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Partial Hasse Invariants, Partial Degrees,
and the Canonical Subgroup

Stephane Bijakowski

Abstract. If the Hasse invariant of a p-divisible group is small enough, then one can construct a
canonical subgroup inside its p-torsion. We prove that, assuming the existence of a subgroup of
adequate height in the p-torsion with high degree, the expected properties of the canonical subgroup
can be easily proved, especially the relation between its degree and the Hasse invariant. When one
considers a p-divisible group with an action of the ring of integers of a (possibly ramified) finite
extension of Qp, then much more can be said. We define partial Hasse invariants (which are natural
in the unramified case, and generalize a construction of Reduzzi and Xiao in the general case), as well
as partial degrees. After studying these functions, we compute the partial degrees of the canonical
subgroup.

Introduction

Let p be a prime number. Let K be a finite extension of Q, and let Ok be its ring of
integers. If A is an abelian scheme over Ok, we say that A is ordinary at p if the p-
divisible group A[ p*°] is an extension of a multiplicative p-divisible group and an étale
one. If it is the case, then there is only one subgroup of A[ p] of height the dimension
of A, which is multiplicative. It lifts the kernel of the Frobenius in the special fiber.

When A is close to being ordinary at p, a similar result holds. The fact that A is
ordinary at p is equivalent to the fact that the Hasse invariant of A is zero (the Hasse
invariant is an element in [0,1]). The theory of the canonical subgroup says that if the
Hasse invariant of A is small enough, then one can construct a canonical subgroup
inside A[ p], which is equal to the multiplicative part of A[ p] when A is ordinary. This
construction has been done by Katz [Kat] and Lubin [Lu] for the elliptic curves, and
by Abbes and Mokrane [A-M] for general abelian schemes.

The problem actually makes sense for a general p-divisible group (not necessarily
attached to an abelian scheme): one can define the Hasse invariant for a p-divisible
group and try to construct a canonical subgroup when the Hasse invariant is small
enough. This has been done by Tian [Ti], using global methods and resolutions of
p-divisible groups by abelian schemes. In [Fa2], a purely local construction has been
made explicit. The canonical subgroup has been a very active research topic, let us
mention the contributions of Andreatta and Gasbarri [A-Ga], Conrad [Co], Goren-
Kassaei [G-K], Hattori [Ha], and Scholze [Sch].

Once the canonical subgroup has been constructed, it is important to have some
extra information for it. Fargues [Fa] defined the degree of a finite flat group scheme
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over Og. The main result of [Fa2] is then the construction of a canonical subgroup
C c G[p], where G is a p-divisible group whose Hasse invariant is strictly less than
1/2. Moreover, the height of C is the dimension of G, and the degree of the dual of C
is equal to the Hasse invariant.

We prove that the canonical subgroup is in fact characterized by these properties.
Indeed, one has the following result.

Theorem  Let K be a complete valuated extension of Q,, and let G be a p-divisible
group over Ok. Let C be a finite flat subgroup of G| p]| whose height is the dimension of
G. Suppose that deg CP < 1/2, where CP is the dual of C. Then C is uniquely determined
by these properties. One has the relation deg CP = ha(G) where ha(G) is the Hasse
invariant of G. Moreover, C is the kernel of the Frobenius modulo p'~"#(),

If one supposes the existence of a subgroup of the right height and whose dual
has small degree, then it can easily be proved that this subgroup is canonical in some
sense. The proof of the theorem is relatively simple and relies on the properties of the
degree function, together with the description of Tate-Oort [T-O] for finite flat group
schemes of order p. Note that there is no assumption on p in this theorem, unlike
the result in [Fa2]. It is then very natural to define the canonical subgroup as being a
subgroup with prescribed height and whose dual has sufficiently small degree.

A key feature for the canonical subgroup is the relation between its degree and
the Hasse invariant of the p-divisible group. When one considers a p-divisible group
with additional structures, then much more can be said. Let F be a finite extension
of Q,, let O be its ring of integers, and suppose that G is a p-divisible group with
an action of Op. Then it is possible to define partial Hasse invariants for G, partial
degrees for the subgroups of G[p], and to relate all these elements for the canonical
subgroup. We will describe these invariants and the relations in the case where F is
either unramified or totally ramified, the general case being of combination of these
two cases.

