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Partial Hasse Invariants, Partial Degrees,
and the Canonical Subgroup

Stephane Bijakowski

Abstract. If the Hasse invariant of a p-divisible group is small enough, then one can construct a
canonical subgroup inside its p-torsion. We prove that, assuming the existence of a subgroup of
adequate height in the p-torsionwith high degree, the expected properties of the canonical subgroup
can be easily proved, especially the relation between its degree and the Hasse invariant. When one
considers a p-divisible group with an action of the ring of integers of a (possibly ramiûed) ûnite
extension ofQp , then much more can be said. We deûne partial Hasse invariants (which are natural
in the unramiûed case, and generalize a construction ofReduzzi andXiao in the general case), aswell
as partial degrees. A�er studying these functions, we compute the partial degrees of the canonical
subgroup.

Introduction

Let p be a prime number. Let K be a ûnite extension of Qp and let OK be its ring of
integers. If A is an abelian scheme over OK , we say that A is ordinary at p if the p-
divisible groupA[p∞] is an extension of amultiplicative p-divisible group and an étale
one. If it is the case, then there is only one subgroup of A[p] of height the dimension
of A, which is multiplicative. It li�s the kernel of the Frobenius in the special ûber.

When A is close to being ordinary at p, a similar result holds. _e fact that A is
ordinary at p is equivalent to the fact that the Hasse invariant of A is zero (the Hasse
invariant is an element in [0, 1]). _e theory of the canonical subgroup says that if the
Hasse invariant of A is small enough, then one can construct a canonical subgroup
inside A[p],which is equal to themultiplicative part of A[p]when A is ordinary. _is
construction has been done by Katz [Kat] and Lubin [Lu] for the elliptic curves, and
by Abbes andMokrane [A-M] for general abelian schemes.

_e problem actually makes sense for a general p-divisible group (not necessarily
attached to an abelian scheme): one can deûne the Hasse invariant for a p-divisible
group and try to construct a canonical subgroup when the Hasse invariant is small
enough. _is has been done by Tian [Ti], using global methods and resolutions of
p-divisible groups by abelian schemes. In [Fa2], a purely local construction has been
made explicit. _e canonical subgroup has been a very active research topic, let us
mention the contributions of Andreatta and Gasbarri [A-Ga], Conrad [Co], Goren-
Kassaei [G-K],Hattori [Ha], and Scholze [Sch].

Once the canonical subgroup has been constructed, it is important to have some
extra information for it. Fargues [Fa] deûned the degree of a ûnite �at group scheme
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over OK . _e main result of [Fa2] is then the construction of a canonical subgroup
C ⊂ G[p], where G is a p-divisible group whose Hasse invariant is strictly less than
1/2. Moreover, the height of C is the dimension of G, and the degree of the dual of C
is equal to theHasse invariant.

We prove that the canonical subgroup is in fact characterized by these properties.
Indeed, one has the following result.

_eorem Let K be a complete valuated extension of Qp , and let G be a p-divisible
group over OK . Let C be a ûnite �at subgroup of G[p] whose height is the dimension of
G. Suppose that degCD < 1/2,where CD is the dual of C. _enC is uniquely determined
by these properties. One has the relation degCD = ha(G) where ha(G) is the Hasse
invariant of G. Moreover, C is the kernel of the Frobenius modulo p1−ha(G).

If one supposes the existence of a subgroup of the right height and whose dual
has small degree, then it can easily be proved that this subgroup is canonical in some
sense. _e proof of the theorem is relatively simple and relies on the properties of the
degree function, togetherwith the description of Tate-Oort [T-O] for ûnite �at group
schemes of order p. Note that there is no assumption on p in this theorem, unlike
the result in [Fa2]. It is then very natural to deûne the canonical subgroup as being a
subgroup with prescribed height and whose dual has suõciently small degree.
A key feature for the canonical subgroup is the relation between its degree and

theHasse invariant of the p-divisible group. When one considers a p-divisible group
with additional structures, then much more can be said. Let F be a ûnite extension
of Qp , let OF be its ring of integers, and suppose that G is a p-divisible group with
an action of OF . _en it is possible to deûne partial Hasse invariants for G, partial
degrees for the subgroups of G[p], and to relate all these elements for the canonical
subgroup. We will describe these invariants and the relations in the case where F is
either unramiûed or totally ramiûed, the general case being of combination of these
two cases.

Let F be a ûnite unramiûed extension of Qp and let K be a complete valuated
extension ofQp containing F. Let T be the set of embeddings of F intoQp , and let G
be a p-divisible group overOK with an action ofOF . We recall that theHasse invariant
of G is deûned as the valuation of the determinant of themap

V ∶ωG Ð→ ω
G(p) ,

where G ∶= G ×OK OK/p, the superscript (p) means a twist by the Frobenius, and V
is the Verschiebung. Since G has an action of OF , the OK module ωG admits a direct
sum decomposition according to the elements of T:

ωG = ⊕
τ∈T

ωG ,τ .

_emap V induces maps

Vτ ∶ωG ,τ Ð→ ω
G(p) ,σ−1τ

,

where σ ∈ T is the Frobenius. One can then deûne partial Hasse invariants haτ(G) ∈
[0, 1] as the valuation of the determinant of Vτ for all τ ∈ T. _e sum of the partial
Hasse invariants is theHasse invariant ha(G).
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IfH is a OF-stable ûnite �at subgroup ofG[p], then one can deûne partial degrees
(degτ H)τ for H, as well as for its dual HD . _e sum of the partial degrees is the total
degree. One has the following information concerning the canonical subgroup in that
case.

_eorem Let F be a ûnite unramiûed extension ofQp and let K be a complete valu-
ated extension ofQp containing F. Let G be a p-divisible group over OK with an action
of OF . Suppose that there exists a canonical subgroup C for G[p]. _en one has

degτ C
D = haτ(G)

for all τ ∈ T. If,moreover, the Hasse invariant of G is strictly less than 1/(p + 1), then
haτ(G/C) = p ⋅ haσ−1τ(G)

for all τ ∈ T.

Note that the computations of the partial Hasse invariants haτ(G/C)were done in
[G-K] for theHilbert modular variety.

_e deûnition of the partial Hasse invariants, and the partial degrees is verynatural
when F is unramiûed. _e situation is more involved in the ramiûed case. Suppose
now that F is a totally ramiûed extension of Qp of degree e ≥ 2 with uniformizer π.
Let K be a complete valuated extension ofQp containing the Galois closure of F and
let G be a p-divisible group over OK with an action of OF . _e OK-module ωG does
not split under the action of OF , but one has a ûltration

0 ⊂ ω[1]
G ⊂ ⋅ ⋅ ⋅ ⊂ ω[e]

G = ωG ,

where ω[ j]
G /ω[ j−1]

G is free over OK andwith OF acting on it by a ûxed embedding. _is
ûltration is well deûned once we have ûxed an ordering on Σ, the set of embeddings
of F into Qp . _e construction of the partial Hasse invariants for the special ûber of
theHilbertmodular variety has been done byReduzzi andXiao [R-X], and the gener-
alization of their method is straightforward. Let us describe brie�y this construction.
_eVerschiebung map respects the ûltration on ωG ⊗OK OK/π; the valuations of the
determinants of V acting on the graded pieces give elements ha[1](G), . . . , ha[e](G)
in [0, 1/e] that we call the partial Hasse invariants. Moreover, one can decompose
each of these invariants. _e action of OF gives a map [π]∶ωG → ωG . If we denote
by ωG ,{1/e} ∶= ωG ⊗ OK/πOK , and similarly for ω[ j]

G ,{1/e}, then the maps [π] sends

ω[ j]
G ,{1/e} into ω[ j−1]

G ,{1/e} for all 1 ≤ j ≤ e. One then gets amap

ω[ j]
G ,{1/e}/ω

[ j−1]
G ,{1/e} Ð→ ω[ j−1]

G ,{1/e}/ω
[ j−2]
G ,{1/e}

for all 2 ≤ j ≤ e. _e valuation of the determinant of this map will be denoted by
m[ j](G). One also gets amap

ω[1]
G ,{1/e} Ð→ (ωG ,{1/e}/ω[e−1]

G ,{1/e})
(p)
,

where the superscript (p) means a twist by a Frobenius. _is map can be thought as
the composition of the division by [π]e−1 and the Verschiebung map. _e valuation
of the determinant of this map will be written hasse(G).
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One can then deûne primitiveHasse invariants

(hasse(G),m[2](G), . . . ,m[e](G)).

Moreover, the partial invariants ha[ j](G) can be expressed as linear combinations of
these primitive Hasse invariants. Note that the element hasse(G) is related to the
Verschiebung, whereas the elements m[ j](G) depend only on the structure of ωG as
an OK ⊗Zp OF-module. _e relations m[ j](G) = 0 for all 2 ≤ j ≤ e are equivalent to
the fact that ωG is free over OK ⊗Zp OF (this is usually called the Rapoport condition).
We prove a duality result for these partial and primitiveHasse invariants (Section 1.2).
We also show that they do not depend on the choice of any ordering for Σ if the total
Hasse invariant is strictly less than 1/e (see Proposition 1.12).

IfH is anOF-stable ûnite �at subgroup ofG[p], then one can deûne partial degrees
deg[ j]H. Indeed, one has a map ωG/H → ωG , and the valuation of the determinant
of this map is the degree of H. _is map respects the ûltration on each of the two
modules, so one gets maps

ω[ j]
G/H/ω[ j−1]

G/H Ð→ ω[ j]
G /ω[ j−1]

G

for all 1 ≤ j ≤ e. _e valuation of the determinant of this map is by deûnition the
partial degree of H. Considering themap ωGD → ω(G/H)D , one deûnes similarly the
partial degrees of the dual of H. We prove some properties for these partial degrees
(additivity, compatibility with duality), and we also prove that if the degree of H (or
its dual) is suõciently small, then the partial degrees do not depend on any choice for
the set Σ (see Section 2.2).

In this setting, we prove the following properties for the canonical subgroup.

_eorem Let F be a totally ramiûed extension ofQp of degree e ≥ 2with uniformizer
π, and let K be a complete valuated extension ofQp containing the Galois closure of F.
Let G be a p-divisible group over OK with an action of OF . Suppose that there exists a
canonical subgroup C ⊂ G[p], and suppose that the Hasse invariant of G is strictly less
than 1/e. _en

deg(C[πk]/C[πk−1]) D = ha[e−k+1](G)
for all 1 ≤ k ≤ e. Moreover, one has

deg[1] C[π]D = hasse(G) and deg[ j] C[π]D = m[ j](G)
for all 2 ≤ j ≤ e. If ha(G) < 1/(pe) and if there is a canonical subgroup for G/C, then
one has

ha[1](G/C[π]) = p ⋅ ha[e](G) and ha[ j](G/C[π]) = ha[ j−1](G)
for all 2 ≤ j ≤ e.

