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SOME NORMS ON UNIVERSAL ENVELOPING ALGEBRAS

LEONARD GROSS

ABSTRACT. The universal enveloping algebra, U(ª), of a Lie algebra ª supports
some norms and seminorms that have arisen naturally in the context of heat kernel
analysis on Lie groups. These norms and seminorms are investigated here from an
algebraic viewpoint. It is shown that the norms corresponding to heat kernels on the
associated Lie groups decompose as product norms under the natural isomorphism
U(ª1 ý ª2) ¾≥ U(ª1)
 U(ª2). The seminorms corresponding to Green’s functions are
examined at a purely Lie algebra level for sl (2,C). It is also shown that the algebraic
dual space U0 is spanned by its finite rank elements if and only if ª is nilpotent.

1. Introduction. The present, essentially algebraic, work is motivated by some re-
cent developments in “heat kernel analysis” on Lie groups. Suppose that G is a complex,
connected, simply connected Lie group, that ª is its Lie algebra, that U is the universal
enveloping algebra of ª and that U0 is the algebraic dual of U. A holomorphic function
u on G defines an element û of U0 by means of the pairing U 3 å 7! hû,åi ≥ (åu)(e),
wherein å is to be interpreted as a left invariant differential operator on G. Given a Her-
mitian inner product on ª there is naturally associated to it a left invariant second order
elliptic differential operator, ∆, on G, and for each real number t Ù 0 there is associated a
unique probability measure ñt on G, convolution by which gives the semigroup et∆Û4. In
this way the given inner product on ª determines a Hilbert space L2

holo(G,ñt), consisting
of those holomorphic functions on G which are square integrable with respect to ñt. At
the same time the inner product on ª determines a natural inner product on a subspace
UŁ

t of U0 in a manner which will be described explicitly in Section 4. It is shown in [DG]
that the preceding map u ! û, restricted to L2

holo(G,ñt), is a unitary operator onto UŁ
t .

Similar unitary maps have also appeared for real Lie algebras of compact type and are
closely linked with analysis over loop groups [D, DG, G1,2,3,4, GM, Ha1,2, Hij1,2].

The existence of these unitary isomorphisms raises some questions of an essentially
algebraic nature concerning the subspaces UŁ

t . It is the purpose of the present work to
explore some of these questions. This paper will be concerned entirely with the algebraic
side, UŁ

t , of this isomorphism.
In Section 2 the structure of the algebraic dual U0 will be investigated with the help of

a kind of dual (Theorem 2.7) to the Poincaré-Birkhoff-Witt theorem. As an application it
will be shown that U0 is generated linearly by its finite rank elements (cf. Definition 2.12)
if and only if ª is nilpotent. ªmay be taken to be a Lie algebra over a field of characteristic
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zero in Section 2. In Section 3 it will be shown that the isomorphism in Theorem 2.7
amounts to a description of the element û 2 U0 given above, in terms of the element
(u Ž exp)^, which is in the dual of the universal enveloping algebra of the additive group
ª.

In Section 4 two kinds of norms (or seminorms) on U and on subspaces of U0 will
be discussed. The main theorem of Section 4 asserts that the usual isomorphism [B,
Chapter 1, Section 2.2] between the universal enveloping algebra of a direct sum of real
(or complex) Lie algebras on the one hand and the tensor product of their respective
universal enveloping algebras on the other is isometric with respect to certain natural
norms on the universal enveloping algebras.

It is a pleasure to thank D. Barbasch and B. Speh for useful discussions and to thank
Brian Hall for communication of Lemma 4.1 to the author. The author also wishes to
thank the referee for providing the proof of Theorem 4.15 and the illuminating Re-
mark 2.10.

2. The dual of the universal enveloping algebra.

NOTATION 2.1. In this section ª will denote a finite or infinite dimensional Lie al-
gebra over a field F of characteristic zero. For any vector space W over F denote by W0

the algebraic dual space and by W
k the algebraic tensor product, with W
0 ≥ F. Let
T :≥

P1
k≥0 ª


k be the tensor algebra over ª. Then we may identify its algebraic dual
space T0 with

Q1
k≥0(ª
k)0, in the pairing

(2. 1) hã,åi ≥
1X

k≥0
hãk,åki ã 2 T0, å 2 T

where

(2. 2) ã ≥
1X

k≥0
ãk ãk 2 (ª
k)0, k ≥ 0, 1, 2, . . .

and

(2. 3) å ≥
NX

k≥0
åk åk 2 ª


k, k ≥ 0, 1, 2, . . . , N.

In particular this identifies (ª
k)0 as a subspace of T0. An element ã given by (2.2) will
be said to be zero in rank k if ãk ≥ 0 and will be said to be of finite rank if ãk ≥ 0 for
all sufficiently large k. For any two tensors u and v write u ^ v ≥ u
 v � v 
 u.

Denote by J the two sided ideal in T generated by

fò ^ ë � [ò, ë] : ò, ë 2 ªg.

Denote by I the two sided ideal in T generated by fò^ë : ò, ë 2 ªg and let Ik ≥ I \
ª
k, k ≥ 0, 1, 2, . . .. If Sk denotes the space of symmetric tensors in ª
k and S ≥

P1
k≥0 Sk

then ª
k ≥ Ik + Sk, k ≥ 0, 1, . . ., and T ≥ I + S.
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There is a third ideal which will be needed. Define Nk ≥ J \ª
k for k ≥ 0, 1, . . . and
let N ≥

P1
k≥0 Nk. If å 2 Nk and ç 2 ª
j then å
ç and ç
å are both in Nk+j. So N is

a 2-sided ideal in T. By the Poincaré-Birkhoff-Witt theorem [B, Chapter I, Lemma 7.3]
Nk ² Ik for all k. Hence N ² I .

EXAMPLE 2.2. If ª is commutative then J ≥ I ≥ N .

EXAMPLE 2.3. Suppose that a, b, c, d are in ª. Then å :≥ (a^b� [a, b])
 (c^d)�
(a^b)
(c^d�[c, d]) is in J. But expanding gives å ≥ �[a, b]
(c^d)+(a^b)
[c, d],
which is a homogeneous tensor of rank 3. Hence å 2 N3. Moreover if ª ≥ su(2), if e1,
e2, e3 are elements such that [ei, ej] ≥ ek for (i, j, k) cyclic, and if a ≥ e1, b ≥ e2, c ≥ e3

and d ≥ e1, then a straightforward computation shows thatå Â≥ 0. Thus even for a simple
Lie algebra N is not zero.

Denote by J0, I 0, N 0 the annihilators of these ideals in T0. Writing U ≥ TÛJ for
the universal enveloping algebra of ª, it is clear that one may identify the algebraic dual
space U0 with J0. It is J0 that will actually be used, rather than U0. Note that I 0 consists
exactly of the symmetric tensors in T0.

DEFINITION 2.4. By the Poincaré-Birkhoff-Witt theorem one has a direct sum de-
composition

(2. 4) T ≥ S + J

Define a linear map

(2. 5) Vª: I 0 ! J0

as follows. Let ç 2 I 0 and let u 2 T. By (2.4) we may write uniquely u ≥ uS + uJ with
uS 2 S and uJ 2 J. Define

(2. 6) (Vªç)(u) ≥ ç(uS )

Then Vªç 2 J0 because if u is in J then uS ≥ 0. Since I 0 is naturally isomorphic to
(TÛI )0, Vª may be regarded as a map from (TÛI )0 to (TÛJ)0. It is in fact the adjoint
of the natural map ï: TÛJ ! TÛI described in [V, Theorem 3.3.4]. We will need an
inductive algorithm for constructing Vª. This is the goal of Theorem 2.8.

DEFINITION 2.5. Define a linear map

B: T ! TÛN

as follows. If å 2 S define Bå ≥ 0. If å 2 Ik and there exists å0 2 ª
(k�1) such that
å � å0 2 J then define Bå ≥ å0 + N . Such an element å0 always exists when å 2 Ik

because any element å in Ik is a sum of k-tensors of the form u
 (ò ^ ë)
 v with ò and
ë in ª. Since u
 (ò^ë)
 v� u
 [ò, ë]
 v 2 J, å0 can be chosen to be a corresponding
sum of elements u 
 [ò, ë] 
 v. B is well defined on Ik because if å0 and å00 are both in
ª
(k�1) while å � å0 and å � å00 are both in J then å0 � å00 2 J \ ª
(k�1) ≥ Nk�1. so
å00 ≥ å0 mod N . Therefore B is well defined on all of I and hence on all of T.

