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ORTHOGONAL POLYNOMIALS WITH WEIGHT 
FUNCTION (1 - x ) a ( l + x)13 + M8(x + 1) + N8(x - 1) 

BY 

T O M H. K O O R N W I N D E R 

ABSTRACT. We study orthogonal polynomials for which the 
weight function is a linear combination of the Jacobi weight function 
and two delta functions at 1 and — 1. These polynomials can be 
expressed as 4 F 3 hypergeometric functions and they satisfy second 
order differential equations. They include Krall's Jacobi type 
polynomials as special cases. The fourth order differential equation 
for the latter polynomials is derived in a more simple way. 

0. Introduction. The nonclassical orthogonal polynomials which are eigen-
functions of a fourth order differential operator were classified by H. L. Krall 
[6], [7]. These polynomials were described in more details by A. M. Krall [5]. 
The corresponding weight functions are special cases of the classical weight 
functions together with a delta function at the end point(s) of the interval of 
orthogonality. A number of A. M. Krall's results can be obtained in a more 
satisfactory way: 

(a) Jacobi, Legendre and Laguerre type polynomials are connected with 
each other by quadratic transformations and a limit formula. 

(b) The power series for the Jacobi type polynomials is of 3F2-type. 
(c) There is a pair of second order differential operators not depending on n 

which connect the Jacobi polynomials P£*'0)(2x - 1 ) and the Jacobi type polyno­
mials Sn(x). Combination of these two differentiation formulas yields the 
fourth order equation for Sn(x). 

It is the first purpose of the present paper to make these comments to [5]. 
The second purpose is to describe a more general class of Jacobi type 
polynomials, with weight function ( l - x ) a ( l + ;x)3 + linear combination of 
8(x +1) and 8(x — 1). They can be expressed in terms of Jacobi polynomials as 
((anx + bn)d/dx + cn)P^'3)(x) for certain coefficients a„, bn, cn and their power 
series in | ( l - x ) is of 4 F 3 type. Finally, they satisfy a second order differential 
equation with polynomial coefficients depending on n, but of bounded degree, 
thus generalizing the known result for the Jacobi type polynomials Sn(x) (cf. 
Littlejohn & Shore [9]) and providing further examples for the general theory 
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of orthogonal polynomials with this property, cf. Atkinson & Everitt [1], 
Hahn [4]. 

There are two further motivations for studying this class of orthogonal 
polynomials. First, as pointed out by Nikishin [11], any new set of orthogonal 
polynomials for which explicit expressions are available, is welcome because it 
provides a testing ground for the general theory of orthogonal polynomials. 
Second, orthogonal polynomials expressible in terms of certain hypergeometric 
functions may yield possibly new formulas for these hypergeometric functions. 
I want to acknowledge useful comments by D. Stanton on this topic, which led to 
section 8 of this paper. 

1. Jacobi polynomials. We summarize the properties of Jacobi polynomials 
we need, cf. [3, §10.8]. 

Let a, |3>—1. Jacobi polynomials P^*,3)(x) are orthogonal polynomials on 
the interval [ -1 ,1] with respect to the weight function ( l - x ) o t ( l + x)3 and with 
the normalization 

(1.1) P(
rT

P)(l) = (a + l ) > ! . 

Symmetry properties: 

(1.2) P^\-x) = (-l)nP(
n^\x). 

Differentiation formula: 

(1.3) - f P^Xx) = \(n + a +13 + l)J*"_Ve+1)(x). 
ax 

Rodrigues formula: 

(1.4) ( - l ) n 2 n n! (1 - x ) a ( l + x)3P(
n"'3)(x) = (d/dx)n((l-x)n+a(l+x)n+3). 

