. 248]:

m

=0 i1,y i
J'Ll---d'n:k
where in the sum, (i1, ...,ik,j1,---,jm-k) iS@permutation of (1,...,m) such that i; <

o <. <igandjp <j2 <+ <jmek-
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Denote by T;- thetensor algebraover g for i = 1, 2. Viathe pairing (2.1) T;- embeds
intoT/,i = 1,2. g5 embedsinto g* by therule (x, ¢ ©n) = (x,&) forx € g3, £ € g1 and
n € go. Let 01: Tix — T be the induced algebra map. Note that o1(T1-) annihilates the
2-sided ideal in T generated by 0 & g5. Define o,: To- — T’ analogously. Then

(4.13) 01 ® 0. Ty» ®T2*—>T/®T/C(T®T)/.
Thus the map v given by
(4.19) V=001 ®02): Ty @ Tpe — T

iswell defined. Of course we have
(4.15) (yw, 3" = ((01 @ o)W, A3"), WeE T @ T, g/ €T.
Finally, denote by Jo the two sided ideal in T generated by
{€An:€€q:1®0,n€0 g}

LEMMA 4.8. Ifu e (g7)*" and v € (g5)“S then

(4.16) PUueVv)= > T((UllJ)(O'zV))

TES,S
where S s is the set of permutations T of {1,...,r + s} such that 7(i) < (i + 1) for
i=1...,r—1andfori =r+1,...,r +s— 1. Theaction of a permutation 7 on
(@) ™9 isgiven by 7(z1 - - Z+s) = Z11) - - Z1(rag-

PrOOF.  For simplicity of writing wewill omit o1 and o, and identify (q;)*™ asasub-
spaceof (g*)*™Mfor i = 1, 2. Then, with uand v asabove, andw = u®v, equation (4.15)
reads

(Vuev),p) = (uev,A8)
Take ' = G-+ ¢n € ¢®™ and insert the expansion (4.12) for A3’. One sees first that
(u®v,A8") = 0if m# r +s. Hence y(u @ ) liesin (g*)*9. Second, evenif m=r+s
most of thetermsin (u® v, Ag’) arising from the expansion (4.12) are zero. Only those
terms with k = r and m— k = s can differ from zero. For these terms we may write

(ueVv,A8") = <uv, 3 r‘lﬁ’>,

T€S s

which is easily verified on decomposable tensors u and v. It now follows that

(WUV), ) = (Tres, 7(wv), §'). This proves (4.16). .
LEMMA 4.9.

(4.17) (YW, pB) = (W, ) YWE T @ T and V3 € T, @ Ta.

(4.18) (YW, Jo) =0 YWE T @ Ta
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ProOF. It sufficesto prove(4.17) and (4.18) incasew = (X - - - %) @ (Y1 - - - Ys) With
al x € g1 andall yx € go. The straightforward and well known identity A(G A &) =
GAG)@1+1Q (G AEG)whichholdsfor all § € g, i = 1,2, together with the fact
that A is a homomorphism showsthat Ay C Jo@ T + T ® Jp. Since Jg is contained in
the 2-sided ideal generated by 0 g it follows that (01 @ o2)w, Jo® T) = 0. Similarly
(01 @ o2)W, T ® Jo) = 0. (4.18) then follows from (4.15).

It sufficesto prove (4.17) incase 8 = (§1--- &) @ (n1-- - nn) With &l & € g1 and &l
Nk € g2. Suppressing p1 and p, for simplicity of writing, (4.16) shows that

(4.19) (Yw,pB) = 3 (T(Xa - %Y1+ Ys), &1 - &na- - 1n)-

Tes,s

Eachtermontherightiszeroifj # r orn # sbecauseg; annihilatesg, and g3 annihilates
1. Similarly (w, 8) isalsozeroif j # r orn # s.If j = r and n = sthen only theidentity
permutation contributesanonzeroterm to theright side of (4.19), and thistermis(w, 3).m

COROLLARY 4.10.

