
1 An Introduction
to Empirical Modeling

1.1 Introduction

Empirical modeling, broadly speaking, refers to the process, methods, and strategies
grounded on statistical modeling and inference whose primary aim is to give rise to “learn-
ing from data” about stochastic observable phenomena, using statistical models. Real-world
phenomena of interest are said to be “stochastic,” and thus amenable to statistical modeling,
when the data they give rise to exhibit chance regularity patterns, irrespective of whether
they arise from passive observation or active experimentation. In this sense, empirical
modeling has three crucial features:

(a) it is based on observed data that exhibit chance regularities;
(b) its cornerstone is the concept of a statistical model that decribes a probabilistic

generating mechanism that could have given rise to the data in question;
(c) it provides the framework for combining the statistical and substantive informa-

tion with a view to elucidating (understanding, predicting, explaining) phenomena of
interest.

Statistical vs. substantive information. Empirical modeling across different disciplines
involves an intricate blending of substantive subject matter and statistical information. The
substantive information stems from a theory or theories pertaining to the phenomenon of
interest that could range from simple conjectures to intricate substantive (structural) mod-
els. Such information has an important and multifaceted role to play by demarcating the
crucial aspects of the phenomenon of interest (suggesting the relevant variables and data),
as well as enhancing the learning from data when it meliorates the statistical information
without belying it. In contrast, statistical information stems from the chance regularities in
data. Scientific knowledge often begins with substantive conjectures based on subject matter
information, but it becomes knowledge when its veracity is firmly grounded in real-world
data. In this sense, success in “learning from data” stems primarily from a harmonious blend-
ing of these two sources of information into an empirical model that is both statistically and
substantively “adequate”; see Sections 1.5 and 1.6.
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2 An Introduction to Empirical Modeling

Empirical modeling as curve-fitting. The current traditional perspective on empirical mod-
eling largely ignores the above distinctions by viewing the statistical problem as “quantifying
theoretical relationships presumed true.” From this perspective, empirical modeling is
viewed as a curve-fitting problem, guided primarily by goodness-of-fit. The substantive
model is often imposed on the data in an attempt to quantify its unknown parameters. This
treats the substantive information as established knowledge, and not as tentative conjec-
tures to be tested against data. The end result of curve-fitting is often an estimated model
that is misspecified, both statistically (invalid probabilistic assumptions) and substantively;
it doesn’t elucidate sufficiently the phenomenon of interest. This raises a thorny problem
in philosophy of science known as Duhem’s conundrum (Mayo, 1996), because there is
no principled way to distinguish between the two types of misspecification and apportion
blame. It is argued that the best way to address this impasse is (i) to disentangle the sta-
tistical from the substantive model by unveiling the probabilistic assumptions (implicitly
or explicitly) imposed on the data (the statistical model) and (ii) to separate the modeling
from the inference facet of empirical modeling. The modeling facet includes specifying and
selecting a statistical model, as well as appraising its adequacy (the validity of its proba-
bilistic assumptions) using misspecification testing. The inference facet uses a statistically
adequate model to pose questions of substantive interest to the data. Crudely put, conflating
the modeling with the inference facet is analogous to mistaking the process of constructing a
boat to preset specifications with sailing it in a competitive race; imagine trying to construct
the boat while sailing it in a competitive race.

Early cautionary note. It is likely that some scholars in empirical modeling will mock and
criticize the introduction of new terms and distinctions in this book as “mounds of gratu-
itous jargon,” symptomatic of an ostentatious display of pedantry. As a pre-emptive response
to such critics, allow me to quote R. A. Fisher’s 1931 reply to Arne Fisher’s [American
mathematician/statistician] complaining about his

“introduction in statistical method of some outlandish and barbarous technical terms. They stand
out like quills upon the porcupine, ready to impale the sceptical critic. Where, for instance, did
you get that atrocity, a statistic?”

His serene response was:

I use special words for the best way of expressing special meanings. Thiele and Pearson were
quite content to use the same words for what they were estimating and for their estimates of it.
Hence the chaos in which they left the problem of estimation. Those of us who wish to distinguish
the two ideas prefer to use different words, hence ‘parameter’ and ‘statistic’. No one who does not
feel this need is under any obligation to use them. Also, to Hell with pedantry. (Bennett, 1990,
pp. 311–313) [emphasis added]

A bird’s-eye view of the chapter. The rest of this chapter elaborates on the crucial features
of empirical modeling (a)–(c). In Section 1.2 we discuss the meaning of stochastic observ-
able phenomena and why such phenomena are amenable to empirical modeling. Section 1.3
focuses on the relationship between data from stochastic phenomena and statistical models.
Section 1.4, discusses several important issues relating to observed data, including their dif-
ferent measurement scales, nature, and accuracy. In Section 1.5 we discuss the important
notion of statistical adequacy: whether the postulated statistical model “accounts fully for”
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1.2 Stochastic Phenomena: A Preliminary View 3

the statistical systematic information in the data. Section 1.6 discusses briefly the connection
between a statistical model and the substantive information of interest.

1.2 Stochastic Phenomena: A Preliminary View

This section provides an intuitive explanation for the notion of a stochastic phenomenon as
it relates to the concept of a statistical model, discussed in the next section.

1.2.1 Chance Regularity Patterns

The chance regularities denote patterns that are usually revealed using a variety of graph-
ical techniques and careful preliminary data analysis. The essence of chance regularity, as
suggested by the term itself, comes in the form of two entwined features:

chance an inherent uncertainty relating to the occurrence of particular outcomes;
regularity discernible regularities associated with an aggregate of many outcomes.

T E R M I N O L O G Y: The term “chance regularity” is used in order to avoid possible confusion
with the more commonly used term “randomness.”

At first sight these two attributes might appear to be contradictory, since “chance” is often
understood as the absence of order and “regularity” denotes the presence of order. However,
there is no contradiction because the “disorder” exists at the level of individual outcomes
and the order at the aggregate level. The two attributes should be viewed as inseparable for
the notion of chance regularity to make sense.

Example 1.1 To get some idea about “chance regularity” patterns, consider the data given
in Table 1.1.

Table 1.1 Observed data

3 10 11 5 6 7 10 8 5 11 2 9 9 6 8 4 7 6 5 12
7 8 5 4 6 11 7 10 5 8 7 5 9 8 10 2 7 3 8 10
11 8 9 5 7 3 4 9 10 4 7 4 6 9 7 6 12 8 11 9
10 3 6 9 7 5 8 6 2 9 6 4 7 8 10 5 8 7 9 6
5 7 7 6 12 9 10 4 8 6 5 4 7 8 6 7 11 7 8 3

A glance at Table 1.1 suggests that the observed data constitute integers between 2 and 12,
but no real patterns are apparent, at least at first sight. To bring out any chance regularity
patterns we use a graph as shown in Figure 1.1, t-plot: {(t, xt), t = 1, 2, . . . , n}.

The first distinction to be drawn is that between chance regularity patterns and determin-
istic regularities that is easy to detect.

Deterministic regularity. When a t-plot exhibits a clear pattern which would enable one
to predict (guess) the value of the next observation exactly, the data are said to exhibit
deterministic regularity. The easiest way to think about deterministic regularity is to visualize
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Fig. 1.1 t-Plot of a sequence of 100 observations
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Fig. 1.2 Graph of x = 1.5 cos((π/3)t+(π/3))

the graphs of mathematical functions. If a t-plot of data can be depicted by a mathematical
function, the numbers exhibit deterministic regularity; see Figure 1.2.

In contrast to deterministic regularities, to detect chance patterns one needs to perform a
number of thought experiments.

Thought experiment 1–Distribution regularity. Associate each observation with identical
squares and rotate Figure 1.1 anti-clockwise by 90◦, letting the squares fall vertically to form
a pile on the x-axis. The pile represents the well-known histogram (see Figure 1.3).