Let F be a finite unramified extension of Q, and let K be a complete valuated
extension of Q, containing F. Let T be the set of embeddings of F into Q,, and let G
be a p-divisible group over Ok with an action of Op. We recall that the Hasse invariant
of G is defined as the valuation of the determinant of the map

Viwg — wzm,
where G := G x¢, Ox/p, the superscript (p) means a twist by the Frobenius, and V'

is the Verschiebung. Since G has an action of OF, the Ox module w¢ admits a direct
sum decomposition according to the elements of J:

wg = D wg,7.
7T

The map V induces maps
Viiwg, = 05w

where o € T is the Frobenius. One can then define partial Hasse invariants ha,(G) €
[0,1] as the valuation of the determinant of V; for all 7 € J. The sum of the partial
Hasse invariants is the Hasse invariant ha(G).
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If H is a Op-stable finite flat subgroup of G| p], then one can define partial degrees
(deg, H), for H, as well as for its dual HP. The sum of the partial degrees is the total
degree. One has the following information concerning the canonical subgroup in that
case.

Theorem  Let F be a finite unramified extension of Q, and let K be a complete valu-
ated extension of Q, containing F. Let G be a p-divisible group over O with an action
of Og. Suppose that there exists a canonical subgroup C for G[p]. Then one has

deg, C” =ha.(G)
for all T € T. If, moreover, the Hasse invariant of G is strictly less than 1/(p + 1), then
ha;(G/C) = p-ha-1.(G)
forallTeT.

Note that the computations of the partial Hasse invariants ha,(G/C) were done in
[G-K] for the Hilbert modular variety.

The definition of the partial Hasse invariants, and the partial degrees is very natural
when F is unramified. The situation is more involved in the ramified case. Suppose
now that F is a totally ramified extension of Q, of degree e > 2 with uniformizer 7.
Let K be a complete valuated extension of Q, containing the Galois closure of F and
let G be a p-divisible group over Ok with an action of Or. The Og-module wg does
not split under the action of OF, but one has a filtration

chg] c---C w[Ge] = wWe,
where a)[Gj ] / a)g_l] is free over Og and with Op acting on it by a fixed embedding. This
filtration is well defined once we have fixed an ordering on Z, the set of embeddings
of F into Q,. The construction of the partial Hasse invariants for the special fiber of
the Hilbert modular variety has been done by Reduzzi and Xiao [R-X], and the gener-
alization of their method is straightforward. Let us describe briefly this construction.
The Verschiebung map respects the filtration on wg ®o, Ox/7; the valuations of the
determinants of V acting on the graded pieces give elements hal'l (G),..., hal®] (G)
in [0,1/e] that we call the partial Hasse invariants. Moreover, one can decompose
each of these invariants. The action of Of gives a map [7]: wg — wg. If we denote
by wg,1/e} = wg ® Ox/nOk, and similarly for w[GJ’]{l/e}, then the maps [7] sends
“’[cj,]{ue} into w[cf’_{ll]/e} forall 1 < j < e. One then gets a map
[j-2]
93 e 6. 11e) — @G 1yer /9 e
for all 2 < j < e. The valuation of the determinant of this map will be denoted by
mU1(G). One also gets a map
(1 1]
W /ey (w, {l/e}/wc {1/e}
where the superscript (p) means a twist by a Frobenius. This map can be thought as
the composition of the division by [7]°~" and the Verschiebung map. The valuation
of the determinant of this map will be written hasse(G).

>

)(P)
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One can then define primitive Hasse invariants
(hasse(G), mP1(G),..., ml1(G)).

Moreover, the partial invariants hal/! (G) can be expressed as linear combinations of
these primitive Hasse invariants. Note that the element hasse(G) is related to the
Verschiebung, whereas the elements mU1(G) depend only on the structure of wg as
an Ok ®z, Op-module. The relations mUl(G) = 0 forall 2 < j < e are equivalent to
the fact that wg is free over Ok ®7, OF (this is usually called the Rapoport condition).
We prove a duality result for these partial and primitive Hasse invariants (Section 1.2).
We also show that they do not depend on the choice of any ordering for X if the total
Hasse invariant is strictly less than 1/e (see Proposition 1.12).