We may and will identify (TÛN )0 with N 0. Then the adjoint map BŁ may and will
be regarded as a map from N 0 into T0.
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PROPOSITION 2.6. The maps B: T ! TÛN and BŁ: N 0 ! T0 satisfy the following:
a) Bª
k ² ª
(k�1) mod N .
b) BN ≥ 0 mod N .
c) BŁN 0 ² N 0.
d) BŁ

�
N 0 \ (ª
k)0

�
² N 0 \ (ª
(k+1))0.

e) The restriction BŁçjS ≥ 0 for all ç 2 N 0.

PROOF. a) is part of the definition of B. If å 2 Nk and å0 ≥ 0 then å � å0 2 J. So
Bå ≥ 0 mod N , which is b). If ç 2 N 0 and n 2 N then hBŁç, ni ≥ hç, Bni ≥ 0 by b).
So c) holds. d) follows from a). If ç 2 N 0 then hBŁç, si ≥ hç, Bsi ≥ 0 for all s in S by
Definition 2.5. This proves the assertion e).

LEMMA 2.7. Let ç 2 I 0. Define

(2. 7) Vç ≥
1X

k≥0
(BŁ)kç

Then Vç 2 J0.

PROOF. Since N ² I , I0 ² N 0. So if ç 2 I 0 then BŁç is well defined, and, by
Proposition 2.6c), so is (BŁ)k for all k. If å is given by (2.3) then Bkå ≥ 0 for k Ù N. So
the series

P1
k≥0h(B

Ł)kç,åi has only finitely many nonzero terms. Hence V is well defined.
Moreover all summands in (2.7) are in N 0. Hence Vç 2 N 0. Let ò and ë be in ª and let
u and v be homogeneous elements of T. Let w ≥ u
 (ò ^ ë)
 v. To prove that Vç 2 J0

it suffices to show that hVç, w� u
 [ò, ë]
 vi ≥ 0. But

hVç, w� u 
 [ò, ë] 
 vi ≥ hVç, w� Bwi ≥ h(I � BŁ)(Vç), wi ≥ hç, wi

by collapsing the two (finite) sums that appear after the second equality. Since w 2 I ,
hç, wi ≥ 0.

THEOREM 2.8. The map V: I 0 ! J0 defined by (2.7) is a one to one map of I 0 onto
J0. Moreover

(2. 8) (Vç)jS ≥ çjS for all ç 2 I 0.

and V ≥ Vª.

LEMMA 2.9. If ã 2 J0 and ãjS ≥ 0 then ã ≥ 0.

PROOF. Assume ã 2 J0 and ãjS ≥ 0. Then ã ≥ 0 in ranks zero and one. Let n ½ 2
and assume, for an induction proof, that ã ≥ 0 in rank k for all k Ú n. If å 2 In then, as
noted in the definition of B, there exists an element å0 2 ª
(n�1) such that å � å0 2 J.
Thus hã,å � å0i ≥ 0. But hã,å0i ≥ 0 by the induction assumption. Hence hã,åi ≥ 0.
So ã ≥ 0 on both In and on S, hence on ª
n.

PROOF OF THEOREM 2.8. In view of Lemma 2.7 it must be shown that V is injec-
tive and surjective. First observe that by Proposition 2.6e)

�
(BŁ)kç

�
jS ≥ 0 for k ½ 1.
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Therefore (2.8) follows from (2.7). Thus if ç 2 I 0 and Vç ≥ 0 then (2.8) shows that
çjS ≥ 0. But since çjI ≥ 0 and T ≥ S + I it follows that ç ≥ 0. So V is injective.
To prove V is surjective suppose that ã 2 J0. Define ç 2 T0 to be ã on S and zero on
I . Then ç 2 I 0. Let ã0 ≥ Vç. Then ã0 2 J0 by Lemma 2.7. But ã0jS ≥ çjS ≥ ãjS
by (2.8) and the definition of ç. Hence ã0 ≥ ã by Lemma 2.9. So ã ≥ Vç. Finally, to
show that V ≥ Vª let ç 2 I 0. Using (2.6), (2.8) and the fact that Vç 2 J0 we have
(Vªç)(u) ≥ ç(uS) ≥ (Vç)(uS ) ≥ (Vç)(u).

REMARK 2.10. The equation (2.7) can be interpreted as providing an inductive al-
gorithm for computing Vªu, as defined in (2.6), when u is in ª
n. Choose an element
u1 2 ª
(n�1) in the equivalence class Bu, an element u2 2 ª
(n�2) in the equivalence
class Bu1, etc. Then un�1 is in ª and is therefore symmetric. So un ≥ Bun�1 ≥ 0. Let
Ps denote the symmetrization projection on T and define vk ≥ (uk � Psuk)� uk+1. Since
uk�Psuk 2 Ik and uk+1 ≥ Buk ≥ B(uk�Psuk) it follows from Definition 2.5 that vk 2 J.
Thus, writing u0 ≥ u, we have uk � uk+1 ≥ Psuk + vk. Summing from k ≥ 0 to n� 1 we
get

(2. 9) u ≥
n�1X
k≥0

Psuk +
n�1X
k≥0

vk.

The first sum is in S while the second sum is in J. Therefore the unique decomposition
u ≥ uS + uJ used in Definition 2.4 may be accomplished by taking uS ≥

Pn�1
k≥0 Psuk. But

if ç is in I 0 then ç Ž Ps ≥ ç. So (Vªç)(u) ≥
Pn�1

k≥0 ç(uk), which agrees with (2.7).

COROLLARY 2.11. If ã 2 J0 and is given by (2.2) with ãk ≥ 0 for k ≥ 0, 1, . . . , m�1
then ãm is symmetric. i.e. ãm 2 I 0.

PROOF. By Theorem 2.8 there exists an element ç 2 I 0 such that ã ≥ Vç. Suppose
that k Ú m. Then by (2.8), çkjSk ≥ ãjSk ≥ 0 and therefore çk ≥ 0. Equation (2.7) now
shows that ãm ≥ çm, which is in I 0.

The following remark has been made in [G2, Remark 3.5] but bears repeating here
because of the next theorem.

REMARK 2.12. If [ª, ª] ≥ ª then J0 contains no elements of finite rank except those
of rank zero. For if J0 3 ã ≥

Pm
k≥0 ãk with ãk 2 (ª
k)0, and if i+ j+1 ≥ m, with u 2 ª
i,

v 2 ª
j, ò andë 2 ª and ê ≥ [ò, ë], then hãm, u
ê
vi ≥ �hã, u
(ò^ë�[ò, ë])
vi ≥ 0.
Since such ê span ª, ãm ≥ 0 if m ½ 1. The assertion now follows by induction on m.

REMARK 2.13. In view of the preceding remark the space J0 is a particularly com-
plicated space in the interesting case that ª is semi-simple. The isomorphism of Theo-
rem 2.8 “parametrizes” J0 by the simpler space I 0 of symmetric tensors over ª0. Yet it
is the simple norm, (4.4), on J0 which plays a key role in the recently developed heat
kernel analysis on both compact Lie groups and complex Lie groups [D, DG, G1,2,3,4,
GM, Ha1,2, Hij1,2]. The norm on I 0 induced from (4.4) by V does not seem useful. But
the isomorphism V will be used as a technical tool in the next theorem. Its role in the
chain rule for the exponential map: ª ! G will be explained in Section 3.
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DEFINITION 2.14. J0 is generated by its finite rank elements if for any elementã 2 J0

and any nonnegative integer n there exists an element ã0 2 J0 of finite rank such that
ã � ã0 ≥ 0 in all ranks � n.

THEOREM 2.15. Suppose that ª is finite dimensional. J0 is generated by its finite
rank elements if and only if ª is nilpotent.

DEFINITION 2.16. Let ª be a nilpotent Lie algebra. Write ª0 ≥ ª and ªn ≥ [ª, ªn�1]
for n ≥ 1, 2, . . . . Let r be the largest integer such that ªr Â≥ 0. (So ª is an r + 1-step
nilpotent Lie algebra.) Define a weight function on ª as follows: define w(0) ≥ 2r+1. If
ò Â≥ 0 define

(2. 10) w(ò) ≥ 2n if ò 2 ªn but ò Û2 ªn+1.

For any decomposable k tensor define its weight by

(2. 11) w(ò1 
 Ð Ð Ð 
 òk) ≥
kX

j≥1
w(òj) k ½ 1.

LEMMA 2.17. If ò Â≥ 0 and ë Â≥ 0 are in ª then

(2. 12) w([ò, ë]) ½ w(ò) + w(ë).