One can then relate the degree of the groups C[πk]/C[πk−1] to the partial Hasse
invariants, and the partial degrees of C[π] to the primitiveHasse invariants. One can
also compute the partial Hasse invariants ofG/C[π]. Actually, one can havemore re-
lations and compute the partial degrees of C[πk]/C[πk−1] and the partial and prim-
itiveHasse invariants of G/C[πk] for all 1 ≤ k ≤ e (see Tables 1 and 2).
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Let us now talk about the organization of the paper. In the ûrst part, we deûne
the partial and primitive Hasse invariants for a p-divisible group with an action, and
prove certain properties for these invariants. In the second part, we deûne and study
the partial degrees for a ûnite �at subgroup of such a p-divisible group. In the third
section, we ûrst describe an alternative approach to the canonical subgroup. _en we
consider the canonical subgroup of a p-divisible group with an action, and relate its
partial degrees to the primitive and partial Hasse invariants.

Notation

Let F be a ûnite extension of Qp . Let f and e be the residual degree and the ramiû-
cation index, respectively, and let OF denote the ring of integers of F. We will write
Fur for themaximal unramiûed extension ofQp contained in F and OFur for its ring
of integers; it is an extension ofQp of degree f . Let π be a uniformizer of F.

Let T and Σ be the set of embeddings of Fur and F, respectively, intoQp . For each
τ ∈ T, we denote by Στ the set of σ ∈ Σ, such that σ is equal to τ by restriction to Fur.
We will write T = {τ1 , . . . , τ f } such that τ i+1 = στ i for 1 ≤ i ≤ f − 1, where σ is the
Frobenius. We thus have an identiûcation between T and {1, . . . , f }.

Let K be a complete valuated ûeld that is an extension of Qp . We suppose that K
contains the Galois closure of F. We normalize the valuation of K such that v(p) = 1.
Let OK be the valuation ring of K, and k the residue ûeld. IfM is an OK-modulewith
an action of OFur , then there is a decomposition

M =
f
⊕
i=1

M i ,

where M i consists of the elements of M where OFur acts by τ i .
For all α > 0 we will write mα ∶= {x ∈ OK , v(x) ≥ α}. If M is a OK-module, we

writeM{α} ∶= M⊗OK OK/mα . IfM is a free OK ,{α}-module of ûnite rank, with α ≤ 1,
we deûne M(p) ∶= M ⊗OK ,{α} ,φ OK ,{α}, where φ is the Frobenius acting on OK ,{α}.
_is is still a free OK ,{α} module of the same rank.

In this paper, we will consider a p-divisible group G deûned over OK endowed
with an action of OF . In other words, we suppose the existence of amorphism

OF Ð→ End(G).

_e height of G is thus divisible by e f ; we will denote by h this height divided by e f .
Let ωG be the conormal sheaf of G along its unit section; it is a free OK-module of
rank the dimension of G which has an action of OF . We will assume the following
hypothesis throughout this article.

Hypothesis 0.1 _e K-vector space ωG ⊗OK K is a free K ⊗Zp OF-module.

_is condition says that there is no obstruction for G to be ordinary. In general,
there exists a decomposition ωG ⊗OK K = ⊕σ∈Σ Vσ , with OF acting on Vσ by σ . _e
hypothesis is then equivalent to the fact that the dimension of Vσ is independent of
σ . Let d be the dimension of any Vσ ; the dimension of G is then e f d. If ωG is a free
OK ⊗Zp OF-module, then we say that G satisûes the Rapoport condition.
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_emodule ωG has an action of OFur , and thus has a decomposition

ωG =
f
⊕
i=1

ωG , i ,

where ωG , i is a free OK-module of rank ed, with OFur acting on it by τ i . To simplify
the notations, we will just write ω and ω i for ωG and ωG , i when there is no possible
confusion.

1 Partial Hasse Invariants

1.1 Definition of the Invariants

Let G denote the reduction ofG to OK/p, and let G
(p)

be the twist ofG by the Frobe-
nius. We have the Verschiebung map

V ∶ωG Ð→ ω
G(p) .

But we have ωG = ω{1} and ω
G(p) = (ω{1})(p). We thus get amap

V ∶ω{1} Ð→ (ω{1})(p) .

_e module ω{1} is free of rank e f d over OK ,{1}. By ûxing bases and taking the
determinant of the previous map, one gets an element that we will denote by Ha(G).
It is an element of OK ,{1}. Its truncated valuation is the Hasse invariant and will be
denote by ha(G) ∈ [0, 1]. Since G has an action of OF , one can reûne this invariant,
and deûne partial Hasse invariants. _ey are natural in the unramiûed case.

Recall that we have a decomposition ω = ⊕ f
i=1 ω i . _e Verschiebung map induce

maps
Vi ∶ω i ,{1} Ð→ (ω i−1,{1})(p)

for all 1 ≤ i ≤ f (here and later, we set ω0 = ω f ). Each module ω i ,{1} is free of rank ed
over OK ,{1}.

Deûnition 1.1 _e element Hai(G) is deûned as the determinant of Vi . It is an
element of OK ,{1}. Its truncated valuation will be denoted by hai(G) ∈ [0, 1].

We call the elements (hai(G))i the unramiûed partial Hasse invariants. If F is un-
ramiûed overQp ,we have thus constructed all the partial Hasse invariants claimed in
the introduction. _e situation is more involved in the ramiûed case. _eir deûnition
is a straightforward generalization of a construction from Reduzzi and Xiao for the
special ûber of theHilbert modular variety (see [R-X]).

Let us ûx an element 1 ≤ i ≤ f and consider the freeOK-moduleω i . It has an action
of OF , and OFur acts on it by τ i . Let uswrite Σ i for Στ i ; we recall that it consists of the
elements of Σ that are equal to τ i by restriction to Fur. Let us ûx an ordering on this
set: Σ i = {σi ,1 , . . . , σi ,e}. _e K-vector space ω i ⊗OK K has a natural decomposition

ω i ⊗OK K =
e
⊕
j=1

N i , j ,
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where N i , j consists of the elements of ω i ⊗OK K with OF acting on them by σi , j . _is
gives a ûltration on ωG ⊗OK K, by considering the subspaces Fi , j =⊕ j

k=1N i ,k . We can
pull back this ûltration to ω i , and get a ûltration

0 = ω[0]
i ⊂ ω[1]

i ⊂ ⋅ ⋅ ⋅ ⊂ ω[e]
i = ω i .

Each ω[ j]
i is a free OK-module of rank d j, and we have ω[ j]

i ⊗OK K = Fi , j . By con-
sequence, each of the graded pieces ω[ j]

i /ω[ j−1]
i is a free OK-module of rank d, is

isomorphic over K to N i , j and OF acts by σi , j on it for all 1 ≤ j ≤ e.
_e uniformizer π of F acts on ω i ; we will denote [π]∶ω i → ω i the map induced

by its action. _is map acts on ω[ j]
i /ω[ j−1]

i as the scalar σi , j(π) for all 1 ≤ j ≤ e. _is
element has valuation 1/e; thus if we reducemodulo m1/e , themap [π] will be trivial
on the graded pieces. More precisely, for all 1 ≤ j ≤ e, we have amap

[π]∶ω[ j]
i ,{1/e} Ð→ ω[ j−1]

i ,{1/e} .

Deûnition 1.2 For all 1 ≤ i ≤ f , and for all 2 ≤ j ≤ e, we write M[ j]
i themap

[π]∶ω[ j]
i ,{1/e}/ω

[ j−1]
i ,{1/e} Ð→ ω[ j−1]

i ,{1/e}/ω
[ j−2]
i ,{1/e} .

We write M[ j]
i (G) the determinant of this map; it is an element of OK ,{1/e}. We also

deûne m[ j]
i (G) ∶= v(M[ j]

i (G)) ∈ [0, 1/e].

Note that all the graded parts ω[ j]
i ,{1/e}/ω

[ j−1]
i ,{1/e} are free of rank d over OK ,{1/e}.

_e element M[ j]
i (G) depends on the choice of the uniformizer π, but its valuation

m[ j]
i (G) does not. _ese elements also depend on the choice of an ordering for the

set Σ i . To study this dependence, we ûrst need a deûnition.

Deûnition 1.3 A ûltration 0 = F[0]
i ,{1/e} ⊂ F

[1]
i ,{1/e} ⊂ ⋅ ⋅ ⋅ ⊂ F

[e]
i ,{1/e} = ω i ,{1/e} is called

adequate if the following conditions are satisûed.
● Each F[ j]

i ,{1/e}/F
[ j−1]
i ,{1/e} is a free OK ,{1/e}-module of rank d, for 1 ≤ j ≤ e.

● _emap [π] sends F[ j]
i ,{1/e} into F[ j−1]

i ,{1/e} for 1 ≤ j ≤ e.

_e ûltration (ω[ j]
i ,{1/e}) we constructed is thus adequate. Each adequate ûltration

gives maps

[π]∶ F[ j]
i ,{1/e}/F

[ j−1]
i ,{1/e} Ð→ F[ j−1]

i ,{1/e}/F
[ j−2]
i ,{1/e} ,

for 2 ≤ j ≤ e and thus elements (m[ j]
i ), with m[ j]

i ∈ [0, 1/e]. If these elements are
small enough, then they do not depend on the adequate ûltration. Indeed, we have
the following propositions.

Proposition 1.4 Let (F[ j]
i ,{1/e}) be an adequate ûltration of ω i ,{1/e}, with invariants

m[ j]
i . Let

r i =
e

∑
k=2

(k − 1)m[k]
i
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and suppose r i < 1/e. If (F[ j]
i ,{1/e}

′

) is another adequate ûltration; then we have

F[ j]
i ,{1/e−r i}

= F[ j]
i ,{1/e−r i}

′

for all 1 ≤ j ≤ e.

Proof We ûx a basis of ω i ,{1/e} adapted to the ûltration (F[ j]
i ,{1/e}). _emap [π] acts

on ω i ,{1/e} by amatrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 M[2]
i ∗ ∗

0
. . . ∗ ∗
. . . M[e−1]

i Ne−1,e

0 M[e]
i

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

_e elements x ∈ F[1]
i ,{1/e}

′

verify [π]x = 0. Let us write the coordinates of x in the
previous basis by

x =
⎛
⎜
⎝

X1
⋮
Xe

⎞
⎟
⎠
.

_e relation [π]x = 0 gives M[e]
i Xe = 0. Since the determinant of M[e]

i has valuation
m[e]

i , the vector Xe has coeõcients inm1/e−m[e]
i

. We thus have Xe = 0 in ω i ,{1/e−m[e]
i }

.
We also have the relation M[e−1]

i Xe−1 + Ne−1,eXe = 0. In ω i ,{1/e−m[e]
i }
, we then have

M[e−1]
i Xe−1 = 0. _us, Xe−1 = 0 in ω i ,{1/e−m[e]

i −m[e−1]
i }

. Let us write r[ j]i = ∑ek= j m
[k]
i

for all 2 ≤ j ≤ e. Finally, we see that x ∈ F[1]
i ,{1/e−r[2]i }

, so that

F[1]
i ,{1/e−r[2]i }

′

= F[1]
i ,{1/e−r[2]i }

.