Power series expansion: 

(1.5) P<r«(x) = ^ 7 ^ 2 F 1 ( - n , n + « + p + 1 ; <* + l ~ } 

_ ( « + !)„ y (-n)fc(n + a + p + l ) f c / l - x \ f c 

n! k% (a + l ) t k! V 2 / ' 

Laguerre polynomials: 

(1.6) L-(x) : = lim P ^ e ) ( l - 2fi~1x), 

orthogonal on [0, oo) with respect to the weight function e"xx". 
Differential equation: 

(1.7) [(1 - x2)d2ldx2 + ( 0 - o t - ( a + 0 + 2)x)d/dx]P<^<i\x) 

= -n(n + a + (3 + l)P<?<i)(x). 
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2. Definition. Fix M,N>0 and a, /3 > - 1 . For n = 0 , 1 , 2 , . . . define 

(2.1) P-0-M-N(x) : = ((« + 3 + l)n/n !)2 [(a + 0 + l)-\BnM(l - x) 

- A„N(1 + x))d/dx + AJBJP^KX), 

where 

(a + l)nn! n(n + a + <3 + l )M 
V ' J "" (/3 + l)„(a + p + l)B (0 + l)(a + 0 + l ) ' 

, . (p + l)„w! n(n + « + p + l )N 
l * ' " ' (o + l)B(a + p + l)„ (a + l)(a + /3 + l ) -

The case a +18 + 1 = 0 must be understood by continuity in a, j3. By using (1.1) 
and (1.3) we find 

/ 2 4 ) paAA^N/jX = (<* + 1)n + (fi + l)n (<* + P + 2)nftM 
n\ n!n!( |3 + l) 

From (1.2) we have the symmetry 

(2.5) P^>M>N(-x) = (-l)nP^N>M(x). 

3. Orthogonality. Define the measure JUL on [—1,1] by 

( 3 ' 1 } + M / ( - l ) + N/(l) , / 6C( [ -1 ,1 ] ) . 

THEOREM 3.1. 77ie polynomials P™3M,N{x) are orthogonal polynomials on the 
interval [—1,1] with respect to the measure p. and with the normalization (2.4). 

Proof. By (2.1) and (2.3), P^M>N(x) is a polynomial of degree <n, not 
identically zero. 

In order to prove the orthogonality first assume n > 2 . Observe that the 
polynomials (1 + x)k(l - x) n _ k~ 1 (k = 0 , 1 , . . . , n -1) form a basis for the space 
of polynomials of degree <n — 1. If 1 < fc < n — 2 then 

f P£'3MN0c)(l - j c y ^ - H l + x)k dp. (x) = 0 
J-i 

by integration by parts and the orthogonality property of Jacobi polynomials. 
Now consider k = 0: 

I:= [ P ^ M N ( x ) ( l - x ) n - 1 djx(x). 
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The continuous part of JUL yields a contribution 

T(a + ^ + l)(n + a + )3 + l)BnM((a + |3 + l ) n ) 2 

2 " + 3 + 3 - T ( a + l ) r (P + l)(n!)2 

P^L+
1

1-3+1)(x)(l - x)a + 1(1 + x)3 dx, 

where we used (1.3) and the orthogonality property of Jacobi polynomials. 
Now substitute (1.4), integrate by parts and evaluate the resulting beta integral: 

h = ( - l)n-x2n-\a + l)nBnM(a +13 + l)n/(n !)2. 

The discrete part of fx yields a contribution —Ix to I (use (1.5), (1.2) and (1.1)) 
so I = 0. The case k = n-1 follows from the case k = 0 by (2.5). 

Finally consider the case n = 1. By (1.5) we have 

P (r3 )(x) = (a + l ) - è ( a + P + 2 ) ( l - x ) , 
so 

P^MN(x)=-^a + l)(a + p + l)B1(l-x) + ̂  + ̂ )(a + P + l)Aia + x). 

Hence 
*(x)d|m(x) = 0 

f1 

by evaluating the beta integrals. • 

4. Special cases. Of course: 

(4.1) P^°(x) = P^\x). 

Next we have 

p«,3,M,0/ \ 

L (a + l)nn! (a4-/3 + 1) \ ax /3 + 1 / J 

(4.3) Sn(x) = MP^°' ( t t + 1 ) / M ' °(2x-l) 

= ((1 - x)d/dx + n(n + a +1) + M)P(
n°"0)(2x - 1 ) , 

where Sn(x) are Krall's [5, §16,17] Jacobi type polynomials, orthogonal with 
respect to the measure ( ( l - x ) " + M_1ô(x)) dx on [0,1]. 