PROOF. Suppose w(ò) ≥ 2n and w(ë) ≥ 2k. We may assume k � n � r. Then
[ò, ë] 2 ªn+1. Hence w([ò, ë]) ½ 2n+1 ½ 2n + 2k.

LEMMA 2.18. Suppose ª is a nilpotent Lie algebra. Let ç 2 N 0. Let m ½ 1 and
k ½ 1. Suppose that hç, ui ≥ 0 for any decomposable k-tensor u of weight ½ m. Then
h(BŁç), vi ≥ 0 for any decomposable k + 1 tensor v of weight ½ m.

PROOF. Suppose v ≥ ò1 
 Ð Ð Ð 
 òk+1. If v ≥ 0 then hBŁç, vi ≥ 0. So suppose v Â≥ 0
and w(v) ½ m. Let 1 � i � k. The permutation õ ≥ (i, i + 1) acts on f1, . . . , k + 1g and
also acts on v. One has

v � õv ≥ ò1 
 Ð Ð Ð 
 òi�1 
 (òi ^ òi+1) 
 òi+2 
 Ð Ð Ð 
 òk+1.

So, mod N , one has

B(v � õv) ≥ ò1 
 Ð Ð Ð 
 òi�1 
 [òi, òi+1] 
 òi+2 
 Ð Ð Ð 
 òk+1.

This decomposable tensor has weight½ m by (2.11) and (2.12). Hence h(BŁç), v�õvi ≥
hç, B(v � õv)i ≥ 0. Therefore

hBŁç,õvi ≥ hBŁç, vi.

Since õv Â≥ 0 and w(õv) ≥ w(v) ½ m the same argument can be applied to õv to conclude,
by induction, that

hBŁç,õ1 Ð Ð Ð õjvi ≥ hBŁç, vi

for any set of nearest neighbor transpositions (i, i + 1) of f1, . . . , k + 1g. Since these
generate the permutation group Sk+1 it follows that hBŁç, úvi ≥ hBŁç, vi 8ú 2 Sk+1.
Summing this identity over all ú 2 Sk+1 and dividing by (k + 1)! shows that hBŁç, vi ≥
hBŁç, Pk+1vi wherein Pk+1 is the symmetrization projection on ª
(k+1). Since BŁç is by
definition zero on symmetric tensors the lemma follows.
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COROLLARY 2.19. Suppose that ª is an r + 1-step nilpotent Lie algebra and that
ç 2 (ª
k)0 \N 0. Then

(2. 13) (BŁ)nç ≥ 0 if n ½ k(2r � 1) + 1.

PROOF. Since any non-zero vector ò in ª has weight at most 2r a decomposable k-
tensor u has weight at most k2r by (2.11) unless u is zero. Thus hç, ui ≥ 0 if u is a
decomposable k tensor of weight ½ k2r + 1. By induction and Lemma 2.18 it follows
that h(BŁ)nç, vi ≥ 0 if v is a decomposable n + k tensor of weight w(v) ½ k2r + 1. But
every element of ª has weight at least 20 ≥ 1. Hence w(v) ½ n + k for any decomposable
n+k tensor v. So if n+k ½ k2r +1 then h(BŁ)nç, vi ≥ 0 for all decomposable n+k tensors
v and therefore for all n + k tensors v.

EXAMPLE 2.20. If ª is the Heisenberg Lie algebra then r ≥ 1. In this case (2.13)
asserts that (BŁ)nç ≥ 0 when ç 2 N 0 \ (ª
k)0 if n ½ k + 1.

PROOF OF THEOREM 2.15. Assume first that ª is an r + 1-step nilpotent Lie algebra.
Suppose that ã 2 J0 and is given by (2.2). Let k0 ≥ inffk : ãk Â≥ 0g. It suffices to show
that there exists an element ã0 in J0 such that ã0 is of finite rank while ã � ã0 is zero in
rank � k0. Now ãk0 is symmetric by Corollary 2.11. That is, ãk0 is in I 0. Let ã0 ≥ Vãk0 .
Then a) ã0 is in J0 by Lemma 2.7 and b) the sum in (2.7) is finite because all terms are
zero from m ≥ k0(2r � 1) + 1 onward by Corollary 2.19. So ã0 is of finite rank. Clearly
(ã � ã0)k ≥ 0 for k � k0. Thus J0 is finitely generated.

Conversely suppose that ª is not nilpotent. Then there exists an integer s ½ 1 such
that ªn ≥ ªs Â≥ (0) for all n ½ s. So ªn ¦ ªs for all n ½ 0. Choose ë Â≥ 0 in ªs and
choose ç 2 ª0 3 hç, ëi Â≥ 0. Let ã ≥ Vç. By Theorem 2.8 ã is in J0. Clearly ã ≥ 0 in
rank 0 and ã ≥ ç in rank 1. In particular, hã, ëi Â≥ 0. It suffices to show that there exists
no element ã0 in J0 of finite rank which agrees with ã in rank one. Let ò1, . . . , òn 2 ª.
Let

uk ≥ f([Ð Ð Ð [ò1, ò2], . . . , òk] ^ òk+1) ^ Ð Ð Ð ^ òng k ≥ 1, . . . , n.

Then u1 ≥ fÐ Ð Ð (ò1 ^ ò2) ^ Ð Ð Ðg ^ òn is in In while un ≥ [Ð Ð Ð [ò1, ò2], . . . , òn] is in ª.
Moreover uk � uk+1 is in J for k ≥ 1, . . . , n � 1. Therefore if ã0 is in J0 and is zero in
rank n then hã0, u1i ≥ 0 while hã0, u1 � u2i ≥ 0. So hã0, u2i ≥ 0. Continuing in this
way we conclude that hã0, uni ≥ 0. Hence hã0, ªsi ≥ 0. But if ã0 ≥ ã in rank 1 we get
hã, ëi ≥ 0, which is a contradiction.

REMARK 2.21. The finite dimensionality of ª was required only in the proof of the
“only if” part of Theorem 2.15. The finite dimensionality can clearly be replaced in the
converse by the hypothesis that for some s f0g Â≥ ªs ² ªn for all n.
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3. Taylor coefficients. Consider now a Lie group G with (finite dimensional) Lie
algebra ª :≥ Te(G). Suppose that W is an open neighborhood of the identity e in G and
u 2 C1(W). Let f (ò) ≥ u(expò). It will be shown that the Taylor coefficients, ç, of f
at ò ≥ 0 and the “Taylor coefficients” (see (3.1)) of u at e are related by the equation
(2.6). The notation of Section 2 will be continued. The content of this section is algebraic
because convergence questions will not be considered. The main theorem, Theorem 3.2,
can be considered to be a systematization of the chain rule for the composition f ≥ uŽexp.

NOTATION 3.1. Let W be an open neighborhood of e in G and let u 2 C1(W). Define
(D0u)(a) ≥ u(a) for a 2 W and, for k ½ 1, let (Dku)(a) be the unique element of (ª
k)0

such that

(3. 1) h(Dku)(a), ò1 
 Ð Ð Ð 
 òki ≥ (ò̃1 . . . ò̃ku)(a), ò1, . . . , òk 2 ª, a 2 W

wherein ò̃ denotes the left invariant extension of ò to G. The Taylor coefficients of u at a
constitute the set f(Dku)(a)g1k≥0. It is useful to describe this set as a single element of T0.
The following suggestive notation of Driver [D] will be used for this element. Define

(3. 2) (1 � D)�1
a u ≥

1X
k≥0

(Dku)(a) u 2 C1(W).

Thus (1�D)�1
a u is an element of T0 whose rank k component is (Dku)(a). It follows from

(3.1), (3.2), (2.1) and the definition of Lie bracket that

(3. 3) (1 �D)�1
a u 2 J0.

If ª is a complex Lie algebra and u is holomorphic then the right side of (3.1) is
automatically complex linear. In this case the pairing on the left side of (3.1) should
be taken to be the complex bilinear pairing between ª
k and its dual space as complex
vector spaces. This is the case of interest in [D, DG, G4, GM]. The algebraic identities
of this section are applicable in this complex case without change. However u must then
be taken to be holomorphic. We will focus on the real case in the rest of this section.
ª is also a Lie group under addition and its Lie algebra will be identified with ª itself,

as usual, with zero Lie bracket. So if f is a smooth function on a neighborhood of 0 in ª
then its Taylor coefficients, at 0 say, define an element (1 � D)�1

0 f in T0 also. But since
the Lie bracket is zero one has

(3. 4) (1 �D)�1
0 f 2 I 0, f 2 C1(neighborhood of 0 in ª).

(That is, for a smooth function on a linear space the order of differentiations can be
interchanged.)