The histogram exhibits a clear triangular shape, reflecting a form of regularity often
associated with stable (unchanging) relative frequencies (RF) expressed as percentages
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Fig. 1.3 Histogram of the data in Figure 1.1

(%). Each bar of the histogram represents the frequency of each of the integers 2–12.
For example, since the value 3 occurs five times in this data set, its relative frequency is
RF(3)=5/100 = .05. The relative frequency of the value 7 is RF(7)=17/100 = .17, which is
the highest among the values 2–12. For reasons that will become apparent shortly, we name
this discernible distribution regularity.

[1] Distribution: After a large enough number of trials, the relative frequency of the
outcomes forms a seemingly stable distribution shape.

Thought experiment 2. In Figure 1.1, one would hide the observations beyond a certain
value of the index, say t = 40, and try to guess the next outcome on the basis of the observa-
tions up to t = 40. Repeat this along the x-axis for different index values and if it turns out
that it is more or less impossible to use the previous observations to narrow down the poten-
tial outcomes, conclude that there is no dependence pattern that would enable the modeler
to guess the next observation (within narrow bounds) with any certainty. In this experiment
one needs to exclude the extreme values of 2 and 12, because following these values one
is almost certain to get a value greater and smaller, respectively. This type of predictability
is related to the distribution regularity mentioned above. For reference purposes we name
the chance regularity associated with the unpredictability of the next observation given the
previous observations.

[2] Independence: In a sequence of trials, the outcome of any one trial does not
influence and is not influenced by the outcome of any other.

Thought experiment 3. In Figure 1.1 take a wide enough frame (to cover the spread of the
fluctuations) that is also long enough (roughly less than half the length of the horizontal axis)
and let it slide from left to right along the horizontal axis, looking at the picture inside the
frame as it slides along. In cases where the picture does not change significantly, the data
exhibit the chance regularity we call homogeneity, otherwise heterogeneity is present; see
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6 An Introduction to Empirical Modeling

Chapter 5. Another way to view this pattern is in terms of the arithmetic average and the
variation around this average of the observations as we move from left to right. It appears
as though this sequential average and its variation are relatively constant around 7. More-
over, the variation around this constant average value appears to be within fixed bands. This
chance regularity can be intuitively described by the notion of homogeneity.

[3] Homogeneity: The probabilities associated with all possible outcomes remain the
same for all trials.

In summary, the data in Figure 1.1 exhibit the following chance regularity patterns:

[1] A triangular distribution; [2] Independence; [3] Homogeneity (ID).

It is important to emphasize that these patterns have been discerned directly from the
observed data without the use of any substantive subject matter information. Indeed, at this
stage it is still unknown what these observations represent or measure, but that does not pre-
vent one from discerning certain chance regularity patterns. The information conveyed by
these patterns provides the raw material for constructing statistical models aiming to ade-
quately account for (or model) this (statistical) information. The way this is achieved is to
develop probabilistic concepts which aim to formalize these patterns in a mathematical way
and provide canonical elements for constructing statistical models.

The formalization begins by representing the data as a set of n ordered numbers denoted
generically by x0:= (x1, x2, . . . , xn) . These numbers are in turn interpreted as a typical real-
ization of a finite initial segment X:= (X1, X2, . . . , Xn) of a (possibly infinite) sequence of
random variables {Xt, t = 1, 2, . . . , n, . . .} we call a sample X; note that the random vari-
ables are denoted by capital letters and observations by small letters. The chance regularity
patterns exhibited by the data are viewed as reflecting the probabilistic structure of {Xt, t =
1, 2, . . . , n, . . .}. For the data in Figure 1.1, the structure one can realistically ascribe to sam-
ple X is that they are independent and identically distributed (IID) random variables, with
a triangular distribution. These probabilistic concepts will be formalized in the next three
chapters to construct a statistical model that will take the simple form shown in Table 1.2.

Table 1.2 Simple statistical model

[D] Distribution Xt��(μ, σ 2), xt ∈ NX :=(2, . . . , 12), discrete triangular
[M] Dependence (X1, X2, . . . , Xn) are independent (I)
[H] Heterogeneity (X1, X2, . . . , Xn) are identically distributed (ID)

Note that μ = E(Xt) and σ 2 = E(Xt−μ)2 denote the mean and variance of Xt, respectively;
see Chapter 3.

It is worth emphasizing again that the choice of this statistical model, which aims to
account for the regularities in Figure 1.1, relied exclusively on the chance regularities, with-
out invoking any substantive subject matter information relating to the actual mechanism
that gave rise to the particular data. Indeed, the generating mechanism was deliberately
veiled in the discussion so far to make this point.
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1.2 Stochastic Phenomena: A Preliminary View 7

1.2.2 From Chance Regularities to Probabilities

The question that naturally arises is whether the available substantive information pertaining
to the mechanism that gave rise to the data in Figure 1.1 would affect the choice of a statisti-
cal model. Common sense suggests that it should, but it is not clear what its role should be.
Let us discuss that issue in more detail.

The actual data-generating mechanism (DGM). It turns out that the data in Table 1.1 were
generated by a sequence of n = 100 trials of casting two dice and adding the dots of the two
sides facing up. This game of chance was very popular in medieval times and a favorite pas-
time of soldiers waiting for weeks on end outside the walls of European cities they had under
siege, looking for the right opportunity to assail them. After thousands of trials these illiterate
soldiers learned empirically (folk knowledge) that the number 7 occurs more often than any
other number and that 6 occurs less often than 7 but more often than 5; 2 and 12 would occur
the least number of times. One can argue that these soldiers had an instinctive understanding
of the empirical relative frequencies summarized by the histogram in Figure 1.3.

In this subsection we will attempt to reconstruct how this intuition was developed into
something more systematic using mathematization tools that eventually led to probabil-
ity theory. Historically, the initial step from the observed regularities to their probabilistic
formalization was very slow in the making, taking centuries to materialize; see Chapter 2.

The first crucial feature of the generating mechanism is its stochastic nature: at each trial
(the casting of two dice), the outcome (the sum of the dots of the sides) cannot be predicted
with any certainty. The only thing one can say with certainty is that the result of each trial will
be one of the numbers {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. It is also known that these numbers do
not occur equally often in this game of chance.

How does one explain the differences in the empirical relative frequency of occurrence
for the different numbers as shown in Figure 1.3? The first systematic account of the under-
lying mathematics behind Figure 1.3 was given by Gerolamo Cardano (1501–1576), who
lived in Milan, Italy. He was an Italian polymath, whose wide interests ranged from being a
mathematician, physician, biologist, chemist, astrologer/astronomer, to gambler.

The mathematization of chance regularities. Cardano reasoned that since each die has six
faces (1, 2, . . . , 6), if the die is symmetric and homogeneous, the probability of each outcome
is equal to 1/6, i.e.

Number of dots 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6

When casting two dice (D1, D2), one has 36 possible outcomes associated with the different
pairings of these numbers (i, j), i, j = 1, 2, . . . , 6; see Table 1.3. That is, behind each
one of the possible events {2, 3, . . . , 12} there is a combination of elementary outcomes,
whose probability of occurrence could be used to explain the differences in their relative
frequencies.

The second crucial feature of the generating mechanism is that, under certain conditions,
all elementary outcomes (x, y) are equally likely to occur; each elementary outcome occurs
with probability 1/36. These conditions are of paramount importance in modeling stochastic
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8 An Introduction to Empirical Modeling

Table 1.3 Elementary outcomes: casting two dice

D1\D2 1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

phenomena, because they constitute the premises of inference. In this case they pertain to
the physical symmetry of the two dice and the homogeneity (sameness) of the replication
process. In the actual experiment giving rise to the data in Table 1.1, the dice were cast in
the same wooden box to secure a certain form of nearly identical conditions for each trial.