Furthermore, 

(4.4) P r . M . M ( x ) = / 1 + M ( 2 a 4 - 2 ) n \ 
\ (a + l )n! / 

L n! (2a + l) V dx a + 1 / J 

(4.5) PiT\x) = " ' , p^.o.i/(2«.).i/(2-)(x) 

a + | n ( n + l) 

= (-x djdx + a +^n(n 4- l))Pn(x), 
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where P(n\x) are Krall's [5, §4.5] Legendre type polynomials, orthogonal with 
respect to the measure | ( a + ô ( x - l ) + ô(x + l)) dx on [-1,1] , 

By using Theorem 3.1 we obtain the quadratic transformations 

pr-M-M(x)_pr l / 2 A 2 M(2x2-p 
^ ^ pot,<x,MM(]\ p t t , - l /2 ,0 ,2M/- i \ » 

P%ffiM(x) xPg-1/2-°-(4"+6)M(2x2-1) 
^ ^ p«,t t ,M,M/- | \ pa , l / 2 ,0 , (4«+6)M/ i \ 

In particular, these formulas connect Krall's Legendre and Jacobi type polyno­
mials with each other. 

(4.8) C N ( x ) : = lim P^'0N(l-2rlx)=\l + N{a+
]
1)" (^- + -^-\\Ln(x), 

3^°° L n\ \dx a + l / J 

orthogonal polynomials on the interval [0, °°) with respect to the measure 
((T(a + l))"1e -xx°' + N8(x)) dx on the interval [0, <*>) and with the normalization 
L%N(0) = (a + l)Jn\ (cf. (1.6), (2.5), (4.2) and Theorem 3.1). 

(4.9) Rn(x) = RL°n
R-\x\ 

where .Rn(x) are Krall's [5, §10,11] Laguerre type polynomials, orthogonal 
with respect to the measure (e~x+ R~18(x)) dx on [0, oo). 

5. Expression as hypergeometric series. By (1.5) and (2.1) we have 

yi\ wl W ! 

(a + l ) n(a + 0 + l) n(a + 0 + l ) n
 n K } 

= [(a +18 + l)~\-BnMx + AnN(l - x))d/dx + AnBn] 

/ A (-w)k(n + a + P + l)fc A 
VA (a + l)kk! X / ' 

By straightforward calculations we obtain 

P"-g-M-N(l - 2 x ) _ (q + l)„(q + g + 1)„ 
p,,3,M,N(1) ( a + l)(p + l ) B „ ! A i 

f (-n)k(n + a + p + l ) k r . ^ , ^ 0 ^ l W / 2 

-=o (a + 2)fck! L 

(a + l ) n (a + ̂  + l ) ; A "f f c -

fc=0 («+2)fcfc! 

+ (JVAn(a +/3 + l r 1 ^ - MBn(a + (3 + l r ^ a +1) + AnBn)k 
, (a + l)(0 + l)nn! 

For M, N > 0 this becomes 

P g - f t W f ( l - 2 x ) _ / - n . n + a + p + l.-On + l A + l l \ 
Pn

p (1) \ a + 2, -On, bn I / 
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where an > n, bn > 0 and 

, _ ( « + l)(a + j3 + l)(|3 + l ) n n!A n 
a " B (a + l ) n(« + p + l)rvMB„ ' 

On - bn = fiNM~1Arfi-
1 + (a + (3 + DAT1 An - a -1. 

For M = 0,N^0: 

, . , . pa.p.o.N (1_2x) / n > n + a + (3 + 1 > C n + 1 | N 
p j c3 A N(D 3 2v «+2,cn r / ' 
where 

(a + l ) 0 + l)„n! 
" ( M a + p + i r ^ + B ^ o + D ^ a + p + l),," 

For N = 0 , M ^ 0 : 

pa,3,M,o(1 _ 2 x ) / n> n + a + |8 + 1 _ ( a + j3 + i ) M - i A n + ! 
(5.4) }<x,3,M,0, (1) 3 2 \ a+ ! , - ( « + 0 + 1 ) ^ ^ 

Combination of (4.3), (2.5) and (5.3) yields Krall's power series expansion 
[5, §16]. Combination of (4.6), (4.7), (2.5) and (5.4) yields power series expan­
sion in x for P^ ' M ' M (x) , cf. [5, §4]. 