THEOREM 3.2. Suppose that W is an open neighborhood of e in G and that u 2
C1(W). Let f (ò) ≥ u(exp ò). Define

(3. 5) ã ≥ (1 � D)�1
e u and ç ≥ (1 �D)�1

0 f .
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Then

(3. 6) ã ≥ Vªç

where Vª is defined by (2.6).

PROOF. Since an element of I 0 is determined by its values on S the equation (2.6)
shows that an element ç 2 I 0 can be recovered from Vªç by restricting Vªç to S. Thus it
suffices to prove that if ã and ç are defined by (3.5) then ãjS ≥ ç. In rank 0 (3.5) gives
ã0 ≥ u(e) and ç0 ≥ f (0), which is just u(e). So ã0 ≥ ç0. In rank k ½ 1 observe that
Sk is spanned by fò
k : ò 2 ªg because this span contains the coefficient of s1s2 Ð Ð Ð sk

in (
Pk

j≥1 sjòj)
k where all the si are real. This coefficient, which is the k-th derivative
∂kÛ∂s1 Ð Ð Ð ∂sk of this polynomial at s1 ≥ s2 ≥ Ð Ð Ð ≥ sk ≥ 0, is a symmetrization of ò1 

Ð Ð Ð
òk. So it suffices to show that hã, ò
ki ≥ hç, ò
ki. But hç, ò
ki ≥ dkÛdtkf (tò)

þþþ
t≥0

≥

dkÛdtku(exp tò)
þþþ
t≥0

≥ hã, ò
ki.

EXAMPLE 3.3. Choose a neighborhood M of 0 in ª and a neighborhood W of e in G
such that exp: M ! W is a diffeomorphism. Write log ≥ (exp)�1: W ! M. Let ê 2 ª0

and define u(x) ≥ hê, log xi for x 2 W. Thus if f (ò) ≥ u(expò) then f (ò) ≥ hê, òi. The
Taylor coefficients of f are clearly given by

(3. 7) ç :≥ (1 �D)�1
0 f ≥ ê 2 T0.

The Taylor coefficients at e of u are therefore

(3. 8) (1 �D)�1
e hê, log(Ð)i ≥

1X
k≥0

(BŁ)kê.

The right side of (3.8) will be a finite sum, by Corollary 2.19, if ª is nilpotent. But in
general it will be an infinite sum. A similar argument shows that the Taylor series for
powers of the ê component of the logarithm may be computed as

(3. 9) (1 �D)�1
e (m!)�1hê, log(Ð)im ≥

1X
k≥0

(BŁ)kê
m.

REMARK 3.4. There is a simple intertwining identity that is well known, but seems
worthwhile repeating here in the present “local” context. For ò 2 ª define Rò: T ! T
by Ròu ≥ u 
 ò. Then RòJ ² J. So the adjoint RŁò: T0 ! T0 carries J0 into J0. Define
Aò ≥ RŁòjJ

0. Aò clearly lowers rank by one. It follows from the definitions (3.1) and (3.2)
that

(3. 10) Aò(1 � D)�1
e ≥ (1 �D)�1

e ò̃ for ò 2 ª.

See [DG, Section 7] for a discussion of how the identity (3.10) essentially determines
the map (1�D)�1

e from functions to T0 uniquely.
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4. Norms on universal enveloping algebras. Any norm, k k, on the tensor algebra
T of a real or complex Lie algebra induces a semi-norm, k kŁ, on the universal enveloping
algebra U :≥ TÛJ, by the usual rule:

(4. 1) kå + JkŁ ≥ inffkå + jk : j 2 Jg.

The induced seminorm k kŁ might actually be a norm on U or, in the opposite extreme,
might have such a large kernel that UÛ ker k kŁ is finite dimensional. There are two natu-
rally arising families of norms on T for which the nature of ker k kŁ has been investigated.
Choose a real, respectively Hermitian, inner product on a real, respectively complex, Lie
algebra ª. Define, for å given by (2.3), the norms

(4.2) kåk2
t ≥

NX
k≥0

k! t�kjåkj
2
ª
k , å 2 T, t Ù 0

(4.3) kåk2
,a ≥

NX
k≥0

(a2)k+1jåkj
2
ª
k , å 2 T, a Ù 0.

If ª is commutative then, in the notation of Section 2, J ≥ I and the decomposition
T ≥ S + J is an orthogonal decomposition for both of the norms (4.2) and (4.3). Thus,
identifying TÛJ with S, it follows that the induced seminorms on TÛJ agree with the
restrictions of the given norms to S. Hence the induced seminorms on U are always norms
when ª is commutative. The commutative case, with the norm (4.2), is the classical case,
which has been explored thoroughly, especially in the context of quantum field theory.
See e.g. [BSZ, Co, K, P] and their bibliographies.

If ª is not commutative the situation is quite different. The decomposition T ≥ S + J
still holds by the Poincaré-Birkhoff-Witt theorem, and in fact the corresponding projec-
tion on S is known explicitly [So]. But this decomposition is no longer orthogonal. So
the argument of the preceding paragraph no longer applies. In fact if ª is the Lie algebra
of a compact, simply connected Lie group, G, and the given inner product on ª is Ad G
invariant, then on the one hand, O. Hijab has shown [Hij1] that the seminorms induced
on U by the norms (4.2) are still norms, while on the other hand, the present author has
shown [G4] that the seminorms induced on U by the norms (4.3) have such a large ker-
nel that the quotient space UÛ ker k kŁ is finite dimensional. The dimension in this case
depends on a as well as on certain features of the representation ring of G. All of these
results have been obtained using harmonic analysis over the group G. The norms (4.3)
will be discussed in Section 5 in the simplest example at a purely Lie algebra level to
show how k kŁ can have a kernel. But B. Hall has pointed out to the author that a key step
in Hijab’s proof of the nondegeneracy of the quotient norms induced by (4.2) is valid for
a general finite dimensional Lie algebra. One has the following lemma of Hijab and Hall.

LEMMA 4.1 (HIJAB [HIJ1], HALL [HA3]). Let ( , ) be an inner product on a real or
complex finite dimensional Lie algebra ª. Fix t Ù 0 and let J̄ denote the closure of J in
T with respect to the norm (4.2). Then

J̄ ≥ J.
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PROOF. Any Lie algebra representationß:ª ! End(V) on a finite dimensional vec-
tor space V extends uniquely to a representation ß̂: T ! End(V) of the associative al-
gebra T. Moreover ß̂(J) ≥ 0. It suffices to show that ß̂ is continuous in the norm (4.2),
because if å 2 J̄ then continuity implies that ß̂(å) ≥ 0, whereas by [Di, Theorem 2.5.7],
if å Û2 J there exists a finite dimensional representation ß such that ß̂(å) Â≥ 0. O. Hijab
proved the continuity of ß̂ in case ª is the Lie algebra of a compact group G by mak-
ing use of harmonic analysis on G, [Hij1]. But for a general Lie algebra one may prove
continuity as follows, [Ha3].

For any fixed inner product on V let c ≥ supfkß(ò)kEnd V : jòj � 1g. It will first be
shown that if d ≥ dimª then

kß̂(å)kEnd(V) � ckdkÛ2jåjª
k .

Indeed if e1, . . . , ed is an orthonormal basis of ª and å ≥ Σai1ÐÐÐik ei1 
Ð Ð Ð
eik 2 ª

k then

kß̂(å)kEnd(V) ≥ kΣai1ÐÐÐikß(ei1 ) Ð Ð Ð ß(eik )kEnd(V)

� ckΣjai1ÐÐÐik j � ckdkÛ2(Σjai1ÐÐÐak j
2)1Û2

≥ ckdkÛ2jåjª
k .

Next, if å is given by (2.3) then

kß̂åkEnd(V) �
NX

k≥0
ckdkÛ2jåkjª
k

�
� NX

k≥0
fckdkÛ2(tkÛk!)1Û2g2

�1Û2� 1X
k≥0

(k!Ûtk)jåk j
2
ª
k

�1Û2

≥ exp(tc2d)kåkt.