Going from these elementary outcomes to the recorded result z = x+y, it becomes clear
that certain events are more likely to occur than others, because they occur when different
combinations of the elementary outcomes arise (see Table 1.4). For instance, we know that
the number 2 can arise as the sum of a single combination of faces: {1, 1} – each die comes
up 1, hence Pr({1, 1}) = 1/36. The same applies to the number 12: Pr({6, 6}) = 1/36. On
the other hand, the number 3 can arise as the sum of two sets of faces: {(1, 2), (2, 1)} , hence
Pr({(1, 2), (2, 1)}) = 2/36. The same applies to the number 11: Pr({(6, 5), (5, 6)}) = 2/36. If
you do not find the above derivations straightforward do not feel too bad, because a giant of
eighteenth-century mathematics, Gottfried Leibniz (1646–1716), who developed differential
and integral calculus independently of Isaac Newton, made an elementary mistake when he
argued that Pr(z = 11) = Pr(z = 12) = 1/36; see Todhunter (1865, p. 48). The reason?
Leibniz did not understand clearly the notion of “the set of all possible distinct outcomes”
(Table 1.3)!

Continuing this line of thought, one can construct a probability distribution that relates
each event of interest with a certain probability of occurrence (see Figure 1.4). As we can
see, the outcome most likely to occur is the number 7. We associate the relative frequency
of occurrence with the underlying probabilities defining a probability distribution over all
possible results; see Chapter 3.

Table 1.4 Probability distribution: sum of two dice

Outcome 2 3 4 5 6 7 8 9 10 11 12
Probability 1

36
2

36
3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

One can imagine Cardano sitting behind a makeshift table at a corner of Piazza del Duomo
in Milan inviting passers-by to make quick money by betting on events like C – the sum of
two dice being bigger than 9, and offering odds 3-to-1 against; three ways to lose and one
to win. He knew that based on Table 1.3, Pr(C) = 6/36. This meant that he would win
most of the time, since the relevant odds to be a fair game should have been 5-to-1. Prob-
abilistic knowledge meant easy money for this avid gambler and he was not ready to share
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Fig. 1.4 Probability distribution Fig. 1.5 Probability vs. relative frequency

it with the rest of the world. Although he published numerous books and pamphlets during
his lifetime, including his autobiography in lurid detail, his book about games of chance,
Liber de Ludo Aleae, written around 1564, was only published posthumously in 1663; see
Schwartz (2006).

The probability distribution in Table 1.4 represents a mathematical concept formulated to
model a particular form of chance regularity exhibited by the data in Figure 1.1 and sum-
marized by the histogram in Figure 1.3. A direct comparison between Figures 1.3 and 1.4,
by superimposing the latter on the former in Figure 1.5, confirms the soldiers’ intuition: the
empirical relative frequencies are very close to the theoretical probabilities. Moreover, if we
were to repeat the experiment 1000 times, the relative frequencies would have been even
closer to the theoretical probabilities; see Chapter 10. In this sense we can think of the his-
togram in Figure 1.3 as an empirical instantiation of the probability distribution in Figure 1.4.

Let us take the above formalization of the two-dice example one step further.

Example 1.2 When playing the two-dice game, the medieval soldiers used to gamble
on whether the outcome would be an odd or an even number (the Greeks introduced
these concepts around 300 BC), by betting on odd A = {3, 5, 7, 9, 11} or even B =
{2, 4, 6, 8, 10, 12} numbers. At first sight it looks as though the soldier betting on B would
have had a clear advantage since there are more even than odd numbers. The medieval sol-
diers, however, had folk knowledge that this was a fair bet! We can confirm that Pr(A)=Pr(B)
using the probabilities in Table 1.4 to derive those in Table 1.5:

Pr(A)= Pr(3)+ Pr(5)+ Pr(7)+ Pr(9)+ Pr(11) = 2
36 + 4

36 + 6
36 + 4

36 + 2
36 = 1

2 ;

Pr(B)= Pr(2)+ Pr(4)+Pr(6)+ Pr(8)+ Pr(10)+ Pr(12)= 1
36 + 3

36 + 5
36 + 5

36 + 3
36 + 1

36 = 1
2 .

Table 1.5 Odd and even sum

Outcome A B
Probability .5 .5

The historical example credited with being the first successful attempt to go from empir-
ical relative frequencies (real world) to probabilities (mathematical world) is discussed
next.
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10 An Introduction to Empirical Modeling

1.2.2.1 Example 1.3: Chevalier de Mere’s Paradox∗
Historically, the connection between a stable (unchanging) law of relative frequencies can
be traced back to the middle of the seventeenth century in an exchange of letters between
Pascal and Fermat; see Hacking (2006).

Chevalier de Mere’s paradox was raised in a letter from Pascal to Fermat on July 29,
1654 as one of the problems posed to him by de Mere (a French nobleman and a studious
gambler). De Mere observed the following empirical regularity:

P(at least one 6 in 4 casts of 1 die)> 1
2 > P(a double 6 in 24 casts with 2 dice)

on the basis of numerous repetitions of the game. This, however, seemed to contradict his
reasoning by analogy; hence the paradox.

De Mere’s false reasoning. He reasoned that the two probabilities should be identical
because one 6 in four casts of one die should be the same event as a double 6 in 24 casts of
two dice, since 4 is to 6 as 24 is to 36. False! Why?

Multiplication counting principle. Consider the sets S1, S2, . . . , Sk with n1, n2, . . . , nk ele-
ments, respectively. Then there are n1×n2× . . .×nk ways to choose one element from S1,
then one element from S2, . . . , then one element from Sk.

In the case of two dice, the set of all possible outcomes is 6×6 = 62 = 36 (see Table 1.3).
To explain the empirical regularity observed by de Mere, one needs to assume equal prob-
ability (1/36) for each pair of numbers from 1 to 6 in casting two dice, and argue as in
Table 1.6. The two probabilities p = 0.4914039 and q = 0.5177469 confirm that de Mere’s
empirical frequencies were correct but his reasoning by analogy was erroneous. What ren-
dered the small difference of .026 in the two probabilities of empirical discernability is the
very large number of repetitions under more or less identical conditions. The mathematical
result underlying such stable long-run frequencies is known as the Law of Large Numbers
(Chapter 9).

Table 1.6 Explaining away de Mere’s paradox

One die (P(i) = 1
6 , i = 1, 2, . . . , 6) Two dice (P(i, j) = 1

36 , i, j =
1, 2, . . . , 6)

P(one 6)= 1
6 P(one (6,6))= 1

36

P(one 6 in n casts)=
(

1
6

)n
P(one (6,6) in n casts)=

(
1

36

)n

P(no 6 in n casts)=
(

5
6

)n
P(no (6,6) in n casts)=

(
35
36

)n

P(at least one 6 in n casts)= 1−( 5
6 )n = q P(at least one (6,6) in n casts)=

1− ( 35
36 )n = p

For n = 4, q = 1−
(

5
6

)4 = 0.5177469 For n = 24, p = 1−
(

35
36

)24 =
0.4914039
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1.2.2.2 Statistical Models and Substantive Information
Having revealed that the data in Figure 1.1 have been generated by casting two dice, the
question is whether that information will change the statistical model in Table 1.2, built
exclusively on the statistical information gleaned from chance regularity patterns. In this
case the substantive information simply confirms the appropriateness of assuming that the
integers between 2 and 12 constitute all possible values that the generating mechanism can
give rise to.

In practice, any substantive subject matter information, say that the two dice are perfectly
symmetrical and homogeneous, should not be imposed on the statistical model at the outset.
Instead, one should allow the data to confirm or deny the validity of such information.

1.2.3 Chance Regularity Patterns and Real-World Phenomena

In the case of the experiment of casting two dice, the chance mechanism is explicit and most
people will be willing to accept on faith that if this experiment is actually performed properly,
then the chance regularity patterns of IID will be present. The question that naturally arises
is whether data generated by real-world stochastic phenomena also exhibit such patterns. It
is argued that the overwhelming majority of observable phenomena in many disciplines can
be viewed as stochastic, and thus amenable to statistical modeling.