(4.20) T=pT1®@T2)®Jo
(4.21) Rangey = 3N T,-.

ProoF. T is spanned by products¢; - - - ¢n with each § in g1 & 0 or 0 ® g». Such a
product can be rearranged mod Jy so as to have all factors from g1 & 0 on the left. This
showsthat T = p(Ty ® Ty) + Jo. Moreover if 8 € T; ® T, and p(8) € Jo then by (4.18)
and (4.17) 0 = (yw, p(8)) = (w, @) for all w € T1- ® T,-. Hence 3 = 0. This proves
(4.20). Now o preservestotal rank by (4.16) (and so does p). Therefore it suffices to
prove (4.21) rank by rank. Both ¢ and p areinjective by (4.17). Denoting tensors of rank
m by a subscript m one therefore has

dim (T @ T2 )m) = dim p((T1 @ To)m)

which by (4.20) equals dim Ty, — dim(Jo)m = dim annihilator of (Jp)m in (T")m. Since
Y((Tr @ T2)m) C (39)m by (4.18) the assertion (4.21) follows in rank m. .

LEMMA 4.11. Themap ¢: Ty ® To» — Ty isan isometry of inner product spaces
with the norm (4.4) on Tz, T, and T,- and with the cross norminner product on the
algebraic tensor product Ty @ To-.

PROOF. Thesubspaces T s = (a%)*" @ (g3)“S of T1- ® T2 are mutually orthogonal
with respect to the inner product associated to the norm (4.4), for distinct pairs (r, s)
and (r’, s'). Moreover the images of two such subspaces under 1 are clearly mutually
orthogonal if r + s # r’ + ' because the images have different total rank.
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Supposer+s = r'+s’. Letxy,..., %, Xq, ..., X, € g;andlety,...,¥s,¥q, ..., Yy € 05

Then by (4.16) one has
(loa %) @ 1 YL U0 X) @ (Vo) e
(4 22) = XS: (T(X]_ XYy ys)'q—’(xg- . Xll")/l . )/S’))(gx)&(”s)'
T’ESr/IISs

Any inner product on theright is a product of inner products of elements of g*. At least
one factor will be zero unlessr = r’ and s = s because g3 @ 0 is orthogonal to 0 @ g3.
Hence the images (T, s) and (T ¢) are mutually orthogonal unlessr = r’ ands = <.
It suffices therefore to show that |T, s is isometric for each pair r, s. Taker’ = r and
s’ = sin (4.22). Consider aterm on the right with 7' # 7. Because of the monotonicity
imposed on 7 and 7’ these two permutations are determined completely by the respective
setst({1,...,r})and 7’ ({1,...,r}), which are therefore distinct sets. Hence there exists
an element j in the first set which is not in the second set. Thus there exists a number
pe{l,...,rtandqin{r+1,...,r+s} suchthat 7(p) = j = 7/(q). In the representation
of ther, 7/ term in (4.22) as a product of inner products of elements of g* the j-th factor
iS (Xp, Ygr), Which is zero. Therefore all the terms on the right of (4.22) are zero except
thosefor which 7/ = 7. But when 7’ = 7 the inner product is the same as for the identity
permutation. Since the cardinality of S sis(r +s)!/(r! s!) one therefore obtains

(4.23) Wlu@ V], ¢lu' @ V])gyees = (1 + 9!/ (rE (U, U)gryer (V V) (gy)es

for u, v, U, v/ decomposable and therefore for all uand u” in (q5)*" and al vand V' in
(a3)%®. Inview of the definition (4.4) one need only divide both sides of (4.23) by (r +5)!
and multiply by t™** to obtain the asserted preservation of inner products by . ]

The next elementary lemmais essentially the statement of existence of the standard
isomorphism theorem among universal envel oping algebras.

LEMMA 4.12.
J=p01@T2+T1® )+ .