If H is an Op-stable finite flat subgroup of G[ p], then one can define partial degrees
deg[J]H . Indeed, one has a map wg/y — wg, and the valuation of the determinant
of this map is the degree of H. This map respects the filtration on each of the two
modules, so one gets maps

_1]

forall 1 < j < e. The valuation of the determinant of this map is by definition the
partial degree of H. Considering the map wgp — w(g/m)p, one defines similarly the
partial degrees of the dual of H. We prove some properties for these partial degrees
(additivity, compatibility with duality), and we also prove that if the degree of H (or
its dual) is sufficiently small, then the partial degrees do not depend on any choice for
the set X (see Section 2.2).

In this setting, we prove the following properties for the canonical subgroup.

Theorem  Let F be a totally ramified extension of Q,, of degree e > 2 with uniformizer
7, and let K be a complete valuated extension of Q, containing the Galois closure of F.
Let G be a p-divisible group over Ok with an action of Op. Suppose that there exists a
canonical subgroup C c G[p], and suppose that the Hasse invariant of G is strictly less
than 1/e. Then

deg(C[r*)/c[x*1]) " = hal**1(G)
for all1 < k < e. Moreover, one has
deg[l] C[n]® = hasse(G) and deg[j] C[n]? = mU(G)
forall2 < j< e Ifha(G) < 1/(pe) and if there is a canonical subgroup for G/C, then
one has
ha'l(G/C[n]) = p-hal)(G) and hall(G/C[n]) = ha/ "1 (G)
forall2 < j<e.

One can then relate the degree of the groups C[7¥]/C[7%™!] to the partial Hasse
invariants, and the partial degrees of C[7] to the primitive Hasse invariants. One can
also compute the partial Hasse invariants of G/C[]. Actually, one can have more re-
lations and compute the partial degrees of C[7%]/C[7*™!] and the partial and prim-
itive Hasse invariants of G/C[7*] for all 1 < k < e (see Tables 1 and 2).
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Let us now talk about the organization of the paper. In the first part, we define
the partial and primitive Hasse invariants for a p-divisible group with an action, and
prove certain properties for these invariants. In the second part, we define and study
the partial degrees for a finite flat subgroup of such a p-divisible group. In the third
section, we first describe an alternative approach to the canonical subgroup. Then we
consider the canonical subgroup of a p-divisible group with an action, and relate its
partial degrees to the primitive and partial Hasse invariants.

Notation

Let F be a finite extension of Q. Let f and e be the residual degree and the ramifi-
cation index, respectively, and let Or denote the ring of integers of F. We will write
F"" for the maximal unramified extension of QQ, contained in F and Opu for its ring
of integers; it is an extension of O, of degree f. Let 7 be a uniformizer of F.

Let T and = be the set of embeddings of F** and F, respectively, into Q. For each
7 € T, we denote by X, the set of ¢ € X, such that o is equal to 7 by restriction to F"".
We will write T = {71,..., 7} such that 7, = g7, for1 < i < f — 1, where o is the
Frobenius. We thus have an identification between T and {1, ..., f}.

Let K be a complete valuated field that is an extension of Q,. We suppose that K
contains the Galois closure of F. We normalize the valuation of K such that v(p) = 1.
Let Ok be the valuation ring of K, and k the residue field. If M is an Og-module with
an action of Opur, then there is a decomposition

f
M =& M;,
i=1
where M; consists of the elements of M where Opur acts by 7;.

For all & > 0 we will write my := {x € Ok, v(x) > a}. If M is a Og-module, we
write Mqy := M ®0, Ox/m,. If M is a free Ok {,}-module of finite rank, with a <1,
we define M(?) := M ®0y (ay-¢ OK,{a}> Where ¢ is the Frobenius acting on Ok (4}
This is still a free Ok, {4y module of the same rank.

In this paper, we will consider a p-divisible group G defined over Ox endowed
with an action of Op. In other words, we suppose the existence of a morphism

Or —> End(G).

The height of G is thus divisible by e f; we will denote by h this height divided by ef.
Let wg be the conormal sheaf of G along its unit section; it is a free Ox-module of
rank the dimension of G which has an action of Op. We will assume the following
hypothesis throughout this article.

Hypothesis 0.1 The K-vector space wg ®o, K is a free K ®7, Op-module.