Lemma 4.1 settles completely the conjecture made in [G2, Equation (3.4)].
Denoting now by J̄ the closure of J in T with respect to some arbitrary norm k k on

T, it is elementary that the induced seminorm, k kŁŁ, on TÛJ̄ is a norm and that TÛJ̄ and
UÛ ker k kŁ are isometrically isomorphic in a natural way. It is the topological dual space
of TÛJ̄ in the induced norm that has been a primary object of interest in [D, DG, G1,2,3,4,
GM, Hij1,2] for the norms (4.2), and in [G4] for the norms (4.3). The topological dual
space of TÛJ̄ clearly consists of those linear functionals on T which are continuous in
the given norm k k and which are zero on J (and a fortiori on J̄). The resulting subspace
of J0 can be characterized explicitly for the norms (4.2) and (4.3) with the help of the
dual space norms given as follows. Denote by ªŁ the dual space of ª as an inner product
space with the inner product dual to that given on ª. In the pairing (2.1), the dual norms
are then given respectively by

(4.4) kãk2
t ≥

1X
k≥0

(tkÛk!)jãk j
2
(ªŁ)
k ã 2 T0

(4.5) kãk2
,a ≥

1X
k≥0

(a2)�(k+1)jãk j
2
(ªŁ)
k ã 2 T0
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when ã is defined by (2.2). The topological dual space of TÛJ̄ is then given in the two
respective cases by

(4. 6) (J0)t ≥ fã 2 J0 : kãkt Ú 1g

and

(4. 7) J0
,a ≥ fã 2 J0 : kãk,a Ú 1g.

Now it is an elementary yet fundamental theorem that the universal enveloping alge-
bra of a direct sum of Lie algebras is isomorphic to the tensor product of their universal
enveloping algebras [B, Chapter I, Section 2.2]. The main result of this section will show
that this algebraic isomorphism is also a Hilbert space isomorphism in the norm induced
by (4.2) (for any t Ù 0.) The motivation for the product theorem in this case comes from
the fact that when ª is complex and is the Lie algebra of a simply connected Lie group G
then the Taylor map (1�D)�1

e : fholomorphic functions on Gg ! J0, described in Sec-
tion 3, is actually a unitary operator onto (J0)t when its domain is restricted to the Hilbert
space of square integrable holomorphic functions on G sketched in the Introduction. This
theorem is part of the reason for interest in the norms (4.2) and (4.4). It also motivates
the product theorem because the heat kernel measure of the direct sum of Lie algebras
(with sum inner product) is the product of the heat kernel measures, while an L2 space
of a product of measures is the tensor product of the L2 spaces. The theorems of this
section could in this way be derived from the results in [DG]. But it seems worthwhile
to give an elementary combinatoric proof of this essentially algebraic theorem which
avoids the heat kernel analysis used in [DG]. The comultiplication that appears in the
algebraic proof (cf. (4.12)) can be understood as a replacement of the Leibnitz formula
for derivatives of a product of two functions.

NOTATION 4.2. ª1 and ª2 will denote two real Lie algebras with real inner products
( , ), i ≥ 1, 2 or two complex Lie algebras with Hermitian inner products. Let ª ≥ ª1ýª2

be the direct sum of Lie algebras and of inner product spaces. Thus the Lie bracket is
[ò1 + ò2, ë1 + ë2] ≥ [ò1, ë1] + [ò2, ë2] where òj and ëj are in ªj, j ≥ 1, 2. Denote by T1,
T2 and T the respective tensor algebras over ª1, ª2 and ª. J1, J2 and J will denote the
corresponding two sided ideals defined as in Section 2 and J0

1, J0
2 and J0 their annihilators

in T01, T02 and T0 respectively. There is a unique algebra homomorphism ö1: T1 ! T
defined by ö1(1) ≥ 1, ö1(ò) ≥ ò ý 0 2 ª for ò in ª1. Define ö2: T2 ! T similarly. Then
there is a linear map ö: T1 
 T2 ! T determined by

(4. 8) ö(å1 
 å2) ≥ ö1(å1)ö2(å2) åi 2 Ti, i ≥ 1, 2.

Define (J0)t as in (4.6) and define the Hilbert spaces (J0
i )t, i ≥ 1, 2 similarly. Whereas ten-

sor products have heretofore referred to the algebraic tensor product, the tensor product
of Hilbert spaces such as (J0

1)t 
 (J0
2)t will mean the Hilbert space tensor product.
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THEOREM 4.3. There is a unique linear isometry of Hilbert spaces

(4. 9) L: (J0
1)t 
 (J0

2)t ! (J0)t

such that

(4. 10) hLw, öåi ≥ hw,åi 8å 2 T1 
 T2 and 8w 2 (J0
1)t 
 (J0

2)t.

L is surjective (hence orthogonal or unitary).

REMARK 4.4. The pairing hw,åi on the right side of (4.10) is well defined because
the map ã1 ! hã1,å1i is continuous on (J0

1)t for each element å1 in T1, and the same
for T2. So hw,åi is a finite sum of continuous linear functionals w ! hw,å1 
 å2i.

REMARK 4.5. Let ª be a finite dimensional Lie algebra with an inner product. Fix
t Ù 0 and denote by T̄ the completion of T in the norm (4.2). Denote by P: T̄ ! T̄	J the
orthogonal projection. The kernel of PjT is the closure of J in T, which by Lemma 4.1 is
just J. Hence P induces an injective linear map TÛJ ! T̄ 	 J. In this way the universal
enveloping algebra U :≥ TÛJ inherits the inner product in T̄ 	 J.

Now if ª is a direct sum of Lie algebras as in Notation 4.2 then the map ö: T1 
T2 !
T defined in (4.8) descends to the standard algebra isomorphism U1 
 U2 ! U for
universal enveloping algebras [B, Chapter I, Section 2.2]. The next theorem asserts that
this isomorphism is an isometry of inner product spaces.

THEOREM 4.6. Fix t Ù 0. Let Ui ≥ TiÛJi, for i ≥ 1, 2 and U ≥ TÛJ be the uni-
versal enveloping algebras with the inner products induced by the norm (4.2) as in Re-
mark 4.5. Then the map ö of (4.8) induces a surjective isometry from the inner product
space U1 
 U2 onto U. Specifically, if ôi: Ti ! Ui, i ≥ 1, 2 and ô: T ! U are the
canonical projections then

(4. 11) kôöåkU ≥ k(ô1 
 ô2)åkU1
U2 , å 2 T1 
 T2.

Theorem 4.6 will be deduced from Theorem 4.3 by duality.

NOTATION 4.7. The comultiplication ∆: T ! T 
 T is the algebra homomorphism
satisfying ∆1 ≥ 1 
 1 and ∆ê ≥ ê 
 1 + 1 
 ê for ê 2 ª [Sw]. The action of ∆ on a
decomposable tensor is then given by the shuffle product [R, Sw, p. 248]:

(4. 12) ∆(ê1 Ð Ð Ð êm) ≥
mX

k≥0

X
i1,...,ik

j1,...,jm�k

(êi1 Ð Ð Ð êik ) 
 (êj1 Ð Ð Ð êjm�k)

where in the sum, (i1, . . . , ik, j1, . . . , jm�k) is a permutation of (1, . . . , m) such that i1 Ú
i2 Ú Ð Ð Ð Ú ik and j1 Ú j2 Ú Ð Ð Ð Ú jm�k .
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Denote by TiŁ the tensor algebra over ªŁi for i ≥ 1, 2. Via the pairing (2.1) TiŁ embeds
into T0i , i ≥ 1, 2. ªŁ1 embeds into ªŁ by the rule hx, òý ëi ≥ hx, òi for x 2 ªŁ1, ò 2 ª1 and
ë 2 ª2. Let õ1: T1Ł ! T0 be the induced algebra map. Note that õ1(T1Ł ) annihilates the
2-sided ideal in T generated by 0 ý ª2. Define õ2: T2Ł ! T0 analogously. Then

(4. 13) õ1 
 õ2: T1Ł 
 T2Ł ! T0 
 T0 ² (T 
 T)0.

Thus the map † given by

(4. 14) † ≥ ∆Ł(õ1 
 õ2): T1Ł 
 T2Ł ! T0

is well defined. Of course we have

(4. 15) h†w,å0i ≥ h(õ1 
 õ2)w, ∆å0i, w 2 T1Ł 
 T2Ł , å
0 2 T.

Finally, denote by J0 the two sided ideal in T generated by

fò ^ ë : ò 2 ª1 ý 0, ë 2 0 ý ª2g.

LEMMA 4.8. If u 2 (ªŁ1)
r and v 2 (ªŁ2)
s then

(4. 16) †(u 
 v) ≥
X
ú2Sr,s

ú
�
(õ1u)(õ2v)

�

where Sr,s is the set of permutations ú of f1, . . . , r + sg such that ú(i) Ú ú(i + 1) for
i ≥ 1, . . . , r � 1, and for i ≥ r + 1, . . . , r + s � 1. The action of a permutation ú on
(ªŁ)
(r+s) is given by ú(z1 Ð Ð Ð zr+s) ≥ zú�1(1) Ð Ð Ð zú�1(r+s).