Example 1.4 Consider an example from economics where the t-plot of X = � ln(ER),
i.e. log-changes of the Canadian/US dollar exchange rate (ER), for the period 1973–1991
(weekly observations) is shown in Figure 1.6.

What is interesting about the data in Figure 1.6 is the fact that they exhibit a num-
ber of chance regularity patterns very similar to those exhibited by the dice observations
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Fig. 1.6 Exchange rate returns
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Fig. 1.7 Histogram of exchange rate returns

in Figure 1.1, but some additional patterns are also discernible. The regularity patterns
exhibited by both sets of data are:

(a) the arithmetic average over the ordering (time) appears to be constant;
(b) the band of variation around this average appears to be relatively constant.

In contrast to the data in Figure 1.2, the distributional pattern exhibited by the data in
Figure 1.5 is not a triangular. Instead:

(c) the graph of the relative frequencies (histogram) in Figure 1.7 exhibits a certain bell-
shaped symmetry. The Normal density is inserted in order to show that it does not fit
well at the tails, in the mid-section, and the top, which is much higher than the Normal
curve. As argued in Chapter 5, Student’s t provides a more appropriate distribution for
this data; see Figures 3.23 and 3.24. In addition, the data in Figure 1.6 exhibit another
regularity pattern:

(d) there is a sequence of clusters of small and big changes in succession.

At this stage the reader might not have been convinced that the features noted above are
easily discernible from t-plots. An important dimension of modeling in this book is to discuss
how to read systematic information in data plots, which will begin in chapter 5.

1.3 Chance Regularities and Statistical Models

Motivated by the desire to account for (model) these chance regularities, we look to proba-
bility theory to find ways to formalize them in terms of probabilistic concepts. In particular,
the stable relative frequencies regularity pattern (Tables 1.3–1.5) will be formalized using
the concept of a probability distribution (see Chapter 5). The unpredictability pattern will
be related to the concept of Independence ([2]), and the approximate “sameness” pattern
to the Homogeneity (ID) concept ([3]). To render statistical model specification easier, the
probabilistic concepts aiming to “model” the chance regularities can be viewed as belonging
to three broad categories:
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1.3 Chance Regularities and Statistical Models 13

(D) Distribution; (M) Dependence; (H) Heterogeneity.

These broad categories can be seen as defining the basic components of a statistical model
in the sense that every statistical model is a blend of components from all three categories.
The first recommendation to keep in mind in empirical modeling is:

1. A statistical model is simply a set of (internally) consistent probabilistic assumptions
from the three broad categories (D),(M), and (H) defining a stochastic generating
mechanism that could have given rise to the particular data.

The statistical model is chosen to represent a description of a chance mechanism that
accounts for the systematic information (the chance regularities) in the data. The distinguish-
ing feature of a statistical model is that it specifies a situation, a mechanism, or a process in
terms of a certain probabilistic structure. The main objective of Chapters 2–8 is to introduce
numerous probabilistic concepts and ideas that render the choice of an appropriate statistical
model an educated guess and not a hit-or-miss selection.

The examples of casting dice, discussed above, are important not because of their intrinsic
interest but because they represent examples of a simple stochastic phenomenon we refer to
as a random experiment, which will be used in Chapters 2–4 to motivate the basic structure
of a simple statistical model. For the exchange rate data in Figure 1.4, we will need to extend
the scope of such models to account for dependence and heterogeneity; this is the subject
matter of Chapters 6–8. Hence, the appropriate choice of a statistical model depends on:

(a) detecting the chance regularity patterns as exhibited by the observed data;
(b) accounting for (modeling) these patterns by selecting the appropriate probabilistic

assumptions.

The first requires developing the skill to detect such patterns using a variety of graphical
techniques. Hence, the second recommendation in empirical modeling is:

2. Graphical techniques constitute an indispensable tool in empirical modeling!

The interplay between chance regularities and probabilistic concepts using a variety of
graphical displays is discussed in Chapter 5.

Accounting for the statistical systematic information in the data presupposes a mathe-
matical framework rich enough to model the detected chance regularity patterns. Figure 1.8
brings out the interplay between observable chance regularity patterns and formal proba-
bilistic concepts used to construct statistical models.

The variety and intended scope of statistical models are constrained only by the scope of
probability theory (as a modeling framework) and the training and the imagination of the
modeler. Empirical modeling begins by choosing adequate statistical models with a view
to accounting for the systematic statistical information in the data. The primary objective of
modeling, however, is to learn from the data by posing substantive questions of interest in the
context of the selected statistical model. The third recommendation in empirical modeling is:

3. Statistical model specification is guided primarily by the probabilistic structure of the
observed data, with a view to posing substantive questions of interest in its context.
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Fig. 1.8 Chance regularity patterns, probabilistic
assumptions, and a statistical model

Some of the issues addressed in the next few chapters are:

(i) How should one construe a statistical model?
(ii) Why is statistical information coded in probabilistic terms?
(iii) What information does one utilize when choosing a statistical model?
(iv) What is the relationship between the statistical model and the data?
(v) How does one detect the statistical systematic information in data?

1.4 Observed Data and Empirical Modeling

In this section we will attempt a preliminary discussion of a crucial constituent element
of empirical modeling, the observed data. Certain aspects of the observed data play an
important role in the choice of statistical models.

1.4.1 Experimental vs. Observational Data

In most sciences, such as physics, chemistry, geology, and biology, the observed data are
often generated by the modelers themselves in well-designed experiments. In econometrics
the modeler is often faced with observational as opposed to experimental data. This has
two important implications for empirical modeling. First, the modeler needs to develop bet-
ter skills in validating the model assumptions, because random (IID) sample realizations
are rare with observational data. Second, the separation of the data collector and the data
analyst requires the modeler to examine thoroughly the nature and structure of the data in
question.

In economics, along with the constant accumulation of observational data collection grew
the demand to analyze these data series with a view to a better understanding of economic
phenomena such as inflation, unemployment, exchange rate fluctuations, and the business
cycle, as well as improving our ability to forecast economic activity. A first step toward
attaining these objectives is to study the available data by being able to answer questions
such as:
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(i) How were the data collected and compiled?
(ii) What is the subject of measurement and what do the numbers measure?
(iii) What are the measurement units and scale?
(iv) What is the measurement period?
(v) What is the link between the data and any corresponding theoretical concepts?

A fourth recommendation to keep in mind in empirical modeling is:

4. One needs to get to know all the important dimensions (i)–(v) of the particular data
before any statistical modeling and inference is carried out.

1.4.2 Observed Data and the Nature of a Statistical Model

A data set comprising n observations will be denoted by x0:=(x1, x2, . . . , xn).

R E M A R K: It is crucial to emphasize the value of mathematical symbolism when one is
discussing probability theory. The clarity and concision this symbolism introduces to the
discussion is indispensable.

It is common to classify economic data according to the observation units:

(i) Cross-section {xk, k = 1, 2, . . . , n}, k denotes individuals (firms, states, etc.);
(ii) Time series {xt, t = 1, 2, . . . , T}, t denotes time (weeks, months, years, etc.).

For example, observed data on consumption might refer to consumption of different house-
holds at the same point in time or aggregate consumption (consumers’ expenditure) over
time. The first will constitute cross-section, the second time-series data. By combining these
two (e.g. observing the consumption of the same households over time), we can define a
third category:

(iii) Panel (longitudinal) {xk, k:= (k, t) , k = 1, 2, . . . , n, t = 1, 2, . . . , T} , where k and t
denote the index for individuals and time, respectively.

N O T E : In this category the index k is two-dimensional but xk is one-dimensional.