This condition says that there is no obstruction for G to be ordinary. In general,
there exists a decomposition wg ®o, K = @gex Vi, with O acting on V;, by 0. The
hypothesis is then equivalent to the fact that the dimension of V; is independent of
0. Let d be the dimension of any V;; the dimension of G is then efd. If wg is a free
Ok ®z, Or-module, then we say that G satisfies the Rapoport condition.
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The module wg has an action of Opur, and thus has a decomposition

f
wG = @ WaG,i»
i=1
where wg,; is a free Og-module of rank ed, with Oper acting on it by 7;. To simplify
the notations, we will just write w and w; for wg and wg,; when there is no possible
confusion.

1 Partial Hasse Invariants

1.1 Definition of the Invariants

Let G denote the reduction of G to Ok /p, and let G be the twist of G by the Frobe-
nius. We have the Verschiebung map

Viwg — W) -
But we have wg = (i) and wo) = (w{l})(P). We thus get a map

V: w{l} — (w{l})(").

The module wyy is free of rank e fd over Ok (1y. By fixing bases and taking the
determinant of the previous map, one gets an element that we will denote by Ha(G).
It is an element of Ok (1. Its truncated valuation is the Hasse invariant and will be
denote by ha(G) € [0,1]. Since G has an action of Op, one can refine this invariant,
and define partial Hasse invariants. They are natural in the unramified case.

Recall that we have a decomposition w = EB{:1 w;. The Verschiebung map induce
maps

Viiw; (n — (wi—l,{l})(p)

forall1< i< f (here and later, we set wg = wy). Each module w; ¢y is free of rank ed
over O (13-

Definition 1.1  'The element Ha;(G) is defined as the determinant of V;. It is an
element of Ok (1. Its truncated valuation will be denoted by ha;(G) € [0,1].

We call the elements (ha; (G)); the unramified partial Hasse invariants. If F is un-
ramified over QQ,, we have thus constructed all the partial Hasse invariants claimed in
the introduction. The situation is more involved in the ramified case. Their definition
is a straightforward generalization of a construction from Reduzzi and Xiao for the
special fiber of the Hilbert modular variety (see [R-X]).

Letusfixanelementl < i < f and consider the free Ox-module w;. It has an action
of Op, and Opur acts on it by 7;. Let us write X; for X ,,; we recall that it consists of the
elements of X that are equal to 7; by restriction to F**. Let us fix an ordering on this
set: ; = {01,...,0,}. The K-vector space w; ®o, K has a natural decomposition

e
w; ®o, K = EBlNi,j,
j=
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where N; ; consists of the elements of w; ®, K with O acting on them by o ;. This
gives a filtration on wg ®o, K, by considering the subspaces F; ; = @;_,N; x. We can
pull back this filtration to w;, and get a filtration

(o] (1]

O:wi C(l)~ [‘3]_

C-Cw; = w;.

Each a)l[. 7 is a free Og-module of rank dj, and we have w[ J] ®o, K = F; j. By con-

sequence, each of the graded pieces wE’ / w; 7 s a free Ox-module of rank d, is
isomorphic over K to N; j and Or acts by 0; j onitforall1 < j<e.

The uniformizer 7 of F acts on w;; we will denote [7]: w; - w; the map induced
by its action. This map acts on wl[]]/wl[.ﬁl] as the scalar 0;, ;(7) forall 1 < j < e. This
element has valuation 1/e; thus if we reduce modulo m,/,, the map [ 7] will be trivial
on the graded pieces. More precisely, for all 1 < j < e, we have a map

. U] [j-1]
[]: wi,]{l/e} - wi,]{l/e}’

Definition 1.2 Forall1<i< f,and forall 2 < j < e, we write M,m the map

L[] [i-1]
[7]: wi,]{l/e}/wi,]{l/e} w; {1/e}/“’z {l/e}

We write M L3] (G) the determinant of this maps; it is an element of Ok (1/.}. We also
define m (G) = V(M (G)) [0, l/e].

Note that all the graded parts ol {1/ }/wl (e 2Te free of rank d over Ok, fy/c}-
The element M (G) depends on the choice of the uniformizer 7, but its valuation
mbl

m;"(G) does not. These elements also depend on the choice of an ordering for the
set ;. To study this dependence, we first need a definition.