6. Second order differential equations. In view of the observations in Atkin­
son & Everitt [1, §6] and the definition (3.1) of our orthogonality measure it is 
no surprise that the polynomials p ^ M - N win satisfy a linear second order 
ordinary differential equation with polynomial coefficients, n -dependent but of 
bounded degree. Hahn [4, §6] points out that, if {un} and {yn} are systems of 
orthogonal polynomials and un = yn + qny^ for certain first degree polynomials 
qn, then the yn's satisfy second order o.d.e.'s of the above type. Our relation 
(2.1) has this form, but here Hahn's observation yields nothing new, since the 
second order o.d.e. for the P^*,3),s is already well-known (cf. (1.7)). However, 
we can prove: 

PROPOSITION 6.1 Let {u^} and {yn} be systems of orthogonal polynomials such 
that 

(6.1) un = pnyn + qny'n, 

(6-2) y'n + « r i yi+f t l y n =0, 

where pn, qn, an, 0n are rational functions which are quotients of polynomials of 
bounded degree. Then 

(6.3) yn - r^ + snu'n, 

(6.4) <+yn<+8nUn=0, 
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for certain rational functions rn, sn, yn, 8n which are quotients of polynomials of 
bounded degree. 

Proof. Clearly, we only need to prove the proposition for sufficiently large n 
and under the assumption that qn is not identically zero. Eliminate y^ and y^ 
from (6.1), (6.2) and the equation obtained by differentiating (6.1) once. Then 
we obtain 

(qn(Pn- fttfj ~ PniPn + 4n~ <*nqn))vn = (-pn + anqn - q'n) u^ + qnu'n. 

Here the coefficient of yn is not identically zero for sufficiently large n, because, 
otherwise, not all zeros of un would be simple, in contradiction to Szegô [12, 
Theorem 3.3.1]. This proves (6.3). Next eliminate yn and y^ from (6.1), (6.3) 
and the first derivative of (6.3). Then we obtain 

S n < + (PnSn + <?„(r„ + S ^ ) " n + (P^n + « j X " 1) "n = 0 . 

Since we assumed q n ^ 0 , we have s n ^ 0 . This proves (6.4). • 

Now apply Prop. 6.1 to the case yn = P^'3, u„ = P J ^ It follows from (2.1) 
and (1.7) that 

(6.5) (an(x)dldx + bn(x))P^MN(x) = ((a + 0 + l)Jn\)2cn(x)P^\x\ 

where 

an(x): = (BnM-AnN-(BnM + AnN)x)(l-x2), 

bn(x): = (a + 0 + l ) (B n M+A n N+A n £ n )x 2 + 2((a + l ) A n N - ( 0 + l)BnM)x 

+ (0 - a + l )E n M+ (a - 0 + l ) A n N - A n B n ( a + 0 + 1), 

cn (x) : - AnBnbn (x) - n (n + a + 0 +1) 

x (a + 0 + l r ^ M - A n N - (BnM + AnN)x)2. 

From (6.5) one can calculate the second order o.d.e. for P^'3 'M N . Littlejohn & 
Shore [9] derive special cases of this o.d.e. for the polynomials (4.3), (4.5), 
(4.9) in a different, more complicated way. 

7. Fourth order differential equation for KralTs Jacobi type polynomials. Fix 
a > - l and M > 0 . Let Sn(x) be defined by (4.3). Combination of (4.3) and 
(1.7) yields 

(7.1) Sn(x) = [x(x - l)d2/dx2 + (a + l)xd/dx + M]P^0 )(2x - 1 ) . 

Observe that, for arbitrary polynomials /, g we have 

J g(x)[x(x - l)d2/dx2 + (a + l)xd/dx + M]/(x)((l - x)a + M_1ô(x)) dx 

0-2) 
= f(x)[x(x-l)/d2/dx2 + ((a + 3)x-2)dldx + Ml.a + l]g(x)(l-x)ocdx. 
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Formulas (7.1), (7.2) and the orthogonality properties of Sn(x) and P(^°\2x -1) 
imply: 

((n + a + l)(n + l) + M)(n(n + a) + M)PlT'0 )(2x-l) 

(7.3) [ d2 d 1 
= x(x -1) —T + ((a + 3)x - 2) — + M + a + 1 Sn(x), 

L ax ax J 

where the coefficient of P£*'0)(2x - 1 ) is obtained by comparing the coefficients 
of xn at both sides of (7.3). Combination of (7.1) and (7.3) yields. 