We can then work by induction, considering ω i ,{1/e−r[2]i }
/F[1]

i ,{1/e−r[2]i }

. We then get

F[ j]
{1/e−r[2]i −⋅⋅⋅−r[ j+1]

i }

′

= F[ j]
{1/e−r[2]i −⋅⋅⋅−r[ j+1]

i }

for all 1 ≤ j ≤ e − 1, hence the result, since r[2]i + ⋅ ⋅ ⋅ + r[e]i = r i .

We will write r i(G) = ∑ek=2(k − 1)m[k]
i (G) for all 1 ≤ i ≤ f .

Corollary 1.5 Let i be an integer between 1 and f , and suppose that we have

m[ j]
i (G) + r i(G) < 1/e

for all 1 ≤ j ≤ e. _en the elements (m[ j]
i (G))1≤ j≤e can be computed using any adequate

ûltration on ω i ,{1/e}. In particular, they do not depend on an ordering for the set Σ i .
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Proof Let (F[ j]
i ,{1/e}) be an adequate ûltration; from the previous proposition we get

F[ j]
i ,{1/e−r i(G)}

= ω[ j]
i ,{1/e−r i(G)}

for all 1 ≤ j ≤ e. _emap

[π]∶ω[ j]
i ,{1/e−r i(G)}

/ω[ j−1]
i ,{1/e−r i(G)}

Ð→ ω[ j−1]
i ,{1/e−r i(G)}

/ω[ j−2]
i ,{1/e−r i(G)}

has a determinant of valuation m[ j]
i (G) for all 2 ≤ j ≤ e. _e determinant of

[π]∶ F[ j]
i ,{1/e−r i(G)}

/F[ j−1]
i ,{1/e−r i(G)}

Ð→ F[ j−1]
i ,{1/e−r i(G)}

/F[ j−2]
i ,{1/e−r i(G)}

thus also has a determinant of valuation m[ j]
i (G) for all 2 ≤ j ≤ e. Since m[ j]

i (G) <
1/e − r i(G), the invariant m[ j]

i associated with the adequate ûltration is equal to
m[ j]

i (G).

_ese invariants (m[ j]
i (G)) depend only on the structure of ω as an OK ⊗Zp OF-

module. We have the following characterization of the Rapoport condition.

Proposition 1.6 _e p-divisible group G satisûes the Rapoport condition if and only
if m[ j]

i (G) = 0 for all 1 ≤ i ≤ f and 2 ≤ j ≤ e.

Proof _e Rapoport condition is equivalent to the fact that each ω i is free over
OK ⊗OFur ,τ i OF for all 1 ≤ i ≤ f . Suppose that G satisûes the Rapoport condition.
_en we have

ω i ≃ (OK ⊗OFur ,τ i OF)d

as OK ⊗OFur ,τ i OF-module. One easily reduces to the case d = 1. Since we want to
prove that the invariants m[ j]

i (G) are units, one can make the computation in the
special ûber. But we have

ω i ⊗OK k ≃ k[X]/X e

as k ⊗Zp OF-module, with π acting on k[X]/X e by X. We get that ω[ j]
i ⊗OK k is

generated as a k-vector space by X e− j , . . . , X e−1. _e result follows.
Suppose now that we have m[ j]

i (G) = 0 for all 1 ≤ i ≤ f and 2 ≤ j ≤ e. _e map
[π] acting on ω i is then of the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

σi ,1(π)I M[2]
i ∗

σi ,2(π)I
. . . ∗
. . . M[e]

i
σi ,e(π)I

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

All the blocks are of size d, I is the identity matrix, and by assumption the matrices
M[ j]

i are invertible. Let v1 . . . , vd be a basis of the last block. Consider the family
(vk , [π]vk , . . . , [π]e−1vk), and let N be the change-coordinatematrix for this family.
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_e image of this matrix in the residue ûeld k is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗ ∗ M[2]
i ⋅ ⋅ ⋅ M[e]

i

0 ∗ ∗ ...
0 ∗ M[e−1]

i M[e]
i

0 M[e]
i

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

_is matrix is invertible, so the previous family is a basis for ω i . _is concludes the
fact that this module is free over OK ⊗OFur ,τ i OF .

Remark 1.7 If G satisûes the Rapoport condition, there is only one adequate ûltra-
tion on ωG , i ,{1/e} for all 1 ≤ i ≤ f .

We will now deûne another invariant related to the Verschiebung.

Proposition 1.8 _ere exists amap Hassei ∶ω[1]
i ,{1/e} → (ω i−1,{1/e}/ω[e−1]

i−1,{1/e})
(p).

Proof Let E{1} be the contravariant Dieudonné crystal of G evaluated at OK ,{1}
([BBM, section 3.3]). It is a free OK ,{1}-module of rank e f h. It is endowed with an
action of OF andwe claim it is free of rank h over OK ,{1}⊗Zp OF . Let us brie�y justify
this assertion. It suõces to prove that E{1} ⊗OK k is a free k ⊗Fp OF/p-module. But
this module li�s to aW(k)-module Ẽ, whereW(k) is the ring ofWitt vectors of k (Ẽ
is the classical Dieudonné module of G ×OK k). Since the module Ẽ is automatically
free over W(k)⊗Zp OF , this proves the claim. We have a decomposition

E{1} =
f
⊕
i=1

Ei ,{1} ,

with OFur acting on Ei ,{1} by τ i . Let us denote by [π] the action of 1⊗π on E{1}. Each
Ei ,{1} is a free OK ,{1}[X]/X e-module of rank h,with X acting on it by [π]. Moreover,
theHodge ûltration ([BBM, corollary 3.3.5]) gives an exact sequence

0Ð→ ω i ,{1} Ð→ Ei ,{1} Ð→ ω∨GD , i ,{1} Ð→ 0,

where GD is the Cartier dual of G. We have a Verschiebung map

V ∶E{1} Ð→ ω(p)
{1} .

It induces maps
V ∶Ei ,{1} Ð→ (ω i−1,{1})(p)

for all 1 ≤ i ≤ f . We can now deûne the map of the proposition. Let y ∈ ω[1]
i ,{1/e};

we then have [π]y = 0. We see y as an element of Ei ,{1/e}, which is a free
OK ,{1/e}[X]/X e-module, with X acting by [π]. _us, there exists z ∈ Ei such that
y = X e−1z; this element is deûnedmodulo an element of XEi . Applying V , we get an
element Vz ∈ (ω i−1,{1/e})(p). Since X sends (ω i−1,{1/e})(p) into (ω[e−1]

i−1,{1/e})
(p), the

element
Hassei(y) ∶= Vz ∈ (ω i−1,{1/e}/ω[e−1]

i−1,{1/e})
(p)
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is well deûned.

_e map Hassei can then be thought of as the composition of the division by
[π]e−1 and the Verschiebung map. Taking the determinant of this map, we get an el-
ement Hassei(G) ∈ OK ,{1/e}. _e valuation of this element will be noted hassei(G) ∈
[0, 1/e]. Actually, each choice of an adequate ûltration (F[ j]

i ,{1/e}) for ω i ,{1/e} gives a
map

H i ∶ F[1]
i ,{1/e} Ð→ (ω i−1,{1/e}/F[e−1]

i−1,{1/e})
(p) ,

and thus an element hassei ∈ [0, 1/e]. Fortunately, this element does not depend on
the adequate ûltration under certain hypotheses.

Proposition 1.9 Suppose that hassei(G) + max(r i(G), r i−1(G)) < 1/e. _en the
element hassei(G) can be computed using any adequate ûltration on ω i ,{1/e} and
ω i−1,{1/e}.

Proof Let r = max(r i(G), r i−1(G)), and (F[ j]
k ,{1/e}) be adequate ûltrations of

ωk ,{1/e}, for k ∈ {i − 1, i}. From Proposition 1.4, we get

F[ j]
k ,{1/e−r} = ω[ j]

k ,{1/e−r}

for all k ∈ {i − 1, i} and 2 ≤ j ≤ e. _emap

H i ∶ F[1]
i ,{1/e−r} Ð→ (ω i−1,{1/e−r}/F[e−1]

i−1,{1/e−r})
(p)

thus has a determinant of valuation hassei(G). Since this element is strictly less than
1/e − r, we can conclude.

In the ramiûed case, one can then construct the invariants m[ j]
i (G) for 1 ≤ i ≤ f ,

2 ≤ j ≤ e, which depend on the action of OF on ωG , and another invariant hassei(G)
related to the Verschiebung for 1 ≤ i ≤ f . One can relate the unramiûed partial Hasse
invariants to these ones.

Proposition 1.10 _e Verschiebung inducemaps

V [ j]
i ∶ω[ j]

i ,{1/e}/ω
[ j−1]
i ,{1/e} Ð→ (ω[ j]

i−1,{1/e}/ω
[ j−1]
i−1,{1/e})

(p)

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. _is map is equal to the composition

(M[ j+1]
i−1 )(p) ○ ⋅ ⋅ ⋅ ○ (M[e]

i−1)
(p) ○Hassei ○M[2]

i ○ ⋅ ⋅ ⋅ ○M[ j]
i .

Let Ha[ j]i (G) ∈ OK ,{1/e} be the determinant of this map, and ha[ j]i (G) ∈ [0, 1/e] its
valuation. We have the following equalities in [0, 1/e]:

ha[ j]i (G) = hassei(G) +
j

∑
k=2

m[k]
i (G) + p

e

∑
k= j+1

m[k]
i−1(G)

hai(G) = e ⋅ hassei(G) +
e

∑
k=2

(e + 1 − k)m[k]
i (G) + p

e

∑
k=2

(k − 1)m[k]
i−1(G)

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e (we say that the equality a = b holds in [0, r] if
min(a, r) = min(b, r)).
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Proof We ûrst prove that the Verschiebung sends ω[ j]
i ,{1/e} into (ω[ j]

i−1,{1/e})
(p). We

keep the notations from the previous proposition. Let y ∈ ω[ j]
i ,{1/e}. We see y as an

element of Ei ,{1/e}; we have X j y = 0 so there exists z ∈ Ei such that y = X e− jz. _ere-
fore, we have Vy = X e− jVz. But Vz ∈ (ω i−1,{1/e})(p), and X maps (ω[k]

i−1,{1/e})(p)

into (ω[k−1]
i−1,{1/e})(p) for all 1 ≤ k ≤ e. _us,

Vy ∈ (ω[ j]
i−1,{1/e})

(p) .

Since the Verschiebung respects the ûltration on ω i ,{1/e}, it induces maps on the
graded pieces as claimed.