Definition 1.3 A filtration 0 = F[ {]l/e} l.[’l{]l/e} c---C Fl.[,e{]l/e} = Wj {1/e) is called

adequate if the followmg cond1t10ns are satisfied.
« Each FU {1/ }/F {1/ ) is a free Ok (1/.y-module of rank d, for 1 < j <ee.
e The map [n] sends F[J{]l/ , into F[{l/ yforl<j<e.
The filtration (wE’gl /e}) we constructed is thus adequate. Each adequate filtration
gives maps
(7 E ey Filrey — Filrer/ Filrey

for 2 < j < e and thus elements (mi]]), with mlm € [0,1/e]. If these elements are
small enough, then they do not depend on the adequate filtration. Indeed, we have
the following propositions.

Pro osition 1.4 Let (Fz /e }) be an adequate filtration of w; (1.}, with invariants
. Let

ri=y (k- 1)ml[.k]
k=2
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and suppose r; <1/e. If (F,[J{]l /e},) is another adequate filtration; then we have
[j] _ plil !
Fi:{l/e—ri} - Fi,{l/e—r;}

foralll<j<e.

Proof We fix a basis of w; 11/} adapted to the filtration (FI[J{]1 Je} ). The map [7] acts
on w; 11,y by a matrix of the form

0 Ml.[z] * *
0 * *
M,[e_l] Ne—l,e
[e]
0 Mi
0

4
The elements x ¢ F verify []x = 0. Let us write the coordinates of x in the
i,{1/e}

previous basis by
Xi
Xe
The relation [7]x = 0 gives M Ee]Xe = 0. Since the determinant of M l[e] has valuation
mie], the vector X, has coefficients in Myl We thus have X, = 0in w, lely -
e—m; i,{1/e-m;"'}
We also have the relation Ml[e_l]Xe_l + Ne-1,eXe = 0. Inw, (1/e-mlely WE then have
M[E_I]Xe_l = 0. Thus, X,_; = 0in . [e]_ ety - Let us write r,[j] = Zi:j mlk]

i i,{1/e-m; i
forall 2 < j < e. Finally, we see that x € F[! so that

i{1/e-r1?1y’

(1] "_pll
Fi,{1/e-r52]} - Fi,{1/e-r52]}'

We can then work by induction, considering w, (1/e=r?y / Fi[,l{]l/e—r[” y We then get
(] " gl
F{l/e—r[zj—m—r[”l]} - F{l/e—rgz]—---—r[jﬂ]}
forall1< j < e -1, hence the result, since rl[z] oot rl[.e] =r;. u

We will write r;(G) = Y5, (k - l)mgk](G) forall1<i< f.
Corollary 1.5 Let i be an integer between 1 and f, and suppose that we have
m(G) +1:(G) <1/e

foralll < j < e. Then the elements (ml[j] (G))1<j<e can be computed using any adequate
ltration on w; {1/.. In particular, they do not depend on an ordering for the set Z;.
A1/e}- I P Y P g
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Proof Let (FI[J{]1 /e}) be an adequate filtration; from the previous proposition we get

[j] _ U]
Fi,]{l/e—r,v(G)} = wi,]{l/e—r;(G)}
forall1< j<e. The map

[l QU1
[7]: @i e n(G)}/wt (1/e-ri(G)y ~ “i{1/e- n(G)}/“’z {1/e ri(G)}

has a determinant of valuation m (G) for all 2 < j < e. The determinant of

£l £l
(2 oo Frenton, — Fije-ncon Frenon

thus also has a determinant of valuation ml[j](G) forall 2 < j < e. Since m,[j ] (G) <
1/e — ri(G), the invariant ml[.j I associated with the adequate filtration is equal to

mi(G). n

These invariants (m (G)) depend only on the structure of w as an Ok ®z, OF-
module. We have the following characterization of the Rapoport condition.

Propos:tzon 1.6  The p-divisible group G satisfies the Rapoport condition if and only
zfm (G) Oforall1<i< fand2<j<e.

Proof The Rapoport condition is equivalent to the fact that each w; is free over
Ok ®0,ur,r; Op forall1 < i < f. Suppose that G satisfies the Rapoport condition.
Then we have

w; = (OKk ®0ur,1; Or)*

as Og ®0ur,r; Op-module. One easily reduces to the case d = 1. Since we want to
prove that the invariants m; 1] (G) are units, one can make the computation in the
special fiber. But we have

w; ®o, k ~ k[X]/X°

as k ®, Op-module, with 7 acting on k[ ]/X° by X. We get that w[ il ®oy k is
generated as a k-vector space by X ¢=J,...,X*7". The result follows.