At first sight the two primary categories do not seem to differ substantively because the
index sets appear identical; the index sets are subsets of the set of natural numbers. A
moment’s reflection, however, reveals that there is more to an index set than meets the eye.
In the case where the index set N:={1, 2, . . . , n} refers to particular households, the index
might stand for the names of the households, say

{Jones, Brown, Smith, Johnson, . . . }. (1.1)

For time series the index T:={1, 2, . . . , T , . . .} might refer to particular dates, say

{1972, 1973, . . . , 2017}. (1.2)

Comparing the two index sets, we note immediately that they have very different mathemati-
cal structures. The most apparent difference is that set (1.1) does not have a natural ordering,
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whether we put Brown before Smith is immaterial, but in the case of set (1.2), the ordering
is a crucial property of the set.

In the above example the two index sets appear identical but they turn out to be very
different. This difference renders the two data sets qualitatively dissimilar to the extent that
the statistical analysis of one set of data will be distinctively different from that of the other.
The reason for this will become apparent in later chapters. At this stage it is sufficient to note
that a number of concepts such as dependence and heterogeneity are inextricably bound up
with the ordering of the index set.

The mathematical structure of the index set is not the only criterion for classifying dissim-
ilar data sets. The mathematical structure of the range of values of observations themselves
constitutes another even more important criterion. For example, the “number of children”
in different households can take values {0, 1, 2, . . . , 100} ; 100 is an assumed upper bound.
The set of values of the variable consumption would be R+ = (0,∞). The variable reli-
gion (Christian, Muslim, Buddhist, Other) cannot be treated in the same way, because there
is no natural way to measure religion. Even if we agree on a measurement scale for reli-
gion, say {1, 2, 3, 4} , the ordering is irrelevant and the difference between these numbers is
meaningless.

The above discussion raises important issues in relation to the measurement of observed
data. The first is whether the numerical values can be thought of as being values from a
certain interval on the real line, say [0, 1], or whether they represent a set of discrete values,
say {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} . The second is whether these values have a natural ordering or
not.

Collecting these comments together, we can see that the taxonomy which classifies the
data into cross-section and time series is inadequate, because there are several additional
classifications which are ignored. These classifications are important from the modeling
viewpoint because they make a difference in so far as the applicable statistical tech-
niques are concerned. In its abstract formulation a generic data set is designated by
{xk, k ∈ N, xk ∈ RX} , where N denotes the index set and RX the range of values of x. Note:
Both sets N and RX are subsets of the real line, denoted by R:=(−∞,∞). Depending on
the mathematical structure of these two sets, different classifications arise. Indeed, the math-
ematical structure of the sets N and RX plays a very important role in the choice of the
statistical model (see Sections 1.4.3 to 1.4.5). RX can be a discrete (countable) subset of R,
such as RX = {0, 1, 2, . . .}, or a continuous (uncountable) subset of R, such as RX = [0,∞).
The same discrete–continuous classification can also be applied to the index set N, leading
to a four-way classification of variables and the corresponding data. As shown in Chapters 3
and 4, the nature of both sets N (the index set) and RX (the range of values of the data) plays
an important role in selecting the statistical model.

1.4.3 Measurement Scales and Data

A very important dimension of any observed data is the measurement scale of the individual
data series. The measurement scales are traditionally classified into four broad categories
(Table 1.7), together with the mathematical operations that are meaningful (legitimate) for
different scales.
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Ratio scale. Variables in this category enjoy the richest mathematical structure in their range
of values, where for any two values along the scale, say x1 and x2, all the mathematical oper-
ations (i)–(iv) are meaningful. Length, weight, consumption, investment, and gross domestic
product (GDP) all belong to this category.

Table 1.7 Scales and mathematical operations

Scale (i) (x1/x2) (ii) (x2 − x1) (iii) x2 ≷ x1 (iv) x2 �=x1 Transformation

Ratio � � � � scalar
multiplication

Interval × � � � linear function
Ordinal × × � � increasing

monotonic
Nominal × × × � one-to-one

replacement

Interval scale. For a variable measured on an interval scale, the operations (ii)–(iv) are
meaningful but (i) is not. The index set (1.2) (calendar time) is measured on the interval scale
because the difference (1970–1965) is a meaningful magnitude but the ratio (1965/1970) is
not. Additional examples of variables of interval scale are temperature (Celsius, Fahrenheit)
and systolic blood pressure.

Ordinal scale. For a variable measured on an ordinal scale, the operations (iii)–(iv) are
meaningful but (i) and (ii) are not, e.g. grading (excellent, very good, good, failed), income
class (upper, middle, lower). For such variables the ordering exists but the distance between
categories is not meaningfully quantifiable.

Nominal scale. For a variable measured on a nominal scale, the operation (iv) is meaningful
but (i)–(iii) are not. Such a variable denotes categories which do not have a natural ordering,
e.g. marital status (married, unmarried, divorced, separated), gender (male, female, other),
employment status (employed, unemployed, other).

It is important to note that statistical concepts and methods do not apply to all variables
irrespective of scale of measurement (see Chapter 6).

T E R M I N O L O G Y: In the statistical literature there is some confusion between the measure-
ment scales and three different categorizations of variables:

discrete/continuous, qualitative/quantitative, categorical/non-categorical.

Discrete variables can be measured on all four scales and continuous variables can some-
times be grouped into a small number of categories. Categorical variables are only those
variables that can be measured on either the ordinal or the nominal scales, but the qualitative
variables category is less clearly defined in several statistics books.

Measurement scales and the index set. The examples of measurement scales used in the
above discussion refer exclusively to the set RX : the range of values of a variable X. However,
the discussion is also relevant for the index set N. In the case of the variable names of
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households, (1.1) is measured on a nominal scale. On the other hand, in the case of GDP,
(1.2) is measured on the interval scale (time). This is because time does not have a natural
origin (zero) and in statistical analysis the index set (1.2) is often replaced by a set of the form
T:={1, 2, . . . , T , . . .}. We note that the time-series/cross-section distinction is often based on
the measurement scale of the index set. The index set of time series is of interval scale, but
that of cross-section can vary from nominal scale (gender) to ratio scale (age).

In view of the fact that in addition to the discrete/continuous dichotomy we have four
different measurement scales for the range of values of the observed variable itself (RX)
and another four for the index set N:={1, 2, . . . , n, . . .}, a wide variety of data types can be
defined. Our concern is with the kind of statistical methods that can be meaningfully applied
to the particular data in light of their nature and features.

1.4.4 Measurement Scale and Statistical Analysis

The measurement scales are of interest in statistical modeling because data measured on
different scales need different statistical treatment. To give an idea of what that involves,
consider data x0:=(x1, x2, . . . , xn) on religious affiliation under the categories

Christian (1), Jewish (2), Muslim (3), Other (4)

and decide to attach to these four groups the numbers 1–4. How can one provide a set of
summary statistics for such data in the context of descriptive statistics? The set of data for
such a variable will look like (1, 4, 3, 1, 1, 2, 2, 2, 1, 2, 3, 3, 1, 1, 1). It is clear that for such
data the notion of the arithmetic mean

x = 1
n

∑n
k=1 xk = ( 1

15 )(1+4+3+1+1+2+2+2+1+2+3+3+1+1+1) = 1.867 (1.3)

makes no substantive or statistical sense because the numbers we attached to these groups
could easily have been 10, 20, 30, 40. How can one provide a measure of location for such
data? A more appropriate descriptive measure is that of the mode: the value in the data that
has the highest relative frequency. In this case, the mode is xm = 1, since this value occurs
in 7 out of 15 data values; see Table 1.8.

Table 1.8 Scales and location measures

nominal ordinal interval ratio

mean × × � �
median × � � �
mode � � � �

Consider data on an ordinal variable that measures a teacher’s performance:

Excellent (1), Good (2), Average (3), Poor (4), Very poor (5).

The data for a particular teacher will look like (1, 5, 3, 1, 1, 2, 4, 2, 1, 2, 2, 5, 3, 1, 4). What
measures of location are statistically meaningful for this data in the context of descriptive
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statistics? The histogram and the mode are clearly meaningful, but so is the median: the
middle value when the data are arranged in ascending or descending order of magnitude.
For the above data, (1, 1, 1, 1, 1, 2, , 2, 2 , 2, 3, 3, 4, 4, 5, 5). Again, the arithmetic average
(mean) is (1.3) because of the arbitrariness of the values we chose; we could equally use the
values 5, 7, 11, 17, 19.