Let us write V [ j]
i

′

= (M[ j+1]
i−1 )(p) ○ ⋅ ⋅ ⋅ ○ (M[e]

i−1)(p) ○Hassei ○M[2]
i ○ ⋅ ⋅ ⋅ ○M[ j]

i . We

will prove that V [ j]
i

′

= V [ j]
i . Let y ∈ ω[ j]

i ,{1/e}; then y1 ∶= (M[2]
i ○ ⋅ ⋅ ⋅ ○ M[ j]

i )(y) is
equal to [π] j−1 y. Since [π] j y = 0, there exists z ∈ Ei ,{1/e} such that y = X e− jz. _us
y1 = X e−1z, andHassei(y1) = Vz. Finally, we get

V [ j]
i

′

(y) = [π]e− j Hassei(y1) = [π]e− jVz = V(X e− jz) = Vy.

_e rest of the equalities are obtained by taking the valuation of the determinant of
the previous relation.

We will also set

ha[ j](G) =
f

∑
i=1

ha[ j]i (G)

for 1 ≤ j ≤ e. From the previous proposition, we have

ha[ j](G) =
f

∑
i=1

(hassei(G) +
j

∑
k=2

m[k]
i (G) + p

e

∑
k= j+1

m[k]
i (G)) .

_e elements (ha[ j]i (G))i , j will be called the partial Hasse invariants. We will call
the elements (ha[ j](G)) j the ramiûed partial Hasse invariants. Finally, the elements
(hassei(G),m[ j]

i (G))i , j will be called the primitive Hasse invariants.

Remark 1.11 We have the following inequalities:

ha[e] ≤ ha[e−1] ≤ ⋅ ⋅ ⋅ ≤ ha[1] ≤ p ⋅ ha[e] .

If the Hasse invariant is small enough, then so are the invariants m[ j]
i (G) and

hassei(G). In particular, they do not depend on the choice of an ordering for the
sets Σ i and can be computed using any adequate ûltrations.

Proposition 1.12 Suppose that ha(G) < 1/e. _en the elements m[ j]
i (G) and

hassei(G) can be computed using any adequate ûltrations on themodules ω i ,{1/e}.

Proof From the assumption ha(G) < 1/e, we easily get

hassei′(G) + p ⋅ r i(G) < 1/e
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for any elements i , i′ between 1 and f . We get 1/e > p ⋅ r i(G) ≥ 2r i(G) ≥ r i(G) +
m[ j]

i (G) for any 1 ≤ i ≤ f and 2 ≤ j ≤ e, so that the hypothesis of Corollary 1.5 is
satisûed. We also get 1/e > hassei(G)+ max(r i(G), r i−1(G)), and the hypothesis of
Proposition 1.9 is satisûed for all 1 ≤ i ≤ f .

1.2 Compatibility with Duality

_eHasse invariants we deûned satisfy a compatibility with duality. We write GD for
the Cartier dual of G. It is a p-divisible group over OK with an action of OF . It has
height e f h and dimension e f (h − d). We start with the following lemma.

Lemma 1.13 _ere exists a freeOK⊗Zp OF-moduleE of rank hwith an exact sequence
of OK ⊗Zp OF-modules

0Ð→ ωG Ð→ EÐ→ ω∨GD Ð→ 0.

Proof For all integers n ≥ 1, letE{n} be the contravariantDieudonné crystal ofG×OK

OK ,{n} evaluated at OK ,{n} ([BBM, section 3.3]). It is a free OK ,{n}-module of rank
e f h with an action of OF . As we have seen in the proof of Proposition 1.8, it is free as
an OK ,{n} ⊗Zp OF-module. Deûne

E ∶= lim←Ð
n

E{n} .

It is a freeOK⊗Zp OF-module of rank h. _eHodge ûltration ([BBM, corollary 3.3.5])
gives exact sequences for each integer n ≥ 1

0Ð→ ωG ,{n} Ð→ E{n} Ð→ ω∨GD ,{n} Ð→ 0.

_is concludes the proof.

We now state the duality property veriûed by theHasse invariants.

Proposition 1.14 We have the equalities ha(G) = ha(GD) and hai(G) = hai(GD)
for all 1 ≤ i ≤ f . We also have m[ j]

i (G) = m[ j]
i (GD) for all 1 ≤ i ≤ f and 2 ≤ j ≤ e.

Suppose,moreover, that ha(G) < 1/e. _en hassei(G) = hassei(GD) for all 1 ≤ i ≤ f .

Proof _e relation ha(G) = ha(GD) was proved in [Fa2, Proposition 2]. _e same
proof (decomposing each module according to the elements of T) gives the equalities
hai(G) = hai(GD) for 1 ≤ i ≤ f .

We will now prove that m[ j]
i (GD) = m[ j]

i (G) for all 1 ≤ i ≤ f and 2 ≤ j ≤ e. _is
will allow us to conclude thanks to the relation in [0, 1/e],

hai(G) = e ⋅ hassei(G) +
e

∑
k=2

(e + 1 − k)m[k]
i (G) + p

e

∑
k=2

(k − 1)m[k]
i−1(G).

Let us ûx an integer i between 1 and f . _e free OK ⊗Zp OF-module E decomposes in
E =⊕ f

i=1Ei , where Ei is a free OK ⊗OFur ,τ i OF-module. Note the equality

OK ⊗OFur ,τ i OF = OK[X]/
e
∏
k=1

(X − σi ,k(π)).
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We will denote by [π] the action of π in Ei . Recall the exact sequence

0Ð→ ωG , i Ð→ Ei Ð→ ω∨GD , i Ð→ 0.

To ease the notations, let us write πk ∶= σi ,k(π) for 1 ≤ k ≤ e. Let us deûne

F
[ j]
i ∶= { y ∈ Ei , (

e
∏

k= j+1
([π] − πk)) ⋅ y ∈ ω[ j]

G , i}

for 0 ≤ j ≤ e. _e module F[ j]
i is free of rank he − j(h − d) over OK . Furthermore,

since ([π] − πk)ω[k]
G , i ⊂ ω[k−1]

G , i for all 1 ≤ k ≤ e, we have inclusions

0 ⊂ ω[1]
G , i ⊂ ⋅ ⋅ ⋅ ⊂ ω[e]

G , i = F
[e]
i ⊂ ⋅ ⋅ ⋅ ⊂ F

[0]
i = Ei .

Moreover, the map [π] acts by π j on F
[ j−1]
i /F[ j]

i for all 1 ≤ j ≤ e. We thus have a
ûltration

0 ⊂ (Ei/F[1]
i )∨ ⊂ ⋅ ⋅ ⋅ ⊂ (Ei/F[e]

i )∨ = ωGD , i ,

with (Ei/F[ j]
i )∨ free of rank j(h − d), and [π] acts on the quotient

(Ei/F[ j]
i )∨/(Ei/F[ j−1]

i )∨

by π j , for 1 ≤ j ≤ e. _is proves that (Ei[/F[ j]
i )∨ = ω[ j]

GD , i , or in other terms,

F
[ j]
i /ωG , i = (ωGD , i/ω[ j]

GD , i)
∨ .

We have thus related the ûltration on ωGD , i to the one on ωG , i . We want to com-
pute the element m[2]

i (GD). For this, one can work with Ei ,{1/e}, which is a free
OK ,{1/e}[X]/X e-module, with X acting by [π]. Note that since ω[ j]

G , i is contained in
the set of elements killed by∏ j

k=1([π] − πk), we have

F
[ j]
i ,{1/e} = { y ∈ Ei ,{1/e} , X e− j y ∈ ω[ j]

G , i ,{1/e}} .

_e action of [π] on ω[2]
G , i ,{1/e} is of the form

(0 M[2]
i
0

) ,

with the valuation of the determinant ofM[2]
i equal to m[2]

i (G). From the elementary
divisors theorem for valuation rings, one canmoreover suppose that M[2]

i is diagonal.
Let us write y1 , . . . , yd the diagonal coeõcients; we order them so that y1 , . . . , yr are
not units, and yr+1 , . . . , yd are. We can thus ûnd a basis (e1 , . . . , e2d) of ω[2]

G , i ,{1/e}
such that ω[1]

G , i ,{1/e} is generated by (e1 , . . . , ed), and [π]ed+k = yk ek for all 1 ≤ k ≤ d.
One can then ûnd a basis (ε1 , . . . , εh) of Ei ,{1/e} over OK ,{1/e}[X]/X e such that

ek = X e−1εk for 1 ≤ k ≤ d ,
ed+k = X e−1εd+k + X e−2 ykεk for 1 ≤ k ≤ r,

ed+k = X e−2 ykεk for r + 1 ≤ k ≤ d .

Note that one has necessarily d + r ≤ h. We then see that F[1]
i ,{1/e} is generated by

XEi ,{1/e} and (εk)1≤k≤d . _emodule F[2]
i ,{1/e} is generated by X2Ei ,{1/e}, (Xεk)1≤k≤d ,
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(Xεd+k + ykεk)1≤k≤r , and (ykεk)r+1≤k≤d . We can then take (εd+1 , . . . , εh) for a basis
of Ei ,{1/e}/F[1]

i ,{1/e} and (ε1 , . . . , εr , Xεd+r+1 , . . . , Xεh) for a basis of F[1]
i ,{1/e}/F

[2]
i ,{1/e}.

With these bases, thematrix of [π]∶Ei ,{1/e}/F[1]
i ,{1/e} → F

[1]
i ,{1/e}/F

[2]
i ,{1/e} is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−y1
. . .

−yr
1

. . .
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Indeed, we have the relation Xεd+k + ykεk = 0 in F
[1]
i ,{1/e}/F

[2]
i ,{1/e} for all 1 ≤ k ≤ r.

In particular, the determinant of this matrix has valuation m[2]
i (G). _is proves that

m[2]
i (G) = m[2]

i (GD).
Considering F[1]

i ,{1/e}/ω
[1]
G , i ,{1/e}, which is a free OK ,{1/e}[X]/X e−1-module of rank

h, one can prove by induction that the action of [π] on ω∨GD , i ,{1/e} is of the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 M[e]
i

′

⋅ ⋅ ⋅ ∗

0
. . . ⋮
. . . M[2]

i

′

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

with the property that the determinant of M[ j]
i

′

has valuation m[ j]
i (G) for 2 ≤ j ≤ e.

_is concludes the proof.

1.3 Partial Hasse Invariants in Family

Let S be an OK-scheme. In this section only, we will consider a p-divisible group
G → S of height e f h with an action of OF . Let ωG/S be the conormal sheaf ofG along
its unit section; it is a locally free sheaf over S. It also has an action of OF , and thus
decomposes into ωG/S =⊕ f

i=1 ωG/S , i . We also assume the following hypothesis.

Hypothesis 1.15 For each integer 1 ≤ i ≤ f , there exists a ûltration

0 = ω[0]
G/S , i ⊂ ω[1]

G/S , i ⊂ ⋅ ⋅ ⋅ ⊂ ω[e]
G/S , i = ωG/S , i ,

such that for all 1 ≤ j ≤ e, ω[ j]
G/S , i/ω

[ j−1]
G/S , i is a locally free sheaf of rank d, and OF acts

by σi , j on it.