PROOF. For simplicity of writing we will omit õ1 and õ2 and identify (ªŁi )
m as a sub-
space of (ªŁ)
m for i ≥ 1, 2. Then, with u and v as above, and w ≥ u
 v, equation (4.15)
reads

h†(u 
 v),å0i ≥ hu 
 v, ∆å0i

Take å0 ≥ ê1 Ð Ð Ð êm 2 ª
m and insert the expansion (4.12) for ∆å0. One sees first that
hu
 v, ∆å0i ≥ 0 if m Â≥ r + s. Hence †(u 
 v) lies in (ªŁ)(r+s) . Second, even if m ≥ r + s
most of the terms in hu 
 v, ∆å0i arising from the expansion (4.12) are zero. Only those
terms with k ≥ r and m� k ≥ s can differ from zero. For these terms we may write

hu 
 v, ∆å0i ≥
−

uv,
X
ú2Sr,s

ú�1å0
×

,

which is easily verified on decomposable tensors u and v. It now follows that
h†(u 
 v),å0i ≥ h

P
ú2Sr,s ú(uv),å0i. This proves (4.16).

LEMMA 4.9.

(4.17) h†w, öåi ≥ hw,åi 8w 2 T1Ł 
 T2Ł and 8å 2 T1 
 T2.

(4.18) h†w, J0i ≥ 0 8w 2 T1Ł 
 T2Ł
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PROOF. It suffices to prove (4.17) and (4.18) in case w ≥ (x1 Ð Ð Ð xr)
 (y1 Ð Ð Ð ys) with
all xj 2 ª1 and all yk 2 ª2. The straightforward and well known identity ∆(ê1 ^ ê2) ≥
(ê1 ^ ê2) 
 1 + 1 
 (ê1 ^ ê2) which holds for all êi 2 ª, i ≥ 1, 2, together with the fact
that ∆ is a homomorphism shows that ∆J0 ² J0 
 T + T 
 J0. Since J0 is contained in
the 2-sided ideal generated by 0ýª2 it follows that h(õ1 
õ2)w, J0 
 Ti ≥ 0. Similarly
h(õ1 
 õ2)w, T 
 J0i ≥ 0. (4.18) then follows from (4.15).

It suffices to prove (4.17) in case å ≥ (ò1 Ð Ð Ð òj) 
 (ë1 Ð Ð Ð ën) with all òi 2 ª1 and all
ëk 2 ª2. Suppressing ö1 and ö2 for simplicity of writing, (4.16) shows that

(4. 19) h†w, öåi ≥
X
ú2Sr,s

hú(x1 Ð Ð Ð xry1 Ð Ð Ð ys), ò1 Ð Ð Ð òjë1 Ð Ð Ð ëni.

Each term on the right is zero if j Â≥ r or n Â≥ s becauseªŁ1 annihilatesª2 and ªŁ2 annihilates
ª1. Similarly hw,åi is also zero if j Â≥ r or n Â≥ s. If j ≥ r and n ≥ s then only the identity
permutation contributes a nonzero term to the right side of (4.19), and this term is hw,åi.

COROLLARY 4.10.

(4.20) T ≥ ö(T1 
 T2)ý J0

(4.21) Range† ≥ J0
0 \ TªŁ .

PROOF. T is spanned by products ê1 Ð Ð Ð êm with each êj in ª1 ý 0 or 0 ý ª2. Such a
product can be rearranged mod J0 so as to have all factors from ª1 ý 0 on the left. This
shows that T ≥ ö(T1 
 T2) + J0. Moreover if å 2 T1 
 T2 and ö(å) 2 J0 then by (4.18)
and (4.17) 0 ≥ h†w, ö(å)i ≥ hw,åi for all w 2 T1Ł 
 T2Ł . Hence å ≥ 0. This proves
(4.20). Now † preserves total rank by (4.16) (and so does ö). Therefore it suffices to
prove (4.21) rank by rank. Both† and ö are injective by (4.17). Denoting tensors of rank
m by a subscript m one therefore has

dim†
�
(T1Ł 
 T2Ł)m

�
≥ dim ö

�
(T1 
 T2)m

�

which by (4.20) equals dim Tm � dim(J0)m ≥ dim annihilator of (J0)m in (T0)m. Since
†
�
(T1Ł 
 T2Ł )m

�
² (J0

0)m by (4.18) the assertion (4.21) follows in rank m.

LEMMA 4.11. The map †: T1Ł 
 T2Ł ! TªŁ is an isometry of inner product spaces
with the norm (4.4) on T1Ł , T2Ł and TªŁ and with the cross norm inner product on the
algebraic tensor product T1Ł 
 T2Ł .

PROOF. The subspaces Tr,s � (ªŁ1)
r 
 (ªŁ2)
s of T1Ł 
 T2Ł are mutually orthogonal
with respect to the inner product associated to the norm (4.4), for distinct pairs (r, s)
and (r0, s0). Moreover the images of two such subspaces under † are clearly mutually
orthogonal if r + s Â≥ r0 + s0 because the images have different total rank.
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Suppose r+s ≥ r0+s0. Let x1, . . . , xr, x01, . . . , x0r0 2 ª
Ł
1 and let y1, . . . , ys, y01, . . . , y0s0 2 ª

Ł
2.

Then by (4.16) one has

(4. 22)

�
†[(x1 Ð Ð Ð xr) 
 (y1 Ð Ð Ð ys)],†[(x01 Ð Ð Ð x0r0) 
 (y01 Ð Ð Ð y0s0)]

�
(ªŁ)
(r+s)

≥
X
ú2Sr,s

ú02Sr0 ,s‘

�
ú(x1 Ð Ð Ð xry1 Ð Ð Ð ys), ú

0(x01 Ð Ð Ð x
0
r0y

0
1 Ð Ð Ð y0s0)

�
(ªŁ)
(r+s) .

Any inner product on the right is a product of inner products of elements of ªŁ. At least
one factor will be zero unless r ≥ r0 and s ≥ s0 because ªŁ1 ý 0 is orthogonal to 0 ý ªŁ2.
Hence the images †(Tr,s) and †(Tr0,s0) are mutually orthogonal unless r ≥ r0 and s ≥ s0.
It suffices therefore to show that †jTr,s is isometric for each pair r, s. Take r0 ≥ r and
s0 ≥ s in (4.22). Consider a term on the right with ú0 Â≥ ú. Because of the monotonicity
imposed on ú and ú0 these two permutations are determined completely by the respective
sets ú(f1, . . . , rg) and ú0(f1, . . . , rg), which are therefore distinct sets. Hence there exists
an element j in the first set which is not in the second set. Thus there exists a number
p 2 f1, . . . , rg and q in fr + 1, . . . , r + sg such that ú(p) ≥ j ≥ ú0(q). In the representation
of the ú, ú0 term in (4.22) as a product of inner products of elements of ªŁ the j-th factor
is (xp, y0q�r), which is zero. Therefore all the terms on the right of (4.22) are zero except
those for which ú0 ≥ ú. But when ú0 ≥ ú the inner product is the same as for the identity
permutation. Since the cardinality of Sr,s is (r + s)!Û(r! s!) one therefore obtains

(4. 23) (†[u 
 v],†[u0 
 v0])(ªŁ)
(r+s) ≥ (r + s)!Û(r! s!)(u, u0)(ªŁ1)
r (v, v0)(ªŁ2)
s

for u, v, u0, v0 decomposable and therefore for all u and u0 in (ªŁ1)
r and all v and v0 in
(ªŁ2)
s. In view of the definition (4.4) one need only divide both sides of (4.23) by (r + s)!
and multiply by tr+s to obtain the asserted preservation of inner products by †.

The next elementary lemma is essentially the statement of existence of the standard
isomorphism theorem among universal enveloping algebras.

LEMMA 4.12.
J ≥ ö(J1 
 T2 + T1 
 J2) + J0.

PROOF. Identifying Ti with öi(Ti), i ≥ 1, 2, the lemma asserts that J ≥ J1T2 + T1J2 +
J0. But Ji ² J for i ≥ 0, 1, 2. So J ¦ J1T2 + T1J2 + J0. Since T1 and T2 commute mod J0

the right side is a 2-sided ideal. It contains the generators of J because if òj and ëj 2 ªj

for j ≥ 1, 2 then (ò1 + ò2) ^ (ë1 + ë2) � [ò1 + ò2, ë1 + ë2] ≥ (ò1 ^ ë1 � [ò1, ë1]) +
(ò2 ^ ë2 � [ò2, ë2]) + (ò1 ^ ë2 + ò2 ^ ë1) 2 J1 + J2 + J0.