For nominal and ordinal data a number of measures of variation like

variance: s2
x = 1

n

∑n
k=1(xk − x)2 or standard deviation: sx

are also statistically questionable because of the arbitrariness of the values given to the under-
lying variables. The same is true for the notion of covariance between two nominal/ordinal
variables. For instance, if one suspects that the teacher’s performance is related to their
academic rank (Y):

Assistant (1), Associate (2), Full professor (3),

one could collect such data and evaluate the covariance between performance and rank:

cxy = 1
n

∑n
k=1(xk − x)(yk − y).

This statistic, however, will also be statistically spurious, and so will the correlation
coefficient:

rxy =
∑n

k=1(xk−x)(yk−y)√∑n
k=1(xk−x)2

∑n
k=1(yk−y)2

= cxy
sx·sy

.

In practice, researchers often abuse such data indirectly when used in the context of
regression analysis. Estimating the regression line

yk = β0 + β1xk + uk, k = 1, 2, . . . , n

using the least-squares method gives rise to the estimated coefficients

β̂0 = y− β̂1x, β̂1 =
∑n

k=1(xk−x)(yk−y)∑n
k=1(xk−x)2 ,

which involve the means of X and Y , the variance of X, and their covariance.
The only general rule for the methods of analysis of different measurement-scale variables

one can state at this stage is that a method appropriate for a certain measurement scale in the
hierarchy is also appropriate for the scales above but not below it. There are several books
which discuss the methods of analysis of the so-called categorical data: data measured on
the nominal or ordinal scale; see Bishop et al. (1975), Agresti (2013) inter alia.

A cursory look at the applied econometrics literature reveals that variables from very
different measurement scales are involved in the same regression equation (see Chapter 7),
rendering some of these results problematic. Hence:

5. The scale of measurement of different data series should be taken into account for
statistical analysis purposes to avoid meaningless statistics inference results and spurious
inference results.
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1.4.5 Cross-Section vs. Time Series, is that the Question?

In relation to the traditional cross-section/ time-series taxonomy, it is important to warn the
reader against highly misleading claims. The conventional wisdom in econometrics is that
dependence or/and heterogeneity are irrelevant for cross-section data because we know how
to select “random samples” from populations of individual units such as people, households,
firms, cities, states, countries, etc.; see Wooldridge (2013) inter alia.

It turns out that this distinction stems from insufficient appreciation of the notion of “ran-
dom sampling.” When defining a random sample as a set of random variables X1, X2, . . . , Xn

which are IID, the ordering of X1, X2, . . . , Xn, based on the index k = 1, 2, . . . , n, provides
the key to this definition; see Chapter 6. IID is defined relative to this ordering; without
the ordering, this definition, as well as the broader notions of dependence and heterogene-
ity, make little sense. How does this render the distinction between statistical models for
cross-section and time-series data superfluous?

In time series there is a generic ordering (time) that suggests itself when talking about
dependence and heterogeneity. The fact that in cross-section data there is no one generic
ordering that suggests itself does not mean that the ordering of such samples is irrele-
vant. The opposite is true. Because of the diversity of the individual units, in cross-section
data there is often more than one ordering of interest. For instance, in a medical study
the gender or the age of individuals might be orderings of interest. In a sample of cities,
geographical position and population size might be such orderings of interest. For each
of these different orderings, one can define dependence and heterogeneity in a statistically
meaningful way.

Despite claims to the contrary, the notions of dependence and heterogeneity are equally
applicable to modeling cross-section or time-series data. The only differences arise in the
measurement scale of the relevant ordering(s). For time-series data, the time ordering is
measured on an interval scale, and thus it makes sense to talk about serial correlation (a
particular form of temporal dependence) and trending mean and variance (particular forms
of heterogeneity). In the case of a sample of individuals used in a medical study, the gender
ordering is measured on a nominal scale and thus it makes sense to talk about heterogeneity
(shift) in the mean or the variance of male vs. female units; see data plots in Chapter 5. In the
case of a cross-section of cities or states, geographical position might be a relevant ordering,
in which case one can talk about spatial heterogeneity or/and dependence.

A data set can always be represented in the form x0:=(x1, x2, . . . , xn) and viewed as a finite
realization of the sample X:=(X1, X2, . . . , Xn) of a stochastic process {Xk, k ∈ N, xk ∈ RX}
(Chapter 8), where N denotes the index set and RX the range of values of x, irrespective
of whether the data constitute a cross-section or a time series; their only differences
might lie in the mathematical structure of N and RX . Statistical modeling and inference
begins with viewing data x0 as a finite realization of an underlying stochastic process
{Xk, k ∈ N, xk ∈ RX} , and the statistical model constitutes a particular parameterization
of this process. A closer look at the formal notion of a random sample (IID) reveals that it
presupposes a built-in ordering. Once the ordering is made explicit, both notions of depen-
dence and heterogeneity become as relevant in cross-section as they are for time-series data.
If anything, cross-section data are often much richer in terms of ordering structures, which
is potentially more fruitful in learning from data. Moreover, the ordering of a sample renders
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the underlying probabilistic assumptions, such as IID, potentially testable in practice. The
claim that we know how to select a random sample from a population, and thus can take the
IID assumptions as valid at face value, is misguided.

Example 1.5 Sleep aid Ambien A real-life example of this form of misspecification is the
case of the sleep aid Ambien (zolpidem) that was US Food and Drug Administration (FDA)
approved in 1992. After a decade on the market and more than 40 million prescriptions,
it was discovered (retrospectively) that women are more susceptible to the risk of “next
day impairment” because they metabolize zolpidem more slowly than men. This discovery
was the result of thousands of women experiencing sleep-driving and getting involved in
numerous accidents in early-morning driving. The potential problem was initially raised
by Cubała et al. (2008), who recounted the probing of potential third factors such as age,
ethnicity, and prenatal exposure to drugs, but questioned why gender was ignored. After
a more careful re-evaluation of the original pre-approval trials data and some additional
post-approval trials, the FDA issued a Safety Communication [1-10-2013] recommending
lowering the dose of Ambien for women; 10 mg for men and 5 mg for women.

Example 1.6 Consider the data given in Table 1.9 that refer to the test scores (y-axis) in
a multiple-choice exam on the principles of economics, reported in alphabetical order using
the students’ surnames (x-axis).

Table 1.9 Test scores: alphabetical order

98 43 77 51 93 85 76 56 59 62 67 79 66 98 57 80 73 68
71 74 83 75 70 76 56 84 80 53 70 67 100 78 65 77 88 81
66 72 65 58 45 63 57 87 51 40 70 56 75 92 73 59 81 85
62 93 84 68 76 62 65 84 59 60 76 81 69 95 66 87

The data in the t-plot (Figure 1.9) appears to exhibit independence and homogeneity, as
seen in Figure 1.1. On the other hand, ordering the observations according to the sitting
arrangement during the exam, as shown in Figure 1.10, seems to exhibit very different
chance regularity patterns. The ups and downs of the latter graph are a bit more orderly
than those of Figure 1.9. In particular, Figure 1.10 exhibits some sort of varying cyclical
behavior that renders predicting the next observation easier. As explained in Chapter 5, this
pattern of irregular cycles reveals that the data exhibit some form of positive dependence
related to the sitting arrangement. In plain English, this means that there was cheating taking
place during the exam by glancing at the answers of one’s neighbors!

The main lesson from Examples 1.5 and 1.6 is that ordering one’s data is a must because
it enables the modeler to test dependence and heterogeneity with respect to each ordering of
interest. Hence:

6. Statistical models for cross-section data do admit dependence and heterogeneity
assumptions that need to be tested by selecting natural orderings (often more than
one) for the particular data.