_is hypothesis is satisûed, for example,when one considers certainmoduli spaces
of abelian varieties satisfying the Pappas–Rapoport condition ([P-R]). It implies that
the dimension of G over S is equal to de f . Each ωG/S , i is then a locally free sheaf of
rank ed. We will also deûne

L
[ j]
S , i ∶= det(ω

[ j]
G/S , i/ω

[ j−1]
G/S , i)
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for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. It is an invertible sheaf over S. We will deûne the partial
Hasse invariants as sections of certain products of these invertible sheaves. For this,
we need to work over OK ,{1/e}. Let S{1/e} ∶= S ×OK OK ,{1/e}

Proposition 1.16 _e Verschiebung map induces sections

Ha[ j]i ∈ H0(S{1/e} , (L[ j]
S{1/e} , i−1)

⊗p ⊗ (L[ j]
S{1/e} , i

)−1)

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. _e primitive Hasse invariants are sections

Hassei ∈ H0(S{1/e} , (L[e]
S{1/e} , i−1)

⊗p ⊗ (L[1]
S{1/e} , i

)−1)

and
M[ j]

i ∈ H0(S{1/e} ,L[ j−1]
S{1/e} , i

⊗ (L[ j]
S{1/e} , i

)−1)
for 1 ≤ i ≤ f and 2 ≤ j ≤ e. Moreover, one has the relations for all 1 ≤ i ≤ f and 1 ≤ j ≤ e

Ha[ j]i = (M[ j+1]
i−1 )p . . . (M[e]

i−1)
p ⋅Hassei ⋅M[2]

i . . . M[ j]
i .

Proof _is is exactly the construction done in [R-X].

2 Partial Degrees

2.1 Definitions

We are still considering a p-divisible G endowed with an action of OF satisfying Hy-
pothesis 0.1. Let N ≥ 1 be an integer and let H be a ûnite �at subgroup ofG[pN] stable
by OF . Its height is thus amultiple of f , which we write f h0. Let ωH be the conormal
sheaf of H along its unit section; it is a ûnitely generated OK-module of pN -torsion.
We have an exact sequence

0Ð→ ωG/H Ð→ ωG ←Ð ωH Ð→ 0.

_e degree of H (deûned in [Fa]), written degH can be deûned as the valuation of
the determinant of themap ωG/H → ωG . Alternatively, we have degH = v(Fitt0 ωH),
where Fitt0 is the Fitting ideal, and the valuation of an ideal xOK is the valuation of
x.

_e deûnition of the partial degrees according to the elements of T is very natural.
It has already been done in [Bi]. We have a decomposition ωH = ⊕ f

i=1 ωH , i , where
OFur acts on ωH , i by τ i , and exact sequences

0→ ωG/H , i → ωG , i → ωH , i → 0

for all 1 ≤ i ≤ f .

Deûnition 2.1 _e unramiûed partial degree degi H is deûned as the valuation of
the determinant of the map ωG/H , i → ωG , i for all 1 ≤ i ≤ f . Alternatively, we have
degi H = v(Fitt0 ωH , i).

Example 2.2 We have degi G[pN] = Ned and degi G[πN] = Nd for all 1 ≤ i ≤ f . If
H is multiplicative, then degi H = h0 for all i; if H is étale, then degi H = 0 for all i.
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_e unramiûed partial degree of HD can be deûned either by using the module
ωHD , i or themap ωGD , i → ω(G/H)D , i for all 1 ≤ i ≤ f . _e unramiûed partial degrees
are thus canonically deûned and depend only on the subgroup H and not on the p-
divisible group G. _is will not be the case for the general partial degrees.

We will now reûne the unramiûed partial degrees, to take into account the full
action of OF . _ese general partial degrees have already been deûned by Sasaki for
the Hilbert modular variety ([Sa]), although very few properties were known. We
recall that we have ûltrations (ω[ j]

G , i)1≤ j≤e and (ω[ j]
G/H , i)1≤ j≤e . _emap ωG/H , i → ωG , i

respects this ûltration; we thus get maps

ω[ j]
G/H , i Ð→ ω[ j]

G , i

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e.

Deûnition 2.3 _e partial degree deg[ j]i H is deûned as the valuation of the deter-
minant of themap

ω[ j]
G/H , i/ω

[ j−1]
G/H , i Ð→ ω[ j]

G , i/ω
[ j−1]
G , i

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e.

Example 2.4 We have deg[ j]i G[πN] = Nd/e for all 1 ≤ i ≤ f and 1 ≤ j ≤ e.

Deûne ω[ j]
H , i to be the image of ω[ j]

G , i in ωH for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. _en we
also have

deg[ j]i H = v(Fitt0(ω[ j]
H , i/ω

[ j−1]
H , i ))

for 1 ≤ i ≤ f and 1 ≤ j ≤ e. We deûne the element deg[ j]i HD to be the valuation of the
determinant of themap

ω[ j]
GD , i/ω

[ j−1]
GD , i Ð→ ω[ j]

(G/H)D , i/ω
[ j−1]
(G/H)D , i .

Remark 2.5 One can deûne the partial degrees of a ûnite �at OF-stable subgroup
H ⊂ G[pN] even if the p-divisible group G does not satisfy Hypothesis 0.1.

2.2 Properties

_e unramiûed partial degrees enjoy the following properties.

Proposition 2.6 Let H be an OF-stable ûnite �at subgroup of G[pN] of height f h0.

(i) We have degH = ∑h
i=1 degi H.

(ii) _e unramiûed partial degrees are additive: ifH1 ⊂ H2 are two ûnite �atOF-stable
subgroups of G[pN], then

degi H2 = degi H1 + degi H2/H1

for all 1 ≤ i ≤ f .
(iii) We have degi H

D = h0 − degi H for all 1 ≤ i ≤ f .
(iv) _e unramiûed partial degree degi H is in [0, h0] for all 1 ≤ i ≤ f .

https://doi.org/10.4153/CJM-2016-052-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-052-8


Partial Hasse Invariants, Partial Degrees, and the Canonical Subgroup 759

Proof _e ûrst relation comes from the decomposition ωH =⊕ f
i=1 ωH , i . _e second

relation is implied by the exact sequences

0Ð→ ωH2/H1 , i Ð→ ωH2 , i Ð→ ωH1 , i Ð→ 0

for 1 ≤ i ≤ f . For the third equation, one reduces to the case where H is p-torsion by
additivity. Let EG and EG/H be the free OK-modules constructed in Lemma 1.13 for
G and G/H respectively. Let EH be the Dieudonné crystal associated to H evaluated
at OK/p ([BBM, section 3.1]). Finally, let νHD be the cokernel of themap ω∨

(G/H)D →
ω∨GD . We have a commutative diagram

0

��

0

��

0

��
0 // ωG/H //

��

ωG //

��

ωH //

��

0

0 // EG/H //

��

EG //

��

EH //

��

0

0 // ω∨
(G/H)D

//

��

ω∨GD
//

��

νHD //

��

0

0 0 0
Moreover, one checks that the horizontal and vertical lines are exact sequences. _e
modules EH and νHD have an action of OF , and thus decompose in EH = ⊕ f

i=1EH , i ,
νHD =⊕ f

i=1 νHD , i . We have an exact sequence

0Ð→ ωH , i Ð→ EH , i Ð→ νHD , i Ð→ 0

for all i between 1 and f . We deduce the third equality, since degi H
D = v(Fitt0 νHD , i)

and EH , i is a free OK/p-module of rank h0. From this relation one can easily deduce
the last assertion.

_e properties veriûed by the general partial degrees are similar, but the proofs of
these properties aremore diõcult.

Proposition 2.7 Let H ⊂ G[pN] be a ûnite �at OF-stable subgroup, and let i be an
integer between 1 and f .

(i) We have∑ej=1 deg
[ j]
i H = degi H.

(ii) _e partial degrees are additive: ifH1 ⊂ H2 are two ûnite �at OF-stable subgroups
of G[pN], then

deg[ j]i H2 = deg[ j]i H1 + deg[ j]i H2/H1

for all 1 ≤ j ≤ e.
(iii) We have deg[ j]i HD = h0/e − deg[ j]i H for all 1 ≤ j ≤ e.
(iv) _e partial degree deg[ j]i H is in [0, h0/e] for all 1 ≤ j ≤ e.
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Proof For the ûrst assertion, one has just to observe that the determinant of themap
ωG/H , i → ωG , i is the product of the determinant on the graded pieces

ω[ j]
G/H , i/ω

[ j−1]
G/H , i Ð→ ω[ j]

G , i/ω
[ j−1]
G , i .

_e second relation is obtained by remarking that themap ωG/H2 , i → ωG , i factor-
izes as

ωG/H2 , i Ð→ ωG/H1 , i Ð→ ωG , i ,
and that this factorization respects the ûltrations on the threemodules.

Let us now prove the third relation. Note that it implies the last assertion. By
additivity, one reduces to the case where H is a subgroup of G[π]. Let E be the
free OK ⊗Zp OF-module constructed in Section 1.2. We keep the notation from
that section. Let us ûx an integer i between 1 and f . _e module Ei is a free
OK[X]/∏e

k=1(X − σi ,k(π))-module, with X acting by 1 ⊗ π. To simplify the nota-
tion, let us write πk ∶= σi ,k(π) for all 1 ≤ k ≤ e. Recall that we have exact sequences
coming from theHodge ûltration

0Ð→ ωG , i Ð→ Ei Ð→ ω∨GD , i Ð→ 0.

Moreover, we have the following ûltration on Ei :

0 ⊂ ω[1]
G , i ⊂ ⋅ ⋅ ⋅ ⊂ ω[e]

G , i = F
[e]
i ⊂ ⋅ ⋅ ⋅ ⊂ F

[0]
i = Ei ,

with F
[ j]
i /ωG , i = (ωGD , i/ω[ j]

GD , i)
∨ for all 1 ≤ j ≤ e. Let EG/H , i be the module con-

structed for G/H; it is a free OK[X]/∏e
k=1(X − πk) contained in Ei and containing

XEi . Moreover, Ei/XEi ≃ (OK/p)h , and the quotient Ei/EG/H , i is free over OK/p of
rank h0. _emodule EG/H , i/XEi is thus a direct factor of Ei/XEi .

Let ε1 , . . . , εh be a basis ofEi overOK[X]/∏e
k=1(X−πk) such thatω[1]

G , i is generated
by

e
∏
k=2

(X − πk)ε1 , . . . ,
e
∏
k=2

(X − πk)εd .

_us, F[1]
i is generated by (X − π1)Ei and ε1 , . . . , εd . Let ω

[1]
G , i and F

[1]
i be the images

of ω[1]
G , i and F

[1]
i in Ei/XEi , respectively. We then have:

● themodule ω[1]
G , i is generated by (∏e

k=2 πk)ε1 , . . . , (∏e
k=2 πk)εd

● themodule F[1]
i is generated by ε1 , . . . , εd , π1εd+1 , . . . , π1εh .

_e quotient F[1]
i /ω[1]

G , i is thus a free OK/∏e
k=2 πk-module of rank h.