PROOF OF THEOREM 4.3. Let T̄iŁ ≥ fã 2 T0i : kãkt Ú 1g for i ≥ 1, 2. Then
TiŁ is dense in T̄iŁ and (J0

i )t ² T̄iŁ by (4.6). Define T̄ªŁ similarly. Then (J0)t ² T̄ªŁ . By
Lemma 4.11 † extends to a unique isometry

(4. 24) †̄: T̄1Ł 
 T̄2Ł ! T̄ªŁ
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of Hilbert spaces. By (4.17) and (4.18) and continuity in w one has

(4. 25) h†̄w, öåi ≥ hw,åi, w 2 T̄1Ł 
 T̄2Ł , å 2 T1 
 T2

and

(4. 26) h†̄w, J0i ≥ 0 w 2 T̄1Ł 
 T̄2Ł .

Define

(4. 27) L ≥ †̄j(J0
1)t 
 (J0

2)t.

Then L is an isometry into T̄ªŁ . Suppose that å 2 J1 
T2 + T1
 J2. For any element w in
domain L (4.25) shows that hLw, öåi ≥ hw,åi, which is zero. Hence Range L annihilates
ö(J1 
 T2 + T1 
 J2). Range L also annihilates J0 by (4.26). Therefore by Lemma 4.12
Range L annihilates J. So L maps into (J0)t. To prove surjectivity suppose that ã is in
(J0)t. Since J0 ² J, ã annihilates J0. Let ãm be the sum of all the homogeneous com-
ponents of ã up to rank m. Since the ideal J0 is the span of its homogeneous compo-
nents ãm also annihilates J0. By (4.21) there exists an element wm 2 T1Ł 
 T2Ł such
that †wm ≥ ãm. Now ãm converges to ã and †̄ is isometric. Hence wm converges to an
element w 2 T̄1Ł 
 T̄2Ł . (In accordance with our conventions above, this tensor product
is complete.) Clearly †̄w ≥ ã. For any element å 2 J1 
 T2 + T1 
 J2 one has ö(å) 2 J
by Corollary 4.10. Hence 0 ≥ hã, öåi ≥ h†̄w, öåi ≥ hw,åi by (4.25). So w annihilates
both J1 
 T2 and T1 
 J2. Therefore w 2

�
(J0

1)t 
 T̄2Ł
�
\
�
T̄1Ł 
 (J0

2)t

�
≥ (J0

1)t 
 (J0
2)t.

This proves the surjectivity of L.
It remains to prove the uniqueness of any isometry L satisfying (4.9) and (4.10). Sup-

pose that L0 is another such isometry. If w 2 (J0
1)t 
 (J0

2)t and ã ≥ Lw � L0w then by
(4.9) ã annihilates J, and in particular J0. By (4.10) ã annihilates ö(T1 
 T2). Therefore,
by (4.20), ã annihilates T. So ã ≥ 0.

PROOF OF THEOREM 4.6. If f : TÛJ ! R or C is a continuous linear functional then
ã :≥ f Ž ô is a continuous linear functional on T in the norm (4.2), and annihilates
J. Thus, in view of the pairing (2.1) and the definition (4.4), we have ã 2 (J0)t and
moreover kãkt ≥ kfkUŁ

t
wherein UŁ

t denotes the topological dual space of U in the given
inner product. Conversely, an element ã 2 (J0)t defines an element f in UŁ

t of the same
norm.

These preliminaries having been said, a standard duality argument is now applicable:
for any element å 2 T1 
 T2 one has

(4. 28)

kôöåkU ≥ supfjhf ,ôöåij : f 2 UŁ
t , kfkUŁ

t
≥ 1g

≥ supfjhã, öåij : ã 2 (J0)t , kãkt ≥ 1g

≥ supfjhLw, öåij : w 2 (J0
1)t 
 (J0

2)t , kwk ≥ 1g

since L is a surjective isometry.
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On the other hand, since the dual space of the inner product space U1 
U2 is (J0
1)t 


(J0
2)t one has

(4. 29) k(ô1 
 ô2)åkU1
U2 ≥ supfjhw,åij : w 2 (J0
1)t 
 (J0

2)t, kwk ≥ 1g.

(4.11) now follows from (4.10), (4.28) and (4.29). The surjectivity follows from (4.20)
and the fact that J0 ² J.

REMARK 4.13. If ª1 and ª2 are commutative then, as already noted at the beginning
of this section, J1, J2 and J have easily identifiable orthogonal complements in the norm
(4.2), namely the symmetric tensors. By identifying the three quotient spaces with spaces
of symmetric tensors one can prove Theorem 4.6 by direct and easy computations. This
is most efficiently carried out by computing with the coherent states, which may be de-
scribed as follows. Let exp(ê) ≥

P1
n≥0(n!)�1ê
n, ê 2 ª. (The factors (n!)�1 are correct

for the choice of norms (4.2).) Fixing t Ù 0 and using the notation of the proof of Theo-
rem 4.6, write P for the projection of T̄ onto T̄ 	 J. Similarly define Pi: T̄i ! T̄i 	 Ji for
i ≥ 1, 2. The identity
(4. 30)�

P exp(ò1 + ò2), exp(ë1 + ë2)
�

T̄

≥ (P1 exp ò1, expë1)T̄1
(P2 expò2, expë2)T̄2

òi, ëi 2 ªi, i ≥ 1, 2

is a correct identity and is easily verifiable in the commutative case because all of the
projections, P, P1, P2, can clearly be removed in this case, and both sides can be computed
explicitly. It would follow from (4.30), together with density arguments, that the map

(P1 expò1)
 (P2 expò2) ! P exp(ò1 + ò2)

extends to an isometry from J?1 
 J?2 ! J?. This is the basis for the standard algebraic
proof of isometry in the commutative case. See e.g. the recent text [P, Proposition 19.6]
for a detailed exposition of this by now classical technique. But in the noncommutative
case the projections P, P1, P2 cannot be removed in (4.30). The only proof of (4.30)
known to this author depends on the fact that the three inner products in (4.30) represent
reproducing kernels. See [DG, Equation (6.1)]. Whereas the elements exp ò are the co-
herent states in the commutative case, it is the elements P expò which play this role in
general. The difficulty of dealing with these projections seems to make a direct proof of
Theorem 4.6 difficult if not infeasible, without going through the dual spaces as above.

REMARK 4.14. When ª is commutative the symmetric tensors of finite rank all lie
in (J0)t and are dense. For what other Lie algebras does (J0)t contain a dense linear set of
elements of finite rank? The motivation for this question is given in [DG, Section 7]. In
view of Theorem 2.15 it is reasonable to conjecture that (J0)t has a dense set of elements
of finite rank if and only if ª is nilpotent. In the original version of this paper the author
conjectured this theorem but was unable to prove either half of it. The referee, however,
has provided the following proof of one half of this conjecture. It is based on Lemma 4.1.
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THEOREM 4.15 (REFEREE). Let ª be a real or complex finite dimensional Lie algebra
with an inner product. Let t Ù 0. If the finite rank elements in (J0)t are dense in (J0)t then
ª is nilpotent.

PROOF. Suppose that ª is not nilpotent. Then by Theorem 2.15 there exists an integer
n and an elementã in J0 such that for all å in J0 of finite rank, ã and å differ in rank� n.
Denote by T�n the subspace of T consisting of elements of rank � n. Any element ç in
J0 annihilates J \ T�n and therefore, by restriction, defines an element çjn of

�
T�nÛ(J \

T�n)
�Ł

. Moreover, every element of
�
T�nÛ(J \ T�n)

�Ł
arises in this way because if u 2

T�n but u Û2 J then there exists ç 2 J0 such that ç(u) Â≥ 0. That is, fçjn : ç 2 J0g
separates from zero all non zero elements of the finite dimensional vector space T�nÛ(J\
T�n) and therefore constitutes its entire dual space.

On the other hand, not every element of
�
T�nÛ(J \ T�n)

�Ł
arises as the restriction

of a finite rank å in J0, or else there would be a finite rank å 2 J0 which agrees with
ã up through rank n. Thus the finite rank å’s in J0 give rise to a proper subspace of�
T�nÛ(J \ T�n)

�Ł
. So there exists an element u in T�n such that u Û2 J but å(u) ≥ 0 for

all finite-rank å in J0.
Now, by the Hijab-Hall Lemma 4.1, u Û2 J̄. So there exists ç 2 (J0)t such that ç(u) Â≥

0. For example if Tt denotes the completion of T in the norm (4.2) and J? is the orthogonal
complement of J in Tt then, upon identifying (J0)t with J? via the pairing (2.1), we may
take ç ≥ Pu, where P is the projection onto J?. It now follows that finite-rank å’s in J0

cannot be dense in (J0)t , since if åm 2 J0 and is of finite rank and the åm converge in
(J0)t norm to ç then ç(u) ≥ lim åm(u) ≥ 0 because åm(u) ≥ 0 for all m.