Statistical models should take into consideration a variety of different dimensions and
features of the data.
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Fig. 1.9 Exam scores data in alphabetical order
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Fig. 1.10 Exam scores data in sitting order

1.4.6 Limitations of Economic Data

In relation to the limitations of economic data, we will consider two important issues:
(i) what they actually measure and (ii) how accurately. Morgenstern (1963) disputed the
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accuracy of published economic data and questioned the appropriateness of such data for
inference purposes. In cases where the accuracy and quality of the data raise problems,
the modeler should keep in mind that no statistical procedure can extract information from
observed data when it is not there in the first place:

7. “Garbage in garbage out” (GIGO): no statistical procedure or substantive informa-
tion can salvage bad quality data that do not contain the information sought.

The accuracy of economic data has improved substantially since the 1960s and in devel-
oped countries data collected by governments and international institutions are sufficiently
accurate. The need for different statistical techniques and procedures arises partly because
of “what is being measured” by the available data vs. what information is being sought. The
primary limitation of the available economic data arises from the fact that there is a size-
able gap between what the theoretical variables denote and what the available data measure.
Economic theory, via the ceteris paribus clauses, assumes a nearly isolated system driven
by the plans and intentions of optimizing agents, but the observed data are the result of an
on-going multidimensional process with numerous influencing factors beyond the control of
particular agents.

In what follows we assume that the modeler has checked the observed data thoroughly
and deemed them accurate enough to be considered reliable enough for posing substantive
questions of interest. This includes due consideration of the sample size n being large enough
for the testing procedures to have adequate capacity to detect any discrepancies of interest;
see Chapter 13. Hence, a crucial recommendation in empirical modeling is:

8. Familiarize oneself thoroughly with the nature and the accuracy of the data to
ensure that they do contain the information sought.

This will inform the modeler about what questions can and cannot be posed to a particular
data set.

1.5 Statistical Adequacy

The crucial message from the discussion in the previous sections is that probability the-
ory provides the mathematical foundations and the overarching framework for modeling
observable stochastic phenomena of interest. The modus operandi of empirical modeling
is the concept of a statistical model Mθ (x), that mediates between the data x0 and the
real-world phenomenon of interest at two different levels [A] and [B] (Figure 1.11).

[A] From a phenomenon of interest to a statistically adequate model. The statistical
model Mθ (x) is chosen so that the observed data x0 constitute a truly typical realization
of the stochastic process {Xt, t∈N} underlying Mθ (x). Validating the model assumptions
requires trenchant misspecification (M-S) testing. The validity of these assumptions secures
the soundness of the inductive premises of inference (Mθ (x)) and renders inference reliable
in learning from data x0 about phenomena of interest. The notion of statistical adequacy is
particularly crucial for empirical modeling because it can provide the basis for establishing
stylized facts stemming from the data which theory needs to account for.
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Fig. 1.11 Model-based frequentist statistical induction

[B] From the inference results to the substantive questions of interest. This nexus raises
issues like statistical vs. substantive significance and how one assesses substantive informa-
tion. As argued in Chapter 13, most of these issues can be addressed using the post-data
severity evaluation of the accept/reject rules of testing by establishing the discrepancy from
the null warranted by data x0 and test Tα .

These points of nexus with the real world are often neglected in traditional statistics text-
books, but the discussion that follows will pay special attention to the issues they raise and
how they can be addressed.

Statistical inference is often viewed as the quintessential form of inductive inference:
learning from a particular set of data x0 about the stochastic phenomenon that gave rise to the
data. However, it is often insufficiently recognized that this inductive procedure is embed-
ded in a deductive argument: if Mθ (x), then Q(θ ; x), where Q(θ ; x) denotes the inference
propositions (estimation, testing, prediction, policy simulation). The procedure from Mθ (x)
(the premise) to Q(θ ; x) is deductive. Estimators and tests are pronounced optimal based on
a purely deductive reasoning. In this sense, the reliability (soundness) of statistical infer-
ence depends crucially on the validity of the premises Mθ (x). The ninth recommendation in
empirical modeling is:

9. Choose a statistical model Mθ (x) with a view to ensuring that data x0 constitute a
truly typical realization of the stochastic mechanism defined by Mθ (x).

On the basis of the premise Mθ (x) we proceed to derive statistical inference results
Q(θ ; x0) using a deductively valid argument ensuring that if the premises are valid, then the
conclusions are necessarily (statistically) reliable. To secure the soundness of such results,
one needs to establish the adequacy of Mθ (x) vis-à-vis the data x0. By the same token, if
Mθ (x) is misspecified then the inference results Q(θ ; x0) are generally unreliable. Indeed,
the ampliative (going beyond the premises) dimension of statistical induction relies on the
statistical adequacy of Mθ (x). The substantive questions of interest are framed in the context
of Mϕ(x), which is parametrically nested within Mθ (x) via the restrictions G(θ , ϕ) = 0.
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Fig. 1.12 Statistical adequacy and inference

When the substantive parameters ϕ are uniquely defined as functions of θ , one can proceed
to derive inferential propositions pertaining to ϕ, say Q(ϕ; x). These can be used to test any
substantive questions of interest, including the substantive adequacy of Mϕ(x). Hence, the
tenth recommendation in empirical modeling is:

10. No statistical inference result can be presumed trustworthy unless the statistical
adequacy of the underlying model has been secured.

The initial and most crucial step in establishing statistical adequacy is a complete list
of the probabilistic assumptions comprising Mθ (x). Hence, the next several chapters pay
particular attention to the problem of statistical model specification.

Departures from the postulated statistical model Mθ (x) are viewed as systematic informa-
tion in the data that Mθ (x) does not account for that can be detected using mis-specification
(M-S) testing. The statistical model needs to be respecified in order to account for such sys-
tematic information. Hence, the procedure is supplemented with the respecification stage.
Figure 1.12 depicts the proposed procedure with the added stages, indicated in circular and
elliptical shapes, supplementing the traditional perspective. The M-S testing raises an impor-
tant issue that pertains to the sample size n. For an adequate probing of the validity of Mθ (x)
one requires a “large enough” n for the M-S tests to have sufficient capacity (power) to detect
any departures from these assumptions.

As shown in Chapter 15, even the simplest statistical models that assume a random sample,
such as the simple Normal and Bernoulli models, call for n > 40. This leads to the following
recommendation in empirical modeling:

11. If the sample size n is not large enough for a comprehensive testing of the model
assumptions, then n is not large enough for inference purposes.

1.6 Statistical vs. Substantive Information∗

In an attempt to provide a more balanced view of empirical modeling and avoid any hasty
indictments of the type: “the approach adopted in this book ignores the theory,” this section
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will bring out briefly the proper role of substantive information in empirical modeling (see
also Spanos, 1986, 1995a, 2010a).

Despite the fact that the statistical model is specified after the relevant data have been
chosen, it does not render either the data or the statistical model “theory-laden.” In addi-
tion to the fact that the variables envisioned by the theory often differ from the available
data, the chance regularities in the particular data exist independently from any substantive
information a modeler might have. Indeed, in detecting the chance regularities one does
not need to know what substantive variable the data measure. This is analogous to Shan-
non’s (1948) framing of information theory: “Frequently the messages have meaning; that is,
they refer to or are correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the engineering problem”
(p. 379). In direct analogy to that, “the semantic aspects of data are irrelevant to the statistical
problem.” In addition, the statistical model is grounded in probabilistic assumptions aiming
to account for the chance regularities in the particular data, and is related to the relevant
substantive model in so far as it facilitates the posing of the substantive questions of interest
after they have been reframed in statistical terms. Hence, when a statistical model is viewed
as a parsimonious description of the stochastic mechanism that gave rise to the particular
data, it has “a life of its own,” providing the inductive premises for inferences stemming
from the data; see Spanos (2006b, 2010a,c).