Let EH , i be the quotient Ei/EG/H , i ; it is a free OK/p-module of rank h0. _e image
of ω[1]

G , i in EH , i is equal to ω[1]
H , i , and if F[1]

H , i is the image of F[1]
i , then EH , i/F[1]

H , i is
isomorphic to (ω[1]

HD , i)
∨. To sum up, one has a ûltration

0 ⊂ ω[1]
H , i ⊂ F

[1]
H , i ⊂ EH , i .

From the calculations made above, one sees that F[1]
H , i/ω

[1]
H , i is a free OK/∏e

k=2 πk
module of rank h0. _is implies the relation

deg[1]i H + h0( 1 − 1
e
) + deg[1]i HD = h0 .
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_is gives the relation for the ûrst partial degree. Considering themodule F[1]
i /ω[1]

G , i ,
which is free over OK[X]/∏e

k=2(X−πk), one gets all the other relations by induction.

_e elements (deg[ j]i H)1≤ j≤e depend on a choice of an ordering for the set Σ i .
However, we have the following property.

Proposition 2.8 Let H be a ûnite �at OF-stable subgroup of G[pN], and let i be an
integer between 1 and f . Suppose that min(degi H, degi H

D) + r i(G) < 1/e. _en the
elements (deg[ j]i H)1≤ j≤e do not depend on any choice.

Proof Suppose that degi H + r i(G) < 1/e. _e elements (deg[ j]i H)1≤ j≤e can be
computed using the modules ω[1]

H , i , . . . ,ω
[e]
H , i . We recall that for all 1 ≤ j ≤ e, the

module ω[ j]
H , i is the image of ω[ j]

G , i in ωH . Since degi H < 1/e − r i(G), this module
is also the image of ω[ j]

G , i ,{1/e−r i(G)}
in ωH . But Proposition 1.4 states that the mod-

ules (ω[ j]
G , i ,{1/e−r i(G)}

)1≤ j≤e do not depend on any choice. We conclude that so do the

modules ω[ j]
H , i , and the elements deg[ j]i H, for 1 ≤ j ≤ e.

Suppose now that degi H
D + r i(G) < 1/e. Since r i(G) = r i(GD), the previous

argument shows that the elements deg[ j]i HD are well deûned for all j between 1 and
e. _e formula deg[ j]i H = h0/e − deg[ j]i HD implies that the elements deg[ j]i H are
well deûned too for all 1 ≤ j ≤ e.

2.3 Partial Degrees in Family

Let X be an admissible formal OK-scheme [Bo, section 2.4]. In this section only, G
will denote a p-divisible group over X of height e f h, with an action of OF . Suppose
also that there is a ûnite �at subgroup H ⊂ G[pN] overX for some integer N . Wewill
denote the p-divisible group G/H by G′, and ϕ∶G → G′ the isogeny. Let ωG/X and
ωG′/X denote the conormal sheaves of G and G′ along their unit sections. _ey are
locally free sheaves over X, and thus decompose according to the elements of T:

ωG/X =
f
⊕
i=1

ωG/X, i ,

and similarly for ωG′/X. We thus have amap ϕ∗∶ωG′/X, i → ωG/X, i . We will also use
the following hypothesis.

Hypothesis 2.9 For each p-divisible G0 equal to G or G′, and for each integer 1 ≤
i ≤ f , there exists a ûltration

0 = ω[0]
G0/X, i

⊂ ω[1]
G0/X, i

⊂ ⋅ ⋅ ⋅ ⊂ ω[e]
G0/X, i

= ωG0/X, i

such that ω[ j]
G0/X, i

/ω[ j−1]
G/X, i is a locally free sheaf of rank d, and OF acts by σi , j on it for

all 1 ≤ j ≤ e. Moreover, themap ϕ∗ respects these ûltrations.

We will deûne
L

[ j]
G , i ∶= det(ω

[ j]
G/X, i/ω

[ j−1]
G/X, i) ,
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and similarly for L[ j]
G′ , i for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. _ey are invertible sheaves over

X. _emap ϕ∗ give sections

δ[ j]H , i ∈ H0(X,L[ j]
G , i ⋅L

[ j]
G′ , i

−1
)

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. Let Xrig be the generic ûber ofX in the sense ofRaynaud
[Bo, section 2.7]. We will still denote by L[ j]

G , i the invertible sheaves on Xrig, and by
δ[ j]H , i the sections induced on Xrig. Moreover, we have a norm map ([Kas, section 2])

Xrig Ð→ R

x Ð→ ∣δ[ j]H , i(x)∣
.

Deûnition 2.10 Let 1 ≤ i ≤ f and 1 ≤ j ≤ e. _e partial degree deg[ j]i H is a function
Xrig → R deûned by

∣δ[ j]H , i(x)∣ = p− deg
[ j]
i H(x) ,

for all x ∈ Xrig.

3 The Canonical Subgroup

3.1 An Alternative Approach

We recall themain theoremof Fargues [Fa2] regarding the construction of the canon-
ical subgroup.

_eorem 3.1 (Fargues) Suppose p /= 2, and let G0 be a p-divisible group of height h0
and dimension d0 over OK . We suppose that ha(G0) < 1/2, and that ha(G0) < 1/3 if
p = 3. _en there exists a canonical subgroup C0 ⊂ G0[p], such that the following hold:
(i) C0 has height d0;
(ii) degCD0 = ha(G0);
(iii) C0 is the kernel of the Frobenius in G ×OK OK ,{1−ha(G0)};
(iv) if ha(G0) < 1/(p + 1), then we have ha(G0/C0) = p ⋅ ha(G0).
Moreover, the construction of the canonical subgroup is compatible with duality.

_is theorem says that if a p-divisible group is close to being ordinary, then one
can construct a subgroup of large degree in its p-torsion and that this construction
is canonical. Another possible approach is to assume the existence of a subgroup of
large degree, and then to prove that it is canonical and veriûes some other properties.
More precisely, one can prove the following theorem using simple arguments.

_eorem 3.2 Let G0 be a p-divisible group of height h0 and dimension d0 over
OK . Suppose that there exists a ûnite �at subgroup C0 ⊂ G0[p] of height d0 such that
degCD0 < 1/2. _en C0 is the unique ûnite �at subgroup of G0[p] satisfying these prop-
erties. Moreover, we have the relation degCD0 = ha(G0), and C0 is the kernel of the
Frobenius in G ×OK OK ,{1−ha(G0)}.
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Proof Let H be a ûnite �at subgroup of G[p] of height d0 and let h be the height
of H ∩ C0. Suppose that h ≤ d0 − 1, and that degH > d0 − 1/2. _en we have by the
properties of the degree function ([Fa])

degH + degC0 ≤ deg(H + C0) + deg(H ∩ C0) ≤ degG[p] + h ≤ 2d0 − 1,

and we get a contradiction, since both H and C0 have a degree strictly larger than
d0 − 1/2.

Let w = degCD0 = degG0[p]/C0. We have an exact sequence

0Ð→ ωG0[p]/C0 Ð→ ωG0 ,{1} Ð→ ωC0 Ð→ 0.

We thus have an isomorphism ωG0 ,{1−w} ≃ ωC0 ,{1−ω}. _e Verschiebung map

V ∶ωG0 ,{1−w} Ð→ ω(p)
G0 ,{1−w}

has a determinant of valuation ha(G) by deûnition. On the other side, one can ûlter
the subgroup C0 by ûnite �at subgroups

0 = H0 ⊂ H1 ⊂ ⋅ ⋅ ⋅ ⊂ Hd0 = C0

such that H i/H i−1 has height 1 for all 1 ≤ i ≤ d0. We thus get a ûltration

0 ⊂ ωC0/Hd0−1 ⊂ ⋅ ⋅ ⋅ ⊂ ωC0/H1 ⊂ ωC0 .

Let ωC0/H i ,{1−w} denote the image of ωC0/H i in ωC0 ,{1−w}. We have exact sequences

0Ð→ ωC0/H i ,{1−w} Ð→ ωC0 ,{1−w} Ð→ ωH i ⊗OK OK ,{1−w} Ð→ 0

for all 1 ≤ i ≤ d0 − 1. We claim that ωH i ⊗OK OK ,{1−w} is a freemodule over OK ,{1−w}

of rank i. Indeed, ωH i is generated by i elements, so there is a surjectivemap

(OK ,{1})i Ð→ ωH i .

_e kernel of this map is killed by any element of valuation greater than i − degH i =
degHD

i ≤ w. _e previousmap is thus an isomorphism a�er tensoringwithOK ,{1−w},
and this proves the claim.

Since ωC0 ,{1−w} and ωH i ⊗OK OK ,{1−w} are freemodules over OK ,{1−w} of rank d0
and i, respectively, we deduce that ωC0/H i ,{1−w} is a free OK ,{1−w}-module of rank
d0 − i. We have thus ûltered the module ωC0 ,{1−w} by free OK ,{1−w} subspaces, and
the graded pieces are isomorphic to ωH i/H i−1 ⊗OK OK ,{1−w}. _e groups H i/H i−1 sat-
isfy the conditions of those studied by Oort and Tate [T-O]. In particular, the Ver-
schiebung map for this group is the multiplication by an element whose valuation is
the degree of the dual of the group. Putting everything together, one gets

ha(G) =
d0
∑
i=1
deg(H i/H i−1)D = degCD0 = w ,

this equality being in [0, 1−w]. Sincew < 1−w,we have the relation ha(G) = degCD0 .
For the last relation, one observes that themorphism

ωCD0 ⊗OK OK ,{1−w} Ð→ ωGD ,{1−w}

is 0, since the degree of CD0 is strictly less thanw. We can then apply [Fa2, Proposition
1].
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Note that there is no assumption on p in the previous theorem. _e canonical
subgroup constructed by Fargues is thus uniquely determined by the fact that it has
height the dimension of the p-divisible group, and that its dual has degree strictly less
than 1/2 (or equivalently that its degree is strictly larger than its height minus 1/2).
_is leads to the following deûnition.

Deûnition 3.3 Let G0 be a p-divisible group of height h0 and dimension d0 over
OK . Let C0 be a ûnite �at subgroup ofG0[p]. We say that C0 is the canonical subgroup
of G0 if the height of C0 is d0 and if degCD0 < 1/2.

_eorem 3.1 then gives a criterion for the existence of a canonical subgroup. Note
that _eorem 3.2 says that the existence of a canonical subgroup implies the relation
ha(G) < 1/2.

3.2 The Partial Degrees of the Canonical Subgroup

We have seen that one can relate the degree of the canonical subgroup and theHasse
invariant. When one considers a p-divisible groupG with an action ofOF ,muchmore
can be said. We keep the notation from the previous sections. We have the following
result.