PrROOF. Identifying T; with pi(T;), i = 1,2, thelemmaassertsthat J = J1To+ TyJo +
Jo.ButJi Cc Jfori =0,1,2.S0J D J; T + T1J + Jo. Since T1 and T, commute mod Jg
the right side isa 2-sided ideal. It contains the generators of J becauseif & and n; € g;
forj = 1,2then (1 + &) A (1 +m2) — [Ea+&a,m+ 2] = (e Am— [§,m]) +
(E2An2—[E2,m2]) + (€1 An2+E2Am) €1+ + o n

PROOF OF THEOREM 4.3. Let T = {a € T/ [lafle < oo} fori = 1,2. Then
Ti- isdensein Ty and (3% C Ti- by (4.6). Define T, similarly. Then (3%, C T,.. By
Lemma4.11 ¢ extends to a unique isometry

(4. 24) 1;: -Fl* ®RTo — _g*
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of Hilbert spaces. By (4.17) and (4.18) and continuity in w one has

(4.25) (W, pB) = (W,3), WETL ®©Tr, BET1OT,
and
(4.26) (WW,Jp) =0 We Ty @ To.
Define
(4.27) L = ¢/ @ (B

ThenL isanisometry into 'Fg*. Supposethat 8 € J; @ T, +T1 ® J,. For any element win
domain L (4.25) showsthat (Lw, p3) = (w, 3), whichiszero. Hence RangeL annihilates
p(J1 ® T2 + T1 ® Jp). RangeL also annihilates Jo by (4.26). Therefore by Lemma 4.12
RangeL annihilates J. So L maps into (J°);. To prove surjectivity suppose that « isin
(J%:;. Since Jo C J,  annihilates Jo. Let oy be the sum of al the homogeneous com-
ponents of o up to rank m. Since the ideal Jy is the span of its homogeneous compo-
nents o, also annihilates Jo. By (4.21) there exists an element Wy, € Ty @ To- such
that YWy = am. Now o convergesto o and ¢ is isometric. Hence wi, convergesto an
elementw € 'le ® -'_-21- (In accordance with our conventions above, this tensor product
is complete.) Clearly yw = o. For any element 3 € J; @ To + T, @ J2 one has p(6) € J
by Corollary 4.10. Hence 0 = (o, p3) = (yw, p3) = (w, 3) by (4.25). So w annihilates
both J; © T, and Ty @ Jp. Thereforew € ((I9): @ T+ ) N (Toe @ (1) = (D @ (D).
This proves the surjectivity of L.

It remainsto prove the uniquenessof any isometry L satisfying (4.9) and (4.10). Sup-
pose that L’ is another such isometry. If w € (3% @ (39); and « = Lw — L'w then by
(4.9) o annihilates J, and in particular Jo. By (4.10) o annihilates p(Ty @ T,). Therefore,
by (4.20), o annihilates T. So o = 0. ]

PROOF OF THEOREM 4.6. If f: T/J — R or C isacontinuouslinear functional then
a = f o 7 is acontinuous linear functional on T in the norm (4.2), and annihilates
J. Thus, in view of the pairing (2.1) and the definition (4.4), we have o € (J°; and
moreover |||t = ||f|lu; wherein Uy denotesthe topological dual spaceof U in thegiven
inner product. Conversely, an element o € (3°); defines an element f in U; of the same
norm.

These preliminaries having been said, a standard duality argument is now applicable:
for any element 8 € T, ® T, onehas

ImpBllu = sup{[{f, mpB)[ : f € U, [Ifllu; = 1}
(4.28) = sup{|{c, pB)| : @ € (), [lelle = 1}
= sup{|{Lw, pB)| : w € (D) ® (B}, W] = 1}

since L is asurjective isometry.
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On the other hand, since the dual space of the inner product space U; @ U, is (39); @
(39); one has