Observational data are often compiled by government agencies and private organizations,
but such data rarely coincide with the “ideal” data needed when posing specific substantive
questions of interest. Hence, a key recommendation is:

12. Never assume that the available data measure the theoretical concepts one has in
mind just because the names are very similar (or even coincide)!

A striking example is the theoretical concept of demand (intention to buy given a range
of hypothetical prices) vs. data on actual quantities transacted; see Spanos (1995a). As a
result of this gap, empirical modeling in practice attempts to answer substantive questions
of interest by utilizing data which contain no such information.

A clear distinction between statistical and substantive information constitutes one of
the basic pillars of the empirical modeling methodology advocated in this book; see also
Spanos 2006c, 2010c, 2012a). The theory influences the choice of an appropriate statistical
model in two indirect ways. First, it demarcates the observable aspects of the phenom-
ena of interest and that determines the relevant data. Second, the theory influences the
parameterization of the statistical model in so far as the latter enables one to pose substantive
questions of interest in its context. Hence, the mis-specification (M-S) testing and respeci-
fication facets of empirical modeling are purely statistical procedures guided by statistical
information. That is:

13. No theory, however sophisticated, can salvage a misspecified statistical model,
unless it suggests a new statistical model that turns out to be statistically adequate.

As argued in Chapter 7, the statistical and substantive perspectives provide very different
but complementary viewing angles for modeling purposes; see Spanos (2007).
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A statistically adequate Mθ (x) accounts for the statistical information in the data, but is
often not the ultimate objective of empirical modeling. More often than not, the modeler is
interested in appraising the validity of particular substantive information, such as “is there
a causal connection between inflation and money in circulation?” The statistical reliabil-
ity of such inferences can only be secured when the question is posed in the context of a
statistically adequate model. Hence:

14. The success of empirical modeling depends crucially on the skillful synthesizing of
the statistical and substantive information, without undermining the credibility of
either.

1.7 Looking Ahead

The main objective of the next seven chapters (Chapters 2–8) is to introduce the necessary
probabilistic framework for relating the chance regularity patterns exhibited by data to the
proper probabilistic assumptions, with a view to selecting an appropriate stastistical model.
The discussion in Chapters 2–4 presents a simple statistical model as a formalization of a
stochastic phenomenon known as a random experiment. The interplay between chance reg-
ularity patterns and the probabilistic concepts defining a simple statistical model is brought
out in Chapter 5 using a variety of graphical techniques. The primary objective of Chapter 6
is to extend the simple statistical model in directions which enable the modeler to capture
certain forms of dependence. Chapter 7 continues the theme of Chapter 6, with a view to
showing that the key to modeling dependence and certain forms of heterogeneity in data is
the notion of conditioning, leading naturally to regression and related models. Extending the
simple statistical model in directions which enable the modeler to capture several forms of
dependence and heterogeneity is completed in Chapter 8.

Additional references: Spanos (1989a, 1990a, 2006a, 2010b, 2014b, 2015), Granger (1990),
Hendry (2000, 2009), Mayo and Spanos (2010).

Important Concepts
Substantive information, statistical information, stochastic phenomena, chance regularity
patterns, deterministic regularity, distribution regularity, dependence regularity, heterogene-
ity regularity, statistical adequacy, measurement scales, time-series data, cross-section data,
panel data, ratio scale, interval scale, ordinal scale, nominal scale.

Crucial Distinctions
Statistical vs. substantive subject matter information/model, chance vs. deterministic reg-
ularity patterns, statistical modeling vs. statistical inference, curve-fitting vs. statistical
modeling, statistical vs. substantive adequacy, chance regularity patterns vs. probabilistic
assumptions, relative frequencies vs. probabilities, induction vs. deduction, time-series vs.
cross-section data, variables in substantive models vs. observed data, theoretical concepts
vs. data.
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Essential Ideas

● The primary aim of empirical modeling is to learn from data about phenomena of inter-
est by blending substantive subject matter and statistical information (chance regularity
patterns).

● A statistical model comprises a set of internally consistent probabilistic assumptions that
defines a stochastic generating mechanism. These assumptions are chosen to account for
the chance regularities exhibited in the data.

● The traditional metaphor of viewing data as a “sample from a population” is only appro-
priate for real-world data that exhibit IID patterns. Hence, the notion of a “population”
is replaced with the concept of a stochastic generating mechanism.

● Chance regularities and the probabilistic assumptions aiming to account for such reg-
ularities can be classified into three broad categories: distribution, dependence, and
heterogeneity.

● Graphical techniques provide indispensable tools for empirical modeling because they
can be used to bring out the chance regularities exhibited by data.

● Time-series and cross-section data differ only with respect to their ordering of interest.
Time, an interval scale variable, is the natural ordering for the former but often cross-
section data have several such orderings of interest, whose potential orderings span all
four categories of scaling.

● Claims that one does not have to worry about dependence and heterogeneity when
modeling cross-section data are highly misleading and misguided.

● Establishing the statistical adequacy of an estimated model is the most crucial step in
securing the trustworthiness of the evidence stemming from the data.

● If the sample size is not large enough for properly testing the statistical model
assumptions, then it is not large enough for inference purposes.

● Assuming that a data series quantifies the variable used in a substantive model just
because the names coincide, or are very similar, is not a good strategy.

1.8 Questions and Exercises

1. What determines which phenomena are amenable to empirical modeling?

2. (a) Explain intuitively why statistical information, in the form of chance regularity
patterns, is different from substantive subject-matter information.

(b) Explain how these two types of information can be separated, ab initio, by view-
ing the statistical model as a probabilistic construct specifying the stochastic
mechanism that gave rise to the particular data.

(c) The perspective in (b) ensures that the data and the statistical model are not “theory-
laden.” Discuss.

3. Compare and contrast the notions of chance vs. deterministic regularities.

4. Explain why the slogan “All models are wrong, but some are useful” conflates two
different types of being wrong using the distinction between statistical and substantive
inadequacy.
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5. In relation to the experiment of casting two dice (Table 1.3), evaluate the probability of
events A – the sum of the two dice is greater than 9 and B – the difference of the two
dice is less than 3.

6. Discuss the connection between observed frequencies and the probabilistic reasoning
that accounts for those frequencies.

7. In relation to the experiment of casting two dice, explain why focusing on (i) adding
up the two faces and (ii) odds and evens constitute two different probability models
stemming from the same experiment.

8. Explain the connection between a histogram and the corresponding probability distri-
bution using de Mere’s paradox.

9. Give four examples of variables measured on each of the different scales, beyond those
given in the discussion above.

10. (a) Compare the different scales of measurement.
(b) Why do we care about measurement scales in empirical modeling?

11. Beyond the measurement scales, what features of the observed data are of interest from
the empirical modeling viewpoint?

12. (a) In the context of descriptive statistics, explain briefly the following concepts: (i)
mean, (ii) median, (iii) mode, (iv) variance, (v) standard deviation, (vi) covariance,
(vii) correlation coefficient, (viii) regression coefficient.

(b) Explain which of the concepts (i)–(ix) make statistical sense when the data in
question are measured on different scales: nominal, ordinal, interval, and ratio.

13. Compare and contrast time-series, cross-section, and panel data as they relate to
heterogeneity and dependence.

14. Explain how the different features of observed data can be formalized in the context of
expressing a data series in the form {xk, xk ∈ RX , k ∈ N} .

15. Explain briefly the connection between chance regularity patterns and probability
theory concepts.

16. Explain the connection between chance regularities and statistical models.

17. Explain the notion of statistical adequacy and discuss its importance for statistical
inference.

18. Under what circumstances can the modeler claim that the observed data constitute
unprejudiced evidence in assessing the empirical adequacy of a theory?

19. “Statistical inference is a hybrid of a deductive and an inductive procedure.” Explain
and discuss.

20. Discuss the claim: “If the sample size is not large enough for validating the model
assumptions, then it is not large enough for reliable inference.”
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