_eorem 3.4 Let G be a p-divisible group over OK with an action of OF satisfying
Hypothesis 0.1. Suppose that there exists a canonical subgroup C ⊂ G[p] (in the sense
of Deûnition 3.3).
(i) Suppose that ha(G) < min(1/e , 1/2); then we have

degi C
D = hai(G) and degi C[π]

D = ha[e]i (G)

for all 1 ≤ i ≤ f . _is implies degC[π]D = ha[e](G).
(ii) Under the same hypotheses, we have

deg[1]i C[π]D = hassei(G) and deg[ j]i C[π]D = m[ j]
i (G)

for all 1 ≤ i ≤ f and 2 ≤ j ≤ e.
(iii) If e = 1, we suppose that ha(G) < 1/(p + 1); if e ≥ 2, we suppose that ha(G) <

1/(pe) aswell as the existence of a canonical subgroup forG/C. _en hai(G/C) =
p ⋅ hai−1(G) for 1 ≤ i ≤ f . We also have

ha[1]i (G/C[π]) = p ⋅ ha[e]i−1(G) and ha[ j]i (G/C[π]) = ha[ j−1]
i (G)

for all 1 ≤ i ≤ f and 2 ≤ j ≤ e. _e Hasse invariant of G/C[π] is then equal to
ha(G) + (p − 1)ha[e](G). Moreover, if e ≥ 2, then

hassei(G/C[π]) = p ⋅m[e]
i−1(G), m[2]

i (G/C[π]) = hassei(G),

m[ j]
i (G/C[π]) = m[ j−1]

i (G)
for all 1 ≤ i ≤ f and 3 ≤ j ≤ e.

From the result of Fargues [Fa2], the existence of the canonical subgroup for G is
guaranteed by the conditions p > 3 and ha(G) < 1/2, or p = 3 and ha(G) < 1/3. _e
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existence of the canonical subgroup for G/C is guaranteed by the conditions p > 3
and ha(G) < 1/(2p), or p = 3 and ha(G) < 1/(3p).

One can then not only relate the degree of C to the Hasse invariant, but also the
degree and partial degrees of C[π] to the partial Hasse invariants. One can also com-
pute the partial Hasse invariants of the p-divisible group G/C[π]. Actually, one can
get information on C[πk]. Indeed, we have the following propositions.

Proposition 3.5 Let G be a p-divisible group over OK with an action of OF satisfying
Hypothesis 0.1, and suppose that there exists a canonical subgroup C ⊂ G[p]. Suppose
that e ≥ 2 and let 1 ≤ k ≤ e be an integer. Suppose that ha(G) < 1/e; then we have

degi(C[π
k]/C[πk−1]) D = ha[e+1−k]

i (G) for all 1 ≤ i ≤ f .

_us, deg(C[πk]/C[πk−1])D = ha[e+1−k](G). Suppose that ha(G) < 1/(pe), and that
there exists a canonical subgroup for G/C. _en for all 1 ≤ i ≤ f , we have

deg[ j]i (C[πk]/C[πk−1])D = p ⋅m[e+1−k+ j]
i−1 (G) for 1 ≤ j ≤ k − 1,

deg[k]i (C[πk]/C[πk−1])D = hassei(G),

deg[ j]i (C[πk]/C[πk−1])D = m[ j−k+1]
i (G) for k + 1 ≤ j ≤ e .

Proposition 3.6 LetG be a p-divisible group over OK with an action of OF satisfying
Hypothesis 0.1, and suppose that there exists a canonical subgroup C ⊂ G[p]. Suppose
e ≥ 2, ha(G) < 1/(pe), and that there exists a canonical subgroup for G/C. _en we
have

(ha[ j]i (G/C[πk])) 1≤ j≤e =

( p ⋅ ha[e−k+1]
i−1 (G), . . . , p ⋅ ha[e]i−1(G), ha[1]i (G), . . . , ha[e−k]

i (G))

for 1 ≤ i ≤ f and 1 ≤ k ≤ e. _ese relations are equivalent to

(hassei(G/C[πk]),m[2]
i (G/C[πk]), . . . ,m[e]

i (G/C[πk])) =

( p ⋅m[e−k+1]
i−1 (G), . . . , p ⋅m[e]

i−1(G), hassei(G),m[2]
i (G), . . . ,m[e−k]

i (G))

for all 1 ≤ i ≤ f and 1 ≤ k ≤ e − 1. For k = e we get hassei(G/C) = p ⋅ hassei−1(G) and
m[ j]

i (G/C) = p ⋅m[ j]
i−1(G) for all 1 ≤ i ≤ f and 2 ≤ j ≤ e.

We could have presented these two results as corollaries of the theorem, but to get
sharper bounds on theHasse invariant,wewill prove these three results together. _is
will be done in the next section. We sum up all the information in the following two
tables.

_ese two tables are valid if G is a p-divisible group as in _eorem 3.4, C is the
canonical subgroup, ha(G) < min(1/(pe), 1/(p + 1)), and if there exists a canonical
subgroup for G/C.

https://doi.org/10.4153/CJM-2016-052-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-052-8


766 S. Bijakowski

C[π]D (C[π2]/C[π])D ⋅ ⋅ ⋅ (C/C[πe−1])D CD

deg[1]i hassei(G) p ⋅m[e]
i−1(G) ⋅ ⋅ ⋅ p ⋅m[2]

i−1(G) ha[1]i (G)

deg[2]i m[2]
i (G) hassei(G) ⋅ ⋅ ⋅ p ⋅m[3]

i−1(G) ha[2]i (G)

⋮ ⋮ ⋮ . . . ⋮ ⋮

deg[e]i m[e]
i (G) m[e−1]

i (G) ⋅ ⋅ ⋅ hassei(G) ha[e]i (G)

degi ha[e]i (G) ha[e−1]
i (G) ⋅ ⋅ ⋅ ha[1]i (G) hai(G)

deg ha[e](G) ha[e−1](G) ⋅ ⋅ ⋅ ha[1](G) ha(G)

Table 1: _e partial degrees of the graded parts of the canonical subgroup

G/C[π] G/C[π2] ⋅ ⋅ ⋅ G/C

hassei p ⋅m[e]
i−1(G) p ⋅m[e−1]

i−1 (G) ⋅ ⋅ ⋅ p ⋅ hassei−1(G)

m[2]
i hassei(G) p ⋅m[e]

i−1(G) ⋅ ⋅ ⋅ p ⋅m[2]
i−1(G)

m[3]
i m[2]

i (G) hassei(G) ⋅ ⋅ ⋅ p ⋅m[3]
i−1(G)

⋮ ⋮ ⋮ . . . ⋮

m[e]
i m[e−1]

i (G) m[e−2]
i (G) ⋅ ⋅ ⋅ p ⋅m[e]

i−1(G)

Table 2: _e primitiveHasse invariants of the p-divisible groups G/C[πk]

Remark 3.7 It is not diõcult to see that if G does not satisfy Hypothesis 0.1, then
ha(G) = 1 and there cannot be a canonical subgroup for G[p]. We could thus have
removed this assumption in the theorem and in the propositions.

Remark 3.8 _e condition ha(G) < 1/e implies that all the partial and primitive
Hasse invariants ofG arewell deûned. If ha(G) < 1/e andC is the canonical subgroup
of G[p], then we have

degi C[π]
D + r i(G) ≤ ha[e]i (G) +

e−1

∑
j=1

ha[ j]i+1(G) ≤ ha(G) < 1/e .

_us, the partial degrees of C[π]D are well deûned too, thanks to Proposition 2.8.
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Remark 3.9 IfG satisûes the Rapoport condition, thenwe havem[ j]
i (G) = 0 for all

1 ≤ i ≤ f and 2 ≤ j ≤ e. _en we have

degi(C[π
k]/C[πk−1])D = hassei(G)

for all 1 ≤ i ≤ f and 1 ≤ k ≤ e. Moreover, the element deg[ j]i (C[πk]/C[πk−1])D
is equal to hassei(G) if j = k and 0, otherwise. Let k be an integer between 1 and
e − 1. _e elements (hassei(G/C[πk]),m[ j]

i (G/C[πk])) are all 0 except the relation
m[k+1]

i (G/C[πk]) = hassei(G) for all 1 ≤ i ≤ f . Note that if G is not ordinary, then
G/C[πk] does not satisfy the Rapoport condition for 1 ≤ k ≤ e − 1. _is is consistent
with the fact that the Uπ operator on the Hilbert modular variety does not stabilize
the Rapoport locus (see [A-Go]).

Remark 3.10 Suppose that e ≥ 2, that the Hasse invariant of G is small enough,
and that there exists a canonical subgroup C ⊂ G[p]. Consider G′ = G/C[π]; it has a
subgroup H′

0 = G[π]/C[π]. _is subgroup has partial degrees

(deg[ j]i H′

0)1≤ j≤e = (hassei(G),m[2]
i (G), . . . ,m[e]

i (G))

for all 1 ≤ i ≤ f . In G′′ = G/C[π2], the image of H′

0 is H′′

0 = G′[π]/(C[π2]/C[π]). It
has partial degrees

(deg[ j]i H′′

0 )1≤ j≤e = (p ⋅m[e]
i−1(G), hassei(G),m[2]

i (G), . . . ,m[e−1]
i (G))

for all 1 ≤ i ≤ f . _is shows that the Uπ operator on theHilbert modular variety does
not increase, in general, any of the partial degrees.

3.3 Proof of the Theorem

Before proving the theorem, we recall the structure theorem of Raynaud [Ra] con-
cerning ûnite �at group schemes of height f over OK , of p-torsion andwith an action
of OFur .

Proposition 3.11 Let H be a ûnite �at group scheme of height f over OK , of p-torsion,
and with an action of OFur . _en there exist elements (a i , b i)1≤i≤ f of OK such that
a ib i = pu (where u is a ûxed p-adic unit), with H isomorphic to the spectrum of

OK[X1 , . . . , X f ]/(X p
i − a i+1X i+1),

where we identify X f+1 and X1. _e dual of the group with parameters (a i , b i) is
the one with parameter (b i , a i). Moreover, we have ωH , i = OK/a i , and therefore
degi H = v(a i), degi H

D = v(b i) for all 1 ≤ i ≤ f . _e Verschiebung map ωH , i →
ωH(p) , i−1 is given by

OK/a i Ð→ OK/(p, ap
i−1)

1Ð→ b i

for all 1 ≤ i ≤ f .

We will refer to such group schemes as Raynaud group schemes.
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Remark 3.12 Since the group is deûned over OK , the condition (⋆⋆) of [Ra] is
automatically satisûed.

We now turn to the proof of _eorem 3.4 and of Propositions 3.5 and 3.6. Let G
and C be as in the theorem. Let us write w = ha(G). We have an exact sequence

0Ð→ ωG[p]/C Ð→ ωG ,{1} Ð→ ωC Ð→ 0.

But the degree of G[p]/C is w, thus we have an isomorphism

ωG ,{1−w} ≃ ωC ,{1−w} .