(4.29) 11 ® m2)Blluseu, = supf{](w, 8)] : w € (3 @ (), IIw]| = 1}

(4.12) now follows from (4.10), (4.28) and (4.29). The surjectivity follows from (4.20)
and thefact that Jo C J. n

REMARK 4.13. If g1 and g, are commutative then, as already noted at the beginning
of this section, J;, J, and J have easily identifiable orthogonal complementsin the norm
(4.2), namely the symmetric tensors. By identifying the three quotient spaceswith spaces
of symmetric tensors one can prove Theorem 4.6 by direct and easy computations. This
is most efficiently carried out by computing with the coherent states, which may be de-
scribed as follows. Let exp(() = >224(n!) ¢, ¢ € g. (Thefactors (n!)~ are correct
for the choice of norms (4.2).) Fixing t > 0 and using the notation of the proof of Theo-
rem 4.6, write P for the projection of Tonto TS J. Similarly define P;: 'F. — 'F. o J; for
i = 1,2. Theidentity
(4.30)

(P exp(§1 + €2), exp(iny + ﬂz))f

= (Prexp&y, expima)y, (P2 expéa, expn2)y, &ivmi € ¢i, 1 =1,2

is a correct identity and is easily verifiable in the commutative case because all of the
projections, P, Py, P, canclearly beremovedin this case, and both sides can be computed
explicitly. It would follow from (4.30), together with density arguments, that the map

(Prexpér) @ (P2expéz) — Pexp(§a + £2)

extendsto an isometry from J;- @ J; — J*. Thisis the basis for the standard algebraic
proof of isometry in the commutative case. See e.g. the recent text [P, Proposition 19.6]
for a detailed exposition of this by now classical technique. But in the noncommutative
case the projections P, P1, P, cannot be removed in (4.30). The only proof of (4.30)
known to this author depends on the fact that the three inner productsin (4.30) represent
reproducing kernels. See [DG, Equation (6.1)]. Whereas the elements exp ¢ are the co-
herent states in the commutative case, it is the elements P exp & which play thisrole in
general. The difficulty of dealing with these projections seems to make adirect proof of
Theorem 4.6 difficult if not infeasible, without going through the dual spaces as above.

REMARK 4.14. When g is commutative the symmetric tensors of finite rank all lie
in (3%, and are dense. For what other Lie algebras does (J°); contain adenselinear set of
elements of finite rank? The motivation for this questionis givenin [DG, Section 7]. In
view of Theorem 2.15 it is reasonableto conjecturethat (J°); has a dense set of elements
of finite rank if and only if g is nilpotent. In the original version of this paper the author
conjectured this theorem but was unableto prove either half of it. The referee, however,
has provided the following proof of one half of this conjecture. It isbased on Lemma4.1.
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THEOREM 4.15 (REFEREE). Let g beareal or complexfinite dimensional Lie algebra
with aninner product. Lett > 0. If thefinite rank elementsin (J°); aredensein (J°), then
g is nilpotent.

PROOF. Supposethat g isnot nilpotent. Then by Theorem 2.15thereexistsaninteger
nand an element « in J° such that for all 5 in J° of finiterank, o and 3 differ inrank < n.
Denote by T<p, the subspace of T consisting of elements of rank < n. Any element 7 in
JO annihilates JN Ty, and therefore, by restriction, defines an element |, of (Tgn /@N
T<n))". Moreover, every element of (T<n/@N T<n))” arisesin this way becauseif u €
T<n but u ¢ J then there exists v € J° such that Y(u) # O. Thatis, {Y|n : 7 € 3%}
separatesfrom zero all non zero elementsof the finite dimensional vector space T<, / (IN
T<n) and therefore constitutesits entire dual space.

On the other hand, not every element of (TSn /@N Tgn))* arises as the restriction
of afinite rank 3 in J°, or else there would be afinite rank 3 € J° which agrees with
a up through rank n. Thus the finite rank 3’s in J° give rise to a proper subspace of
(T<n/(@NT<n))". So there exists an element uin T, such that u ¢ J but 3(u) = O for
all finite-rank 3 in J°.