REMARK 4.16 [PRODUCT RULE]. Take w ≥ w1 
w2 in (4.15) with wi 2 TiŁ , i ≥ 1, 2
and replace å0 by å0ò for ò ≥ ò1 ý ò2 2 ª1 ý ª2. One obtains h†w,å0òi ≥ h(õ1w1) 

(õ2w2), (∆å0)(ò
1+1
ò)i. But since õ1w1 annihilates the two sided ideal in T generated
by 0 ý ª2 while õ2w2 annihilates that generated by ª1 ý 0 the previous identity may be
written, upon taking into account the definition (4.14)

hRŁò†w,å0i ≥ h(õ1w1) 
 (õ2w2), (∆å0)(ò1 
 1 + 1 
 ò2)i

≥ h(õ1RŁò1
w1) 
 (õ2w2) + (õ1w1)
 õ2(RŁò2

w2), ∆å0i

where Rò is defined in Remark 3.4. Therefore

(4. 31) RŁò†w ≥ †(RŁò1

 I + I 
 RŁò2

)w, òi 2 ªi, i ≥ 1, 2 and w 2 T1Ł 
 T2Ł .

Now † extends to a linear map †̂ from the large space T01
T02 (algebraic tensor product)
because † preserves total rank of tensor products of homogeneous tensors. Moreover
(4.31) continues to hold for †̂. Restricting then to the subspace J0

1 
 J0
2 (algebraic tensor

product) of this large space one obtains

(4. 32) Aò†̂w ≥ †̂(Aò1 
 I + I 
 Aò2 )w, òi 2 ªi, i ≥ 1, 2, w 2 J0
1 
 J0

2.

One should note here that †̂w 2 J0, by Lemma 4.12, when w 2 J0
1 
 J0

2.
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The identity (4.31) is best interpreted in the context of Remark 3.4. If ui 2 C1(Gi)
and if wi is the set of Taylor coefficients of ui at the identity element of Gi for i ≥ 1, 2
then the definition (4.14) (and its extension to †̂) simply expresses the Taylor coefficients
of u1(x1)u2(x2) at (e1, e2) 2 G1 ð G2 in terms of w1 and w2 by means of Leibnitz’ rule.
Correspondingly (4.32) is exactly the product rule.

Let us finally go one step further and write the product rule (4.32) in the Hilbert space
format

(4. 33) AòL ≥ L(Aò1 
 I + I 
 Aò2 )

wherein it is desirable to interpret the three (unbounded) operators Aò, Aò1 , Aò2 as closed
operators in their respective Hilbert spaces (J0)t, (J0

1)t, and (J0
2)t . However there are se-

rious Hilbert space domain issues for these operators. These domain issues are only un-
derstood in special cases, for example Lie algebras of compact type. See e.g. [DG, Sec-
tion 7]. However, in the presence of sufficiently strong information on the domains of the
operators Aò and Aòi , i ≥ 1, 2, the product rule (4.33), together with the obvious identity
L(1 
 1) ≥ 1 completely determines the isometry L. See [DG, Section 7] for typical
results of this kind.

5. Example: Degeneracy of norms for sl (2,C). The semi-norms induced on the
universal enveloping algebra U, as in (4.1), by the norms (4.3) can be highly degenerate.
As already noted in Section 4, UÛ ker k kŁ is finite dimensional when one induces from
the norms (4.3) if ª is the Lie algebra of a compact simply connected group G which
leaves the given inner product on ªAd invariant, [G4]. The analysis in [G4] depends
on properties of heat kernels on Lie groups. It is illuminating to see, at a purely Lie
algebraic level, how this degeneracy arises in the simplest example. In this section the
norms kå + JkŁ of certain nonzero elements in U will be computed and shown to be
zero if the parameter a in (4.3) is sufficiently small. This example is based on su(2). But
the computations are most easily made in its complexification sl (2,C). The Ad SU(2)
invariant Hermitian inner product on sl (2,C) will be used.

Let ª ≥ sl (2,C) and define (ò, ë) ≥ 2 trace (ëŁò) where ëŁ is the Hermitian adjoint

of ë. Let f ≥
 

0 0
1 0

!
and h ≥

 
1 0
0 �1

!
. Then one can compute easily that jf j2 ≥ 2,

jhj2 ≥ 4 and the Lie bracket [f , h] ≥ 2f . Write u^ v ≥ u
 v� v
 u for u and v in T and

u^n h ≥
�
Ð Ð Ð

�
(u^ h)^ h

�
^ Ð Ð Ð ^ h

�
(n factors of h). Denote f 
 f 
 Ð Ð Ð 
 f (k factors)

by f k. It follows by induction on k that

(5. 1) f k ^ h ≥ (2k)f k mod J k ≥ 1, 2, . . . .

Hence

(5. 2) f k ^n h ≥ (2k)nf k mod J k ½ 1 and n ½ 1.
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PROPOSITION 5.1. f k is in the closure of J in the norm (4.3) if a Ú kÛ2.

PROOF. Since jhjf khmjª
(j+k+m) ≥ jhjj+mjf jk ≥ (4j+m2k)1Û2 and since f k ^n h is a sum
of at most 2n terms of the form šhjf khm with j + m ≥ n one has

(5. 3) jf k ^n hjª
(k+n) � 2n(4n2k)1Û2 ≥ 22n2kÛ2.

By (5.2) f k � (2k)�nf k ^n h 2 J. Hence (4.1), (4.3) and (5.3) yield

kf k + JkŁ � kf k � (f k � (2k)�nf k ^n h)k,a

≥ k(2k)�nf k ^n hk,a

≥ (2k)�nak+n+1kf k ^n hkª
(k+n)

� (2aÛk)nak+12kÛ2.

Taking the limit as n !1 shows that kf k + JkŁ ≥ 0 if 2a Ú k.

COROLLARY 5.2. Denote by J,a the closure of J in T in the norm (4.3). Then f k 2 J,a

for a Ú kÛ2 and f k Û2 J for any k ½ 1. In particular the norm k kŁ on U has an infinite
dimensional kernel for all a Ù 0.

PROOF. The statement that f k 2 J,a for a Ú kÛ2 is the content of Proposition 5.1. By
[B, Chapter I, Lemma 7.3] any homogeneous tensor in J must be in the ideal I generated
by fò^ë : ò, ë 2 ªg. Since no decomposable tensor is in I , f k is not in J. In fact no linear
combination of ff kgkÙ2a is in J because the highest power in such a linear combination is
not in I . Since all of these elements are in J,a the kernel of k kŁ is infinite dimensional.

REMARK 5.3. Since the norm (4.3) gets stronger as a increases one always has J,a ¦
J,b if 0 Ú a Ú b. That is, J,a decreases as a increases. But Corollary 5.2 suggests that the
decrease may take place in jumps located at the half integers a ≥ kÛ2 because f k 2 J,a

if a Ú kÛ2 while f k may not be in J,a if a Ù kÛ2. Actually this crude argument gives an
approximately correct conclusion. J,a does decrease in jumps. But the jumps occur when
a2 ≥ (kÛ2)

�
(kÛ2) + 1

�
, k ≥ 1, 2, . . . rather than when a2 ≥ (kÛ2)2. This can be deduced

from the example in [G4, Section 5] wherein it is shown that the dual space to TÛJ,a is
finite dimensional and has dimension

(5. 4) dim(TÛJ,a) ≥
X

s(s+1)Úa2

(2s + 1)2.

Here s runs over the spin values fkÛ2 : k ≥ 0, 1, 2, . . .g. In order to deduce (5.4) from
[G4, Equation (5.4)] one should observe, as already noted in Section 4 above, that the
topological dual space to TÛJ,a is the space J0

,a defined in (4.7). It is the space J0
,a which

is studied in [G4]. A direct Lie algebra proof of (5.4) is not at present available. It is
interesting to observe that multiplication in T is separately continuous in the norm (4.3)
because multiplication by an element of ª is bounded. Consequently J,a is a 2-sided ideal
in T and TÛJ,a is naturally a normed algebra. The example in [G4, Section 5] shows that
if ôs is the representation of SU(2) of spin s and dôs is the map from T to operators on
the representation space of ôs induced by ôs then J,a is in the kernel of dôs whenever
s(s + 1) Ú a2.
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