It gives isomorphisms ωG , i ,{1−w} ≃ ωC , i ,{1−w} for all 1 ≤ i ≤ f . _e space C(OK) is
a Fq-vector space, with a map [π] such that [π]e = 0. Let us give a ûltration on this
vector space; it gives a ûltration H1 ⊂ ⋅ ⋅ ⋅ ⊂ Hde = C such that each Hk+1/Hk is a
Raynaud group scheme. Moreover, one can do it in a way that Hkd = C[πk] for all
1 ≤ k ≤ e. _is gives a ûltration

0 ⊂ ωC/Hde−1 ⊂ ⋅ ⋅ ⋅ ⊂ ωC/H1 ⊂ ωC .

Let ωC/Hk , i ,{1−w} be the image of ωC/Hk in ωC , i ,{1−w}. We have thus ûltered the
free OK ,{1−w}-module of rank de ωC , i ,{1−w} by de submodules such that each of
the graded pieces is monogeneous (since Hk+1/Hk is a Raynaud group scheme, the
quotient ωC/Hk , i/ωC/Hk+1 , i ≃ ωHk+1/Hk , i is monogeneous). _is forces each module
ωC/Hk , i ,{1−w} to be free of rank de − k over OK ,{1−w}. We have ûltered ωC , i ,{1−w}

by free OK ,{1−w} submodule, and the Verschiebung acts on the graded pieces by the
multiplication by an element of valuation degi(Hk/Hk−1)D . Wewill ûrst compute the
unramiûed partial degrees of C. When one takes the valuation of the determinant of
the Verschiebung acting on ωC , i ,{1−w}, one gets the following equality in [0, 1 −w]:

hai(G) =
de

∑
k=1
degi(Hk/Hk−1)D = degi C

D

for 1 ≤ i ≤ f . Since hai(G) ≤ w < 1 − w, this relation is simply an equality. _is
settles the ûrst assertion of_eorem 3.4 in the case e = 1. We now assume e ≥ 2. _e
ûltration

0 ⊂ ωC/C[πe−1], i ,{1/e} ⊂ ⋅ ⋅ ⋅ ⊂ ωC/C[π], i ,{1/e} ⊂ ωC , i ,{1/e}
is thus an adequate ûltration of ωG , i ,{1/e} ≃ ωC , i ,{1/e} for all 1 ≤ i ≤ f . Moreover, from
the result on Raynaud group schemes, the determinant of themap

V ∶ωC/C[πk−1], i ,{1/e}/ωC/C[πk], i ,{1/e} Ð→ (ωC/C[πk−1], i−1,{1/e}/ωC/C[πk], i−1,{1/e})(p)

has a determinant with valuation equal to degi(C[πk]/C[πk−1])D for 1 ≤ i ≤ f and
1 ≤ k ≤ e. From Propositions 1.9 and 1.10, one gets

ha[e+1−k]
i (G) = degi(C[π

k]/C[πk−1]) D

for all 1 ≤ i ≤ f and 1 ≤ k ≤ e. _is concludes the proof of the ûrst assertion of
_eorem 3.4, and the ûrst part of Proposition 3.5.
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Now let us turn to the computation of the partial Hasse invariants of the p-divisible
groups G/C[πk], for 1 ≤ k ≤ e. _e p-divisible group (G/C)×OK OK ,{1−w} is isomor-
phic to (G ×OK OK ,{1−w})(p), where the subscript means a twist by the Frobenius.
First we suppose that and w < 1/(p + 1). We have the following equality in [0, 1 −w]:

hai(G/C) = p ⋅ hai−1(G)

for 1 ≤ i ≤ f . Since p ⋅ hai−1(G) ≤ pw < 1 −w, this is just an equality. _is proves the
ûrst assertion of_eorem 3.4 in the case e = 1.

Now we suppose that e ≥ 2 and w < 1/(pe). Since the element p ⋅w is strictly less
than 1/e, we have

ha[ j]i (G/C) = p ⋅ ha[ j]i−1(G)

for all 1 ≤ i ≤ f and 1 ≤ j ≤ e. _is gives the result for G/C. Now assume the existence
of a canonical subgroup for G/C. We will write C2 ⊂ G[p2] the subgroup such that
C2/C is the canonical subgroup of G/C. Since ha(G/C) < 1/e, we can apply our
previous result to this p-divisible group. We note that (C2/C)[πk] = C2[πk+e]/C,
and get

degi(C2[πe+k]/C2[πe+k−1])D = p ⋅ ha[e+1−k]
i−1 (G)

for all 1 ≤ i ≤ f and 1 ≤ k ≤ e. Next, we consider the p-divisible group G/C[πk]. One
easily checks that it as a canonical subgroup equal to C2[πk+e]/C[πk]. Applying our
previous result to this p-divisible group, one gets

ha[ j]i (G/C[πk]) = degi(C2[πk+e+1− j]/C2[πk+e− j]) D

for all 1 ≤ i ≤ f , 1 ≤ j ≤ e and 1 ≤ k ≤ e. Putting all these relations together, we
conclude that

(ha[ j]i (G/C[πk]))1≤ j≤e =

( p ⋅ ha[e+1−k]
i−1 (G), . . . , p ⋅ ha[e]i−1(G), ha[1]i (G), . . . , ha[e−k]

i (G))

for 1 ≤ i ≤ f and 1 ≤ k ≤ e. _is proves the third assertion of _eorem 3.4 and
Proposition 3.6.

We now compute the partial degrees of C[π]D . We will prove that deg[ j]i C[π]D =
m[ j]

i (G) for all 1 ≤ i ≤ f and 2 ≤ j ≤ e. Since we have already computed the un-
ramiûed partial degree degi C[π]D = ha[e]i (G), this will imply that deg[1]i C[π]D =
hassei(G).

Let us ûx an integer i between 1 and f , and let us denote by νC[π]D , i the cokernel
of themap ω∨

(G/C[π])D , i → ω∨GD , i . We thus have an exact sequence

0Ð→ ω∨
(G/C[π])D , i Ð→ ω∨GD , i Ð→ νC[π]D , i Ð→ 0.

Since degi C[π]D = ha[e]i (G) < 1/e, we have an exact sequence

ω∨
(G/C[π])D , i ,{1/e} Ð→ ω∨GD , i ,{1/e} Ð→ νC[π]D , i Ð→ 0.
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On ω∨GD , i ,{1/e}, the action of [π] is given by amatrix of the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 M[e]
i ⋅ ⋅ ⋅ ∗

0
. . . ∗
. . . M[2]

i
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where this matrix is written in a basis respecting the ûltration

(ωGD , i ,{1/e}/ω[ j]
GD , i ,{1/e})

∨ ,

and the determinant of the matrix M[ j]
i has valuation m[ j]

i (G) for all 2 ≤ j ≤ e.
Here, all the blocks are of size h − d. By a slight abuse of notation, we will still denote
by ω∨

(G/C[π])D , i ,{1/e} the image of this module in ω∨GD , i ,{1/e}, and will work with this
module from now on. _is module contains [π] ⋅ ω∨GD , i ,{1/e}, and the image of this
module in the quotient ω∨GD , i ,{1/e}/[π] ⋅ ω∨GD , i ,{1/e} is generated by h − d elements
(since the height of G[π]/C[π] is f (h − d)). We will write thematrix of these h − d
elements by

Y =
⎛
⎜
⎝

Y1
⋮
Ye

⎞
⎟
⎠
.

Since themodule νC[π]D , i has amodule isomorphic to Oh−d
K ,{1/e}/YeOh−d

K ,{1/e} as a quo-

tient,we see that v(detYe) ≤ degi C[π]D = ha[e]i (G). We now claim that the intersec-
tion of ω∨

(G/C[π])D , i ,{1/e} with the ûrst step of the ûltration (ωGD , i ,{1/e}/ω[e−1]
GD , i ,{1/e})

∨

is generated by the image of the matrix M[e]
i . Indeed, let us write by V2 , . . . ,Ve the

(non zero) columns of thematrix of [π]. An element X in ω∨
(G/C[π])D , i ,{1/e} can then

be written as a linear combination

X = V2α1 + ⋅ ⋅ ⋅ + Veαe−1 + Yαe

for some (h − d)× 1 columns α i . If X is in the ûrst step of the ûltration, then one sees
that Yeαe = 0 in Od

K ,{1/e}. _is implies that the elements of αe have a valuation greater

than 1/e − ha[e]i (G). We then get the relation M[2]
i αe−1 = 0 in Od

K ,{1/e−ha[e]i (G)}

. _e
valuations of the elements of αe−1 are thus greater than 1/e − ha[e]i (G) − m[2]

i (G).
By induction, one sees that the coeõcients of α2 , . . . , αe all have a valuation greater
than 1/e − ha[e]i (G) −m[2]

i (G) − ⋅ ⋅ ⋅ −m[e−1]
i (G). _is concludes the claim, with the

hypothesis

ha[e]i (G) +
e

∑
j=2

m[ j]
i (G) < 1/e .

_is hypothesis guarantees that deg[e]i C[π]D = m[e]
i (G). Reasoning by induction,

considering themodule (ω[e−1]
GD , i ,{1/e})

∨, one gets that under the same hypothesis,

deg[ j]i C[π]D = m[ j]
i (G)
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for all 2 ≤ j ≤ e. _is concludes the second assertion of _eorem 3.4, since the hy-
pothesis is implied by the relation ha(G) < 1/e. Indeed, if e ≥ 2, one has

ha[e]i (G) +
e

∑
j=2

m[ j]
i (G) ≤ 2ha[e]i (G) ≤ 2ha[e](G) ≤ ha[e](G) + ha[e−1](G) ≤ ha(G)

for all 1 ≤ i ≤ f .
To conclude, it remains to prove the second part of Proposition 3.5, i.e., to compute

the partial degrees of (C[πk+1]/C[πk])D for 1 ≤ k ≤ e − 1 with the assumption that
ha(G) < 1/(pe) and the existence of a canonical subgroup for G/C. Wewant to apply
our previous result to the p-divisible groupG/C[πk]. For thiswe need the hypothesis

ha[e]i (G/C[πk]) +
e

∑
j=2

m[ j]
i (G/C[πk]) < 1/e

for all 1 ≤ i ≤ f and 1 ≤ k ≤ e − 1. But from the computation on the primitive Hasse
invariants of G/C[πk], we have

ha[e]i (G/C[πk]) +
e

∑
j=2

m[ j]
i (G/C[πk])

= ha[e−k]
i (G) + p

e

∑
j=e−k+2

m[ j]
i−1(G) + hassei(G) +

e−k

∑
j=2

m[ j]
i (G)

≤ 2ha[e−k]
i (G) < 2/(pe) ≤ 1/e

for all 1 ≤ i ≤ f and 1 ≤ k ≤ e − 1. _is concludes the proof of _eorem 3.4 and
Propositions 3.5 and 3.6.

Remark 3.13 Incidentally, we have proved that ifH is a ûnite �at subgroup ofG[π]
of height f (h − d) such that

degi H +
e

∑
j=2

m[ j]
i (G) < 1/e

for some integer i, then deg[ j]i H = m[ j+1]
i (G) for all 1 ≤ j ≤ e − 1.
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