Now, by the Hijab-Hall Lemma4.1, u ¢ J. So there existsy € (3°), such that Y(u) #
0. For exampleif T; denotesthe completion of T inthenorm (4.2) and J*- isthe orthogonal
complement of J in T, then, upon identifying (J°); with J* viathe pairing (2.1), we may
takey = Pu, where P is the projection onto J*. It now follows that finite-rank 3’sin J°
cannot be dense in (3%, sinceif By, € J° and is of finite rank and the 3, convergein
(3% norm to y then ¥(u) = lim 3m(u) = 0 because B,(u) = O for all m. ]

REMARK 4.16 [PRODUCT RULE]. Takew = w; @ Wy in (4.15) withw; € Ti+, i = 1,2
and replace 3’ by 3¢ for € = &1 @ &2 € g1 @ g2. Oneobtains (yw, 3'¢) = ((c1w1) ®
(o2wW2), (ABN(ER@1+1®¢E)). Butsinceoyw, annihilatesthetwo sided ideal in T generated
by 0 & g2 while oow, annihilates that generated by a1 ¢ O the previous identity may be
written, upon taking into account the definition (4.14)

(Reyw, 8') = ((01w1) @ (02W2), (AF) (61 @ 1+ 1@ &7))
= (1R, w1) @ (02W0) + (01W1) @ 02(RE, W), AB')

where R; is defined in Remark 3.4. Therefore
(4.31) Riyw=¢(R;, @l +I @R )w, & €gqi, i=12andwe Ty @ T

Now v extendsto alinear map fp from thelarge space T; @ T4 (algebraic tensor product)
because ¢ preserves total rank of tensor products of homogeneous tensors. Moreover
(4.31) continuesto hold for 17) Restricting then to the subspace J9 ® J9 (algebraic tensor
product) of this large space one obtains

(4.32) AW = (A, @1 +1 @AW, &eg,i=12 welo L.

One should note here that Jyw € J°, by Lemma4.12, whenw € J9 ® J9.
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The identity (4.31) is best interpreted in the context of Remark 3.4. If u; € C>*(G;)
and if w; is the set of Taylor coefficients of u; at the identity element of G; fori = 1,2
then the definition (4.14) (and its extension to f/;) simply expressesthe Taylor coefficients
of up(X1)uz(x2) at (e1,€) € Gy x Gy interms of wy and w, by means of Leibnitz’ rule.
Correspondingly (4.32) is exactly the product rule.

Let usfinally go one step further and write the product rule (4.32) in the Hilbert space
format

(4.33) AL=LA, 1 +I®A)

wherein it is desirableto interpret the three (unbounded) operators A, A¢,, A¢, as closed
operators in their respective Hilbert spaces (3°):, (J%);, and (39);. However there are se-
rious Hilbert space domain issues for these operators. These domain issues are only un-
derstood in special cases, for example Lie algebras of compact type. See e.g. [DG, Sec-
tion 7]. However, in the presence of sufficiently strong information on the domainsof the
operatorsA: and A, i = 1,2, the product rule (4.33), together with the obviousidentity
L(1 ® 1) = 1 completely determines the isometry L. See [DG, Section 7] for typical
results of this kind.

5. Example: Degeneracy of normsfor d (2,C). The semi-norms induced on the
universal enveloping algebraU, asin (4.1), by the norms (4.3) can be highly degenerate.
As aready noted in Section 4, U/ ker || || is finite dimensional when one induces from
the norms (4.3) if g is the Lie algebra of a compact simply connected group G which
leaves the given inner product on g Ad invariant, [G4]. The analysis in [G4] depends
on properties of heat kernels on Lie groups. It is illuminating to see, at a purely Lie
algebraic level, how this degeneracy arises in the simplest example. In this section the
norms ||3 + J|| of certain nonzero elements in U will be computed and shown to be
zero if the parameter a in (4.3) is sufficiently small. This exampleis based on su(2). But
the computations are most easily made in its complexification sl (2, C). The Ad SU(2)
invariant Hermitian inner product on sl (2, C) will be used.