THEOREM 7.1. The polynomials Sn(x) are eigenfunctions of a fourth order 
differential operator with polynomial coefficients not depending on n. 

A calculation leads to the explicit form of Krall's [5, §14] differential 
equation. 

Recently Littlejohn [8], proved that the polynomials P° , aM,N(x) (notation of 
the present paper) are eigenfunctions of a sixth order differential operator. The 
above techniques also apply to this case and would lead to an eighth order 
differential operator. 

8. Quadratic transformations for hypergeometric functions. Many of the 
formulas for terminating 2Pi hypergeometric functions can be derived from 
similar formulas for Jacobi polynomials (use (1.5)) obtained by properties of 
orthogonal polynomials. Similarly, results for the polynomials p%&M*N obtained 
here can be translated in terms of hypergeometric functions of the form 

-n, ft, 0 ! + 1 , 0 2 + 1 

c, 0i, 02 • > 
n = 0 , 1 , 2 , . . . 

(use (5.2)). In particular, (4.6) and (4.7) will imply quadratic transformations 
for such 4F3-functions. In this section we will give an independent derivation of 
these quadratic transformations, also in the nonterminating case. 

Our starting point is 

(8.1) 

where 

(l-x)^F3(^a+%M + l | - - ^ ) 4 3 \ c , b + a + 2 - c , d I ( 1 - x ) 2 / 

/ a , l + a - c , c - l - b , 0 1 + l , 0 2 + l I \ 
~ s F 4 \ c, a + b + 2-c , 0l5 02 I /' 

d(l + a-c)(c-l-b) 
01 + 02 = a,0102 = — 

d-b 

(formula due to D. Stanton, private communication). For the proof expand the 
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left hand side as a power series. On letting b-^oo in (8.1) we obtain 

(8.2) 

213 

r_(a,l + a-c,Ol + l,02+l\ \ 
=4M c^o, rx> 

where 01 + e2 = a, flxé^dQ + a - c ) . Observe that (8.1) tends to formula (22) 
in Niblett [10] as b-»oo and to formula 4.5 (1) in [2] as d-»&. 

A linear transformation formula is given by 

(83)(l-x)-Wa'M^e + 1 | ^ ) = 4F 3 ( a 'C -b -V 1
f l

+ 1 ' 0 2 + 1 |4 \ c,d,e I J C - 1 / V c, 0l5 02 I / 

where 

(d + e)(fo2-bc + 2b) + de(-2b + 2 c - 3 ) + ( l - c ) b 
0i + 02 = -

0!02 — 

( d - b ) ( e - 6 ) 

d e ( c - 6 - l ) ( c - 6 - 2 ) 

( d - 6 ) ( e - 6 ) 

For the proof again expand the left hand side. A limit case of (8.3) is 

(i-xrW"'^1!-^) 
\ c,d I x -1 / (8.4) 

_ (a9c — b — l, d(c-i 

\ c,d(c — b — 
- f t - lKd- f t ^ + l l \ 

D(d-ft)-1 I T 

Substitution of (8.3) and (8.4) into (8.2) yields the two formulas 

(8.5) 

where 

/ a , 6 , d + l L ,- A -(2a,2b,01 + l,02+l\ \ 

la + b+id l 4 x ( 1 " x ) J" 4 J p 3 \ a + b+lel9e2 lx> 

0!+02 = 

0!02 

4ab + a + b + d + 2-

a + b - d + 5 

4(q+è)(fe+è)d 
a+b-d+h ' 

/ o ^ / i ^ r / û , M + l L H A I- / 2 a - 1 , 2 6 - 1 , ^ + 1, 0 2 + l ! \ 
8.6 l - 2 x 3 F 2 ' ' ! 4 x l - x =4F3 \ u A I * \xb 
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where 

Aab- a — b — d+\ 
Oi + 02-

0\02 

a+b—d—\ 

4(a- | ) (b-è)d 
a+b-d-^ 

Formulas (8.5) and (8.6) imply (4.6) and (4.7), respectively. 
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