Let ¢ = 8 (2,C) and define (&, 1) = 2 trace (n*€) where n* is the Hermitian adjoint

00 1
Of77.Letf—(1 O) andh_(o _1

|h|> = 4 and the Lie bracket [f, h] = 2f. WriteuAv=u®v—v®@uforuandvinT and
UATh = ( - (uah)Ah) /\'--/\h) (n factors of h). Denotef @ f @ - -- @ f (k factors)
by f. It follows by induction on k that

) . Then one can compute easly that |f|? = 2,

(5.1) fKAh= (2kf*modJ k=1,2,....
Hence
(5.2) fKA"h = (2k)"f*modJ k>1landn>1.
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ProPOSITION 5.1.  fKisin the closureof Jin thenorm (4.3) if a < k/2.

PROOF.  Since [Wf*h™M| cguem = [N*M|f|< = (4*M24)Y/2 and since f* A" his a sum
of at most 2" terms of the form hfkh™ with j + m = n one has

(5.3) [P AT | e < 27(4724)Y2 = 2202K/2,
By (5.2) f* — (2k)"fk A" h e J. Hence (4.1), (4.3) and (5.3) yield
£+ L < 14— (F* = Q)T A" )|
= (2" A" || 4
= (2K "™k AT h| egen
< (Za/k)nak+12k/2.
Taking the limit asn — oo showsthat ||fX + J||, = 0if 2a < k. .

COROLLARY 5.2.  Denoteby J 5 theclosureof Jin T inthenorm (4.3). ThenfX € J,
for a < k/2and f& ¢ J for anyk > 1. In particular the norm || ||, on U hasan infinite
dimensional kernel for all a > 0.

PROOF. Thestatement that f* € J, for a < k/2isthe content of Proposition 5.1. By
[B, Chapter |, Lemma7.3] any homogeneoustensor in J must beintheideal | generated
by {¢An 1 &, € g}. Sinceno decomposabletensorisin |, fkisnotin J. Infact no linear
combination of {f k}k>2a isin J becausethe highest power in such alinear combinationis
notin | . Sinceall of theseelementsarein J, thekernel of || || isinfinite dimensional. m

REMARK 5.3.  Sincethenorm (4.3) gets stronger asaincreasesoneawayshasJ, D
Jpif 0 <a < b. Thatis, J, decreasesasa increases. But Corollary 5.2 suggeststhat the
decrease may take place in jumps located at the half integersa = k/2 becausefk € J,
if a < k/2whilef* may not bein J, if a > k/2. Actually this crude argument gives an
approximately correct conclusion. J , does decreasein jumps. But the jumps occur when
a? = (k/2)((k/2) +1),k = 1,2,... rather than when a? = (k/2)2. This can be deduced
from the examplein [G4, Section 5] wherein it is shown that the dual spaceto T/J,is
finite dimensional and has dimension
(5.4) dm(T/J) = > (2s+1)7>%

s(s+l)<a?

Here s runs over the spin values {k/2 : k = 0,1,2,...}. In order to deduce (5.4) from
[G4, Equation (5.4)] one should observe, as aready noted in Section 4 above, that the
topological dual spaceto T /J  is the space J%, definedin (4.7). It is the space J% which
is studied in [G4]. A direct Lie algebra proof of (5.4) is not at present available. It is
interesting to observe that multiplication in T is separately continuousin the norm (4.3)
becausemultiplication by an element of g isbounded. Consequently J isa2-sided ideal
inTand T/J 4 is naturally anormed algebra. The examplein [G4, Section 5] showsthat
if s isthe representation of SU(2) of spin s and dr is the map from T to operators on
the representation space of 75 induced by 75 then J, isin the kernel of drs whenever
s(s+1) < a
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