Suppose now that we have m (G) =0foralll1<i< fand2 < j<e. The map
[r] acting on w; is then of the form

oia(m)I Mlm *
oia(m)I . *
Ml
0i(m)

All the blocks are of size d, I is the identity matrix, and by assumption the matrices
M l[] ] are invertible. Let v;..., v4 be a basis of the last block. Consider the family
Vis [V oo []) 700, and let N be the change-coordinate matrix for this family.
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The image of this matrix in the residue field k is of the form

0 * * M pgled
0 * *
0 o+ mlelple]
[e] 1 1
0 Ml
I

This matrix is invertible, so the previous family is a basis for w;. This concludes the
fact that this module is free over Ox ®¢,u,r; OF. [ |

Remark 1.7 1f G satisfies the Rapoport condition, there is only one adequate filtra-
tion on wg ; f1/¢) forall1<i < f.

We will now define another invariant related to the Verschiebung.
Proposition 1.8  There exists a map Hasse;: wl[.lgl/e} - (wi,l,{l/e}/wl[f;l{]l/e})(P).

Proof Let £y be the contravariant Dieudonné crystal of G evaluated at O K.{1}
([BBM, section 3.3]). It is a free Ok (1;-module of rank efh. It is endowed with an
action of O and we claim it is free of rank h over Ok, (1} ®z, OF. Let us briefly justify
this assertion. It suffices to prove that &1y ®0o, k is a free k ®p, Or/p-module. But
this module lifts to a W (k)-module &, where W (k) is the ring of Witt vectors of k (€
is the classical Dieudonné module of G x o, k). Since the module € is automatically
free over W (k) ®z, Op, this proves the claim. We have a decomposition

/
Em =B

with Opur acting on €; (13 by 7;. Let us denote by [7] the action of 1® 7 on € (. Each
€;,q1y isafree Ok 111 [X]/X®-module of rank , with X acting on it by [7]. Moreover,
the Hodge filtration ([BBM, corollary 3.3.5]) gives an exact sequence

0 — @iy — €i,iy — Wen 1y — 0,
where G” is the Cartier dual of G. We have a Verschiebung map
. (»)
V. 8{1} Wy
It induces maps

V: 8;‘,{1} - (wi—l,{l})(p)

no.
i,{1/e}’
we then have [7]y = 0. We see y as an element of &; (.}, which is a free

Ok, f1/ey[X]/X®-module, with X acting by [7]. Thus, there exists z € &; such that
y = X®'z; this element is defined modulo an element of X&;. Applying V, we get an
element Vz ¢ (wi,l,{l/e})(f’). Since X sends (%4,{1/2})(‘0) into (wl[:’l{]l/e})(m, the
element

forall1 < i < f. We can now define the map of the proposition. Let y € w

[e-1] ) (p)

Hasse;(y) = Vz € (@i1,0/e /935, (176

https://doi.org/10.4153/CJM-2016-052-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-052-8

752 S. Bijakowski

is well defined. |

The map Hasse; can then be thought of as the composition of the division by
[7]¢" and the Verschiebung map. Taking the determinant of this map, we get an el-
ement Hasse; (G) € Ok, 1/} The valuation of this element Wlll be noted hasse; (G) €
[0,1/e]. Actually, each choice of an adequate filtration (F /e }) for w; 1/¢y gives a
map

(1]
HizF; (0 — (@i {1/e}/Fz 1 {l/e})(P)’
and thus an element hasse; € [0,1/e]. Fortunately, this element does not depend on
the adequate filtration under certain hypotheses.

Proposition 1.9  Suppose that hasse;(G) + max(r;(G),ri-1(G)) < 1/e. Then the
element hasse;(G) can be computed using any adequate filtration on w; g1/.y and

Wi_1,{1/e}-

Proof Let r = max(r;(G),ri-1(G)), and ( k{l/e}) be adequate filtrations of
Wi, {1/e}» for k € {i— 1,i}. From Proposition 1.4, we get

[j] _ ]
Eytfe-r} = WK1 e-r)

forallk e {i—1,i} and 2 < j < e. The map

HF[]

i,{1/e-r} - (w’ 1L{1/e- r}/Fz l{l/e r})(P)

thus has a determinant of valuation hasse; (G). Since this element is strictly less than
1/e — r, we can conclude. ]

In the ramified case, one can then construct the invariants m (G) for1<i<f,
2 < j < e, which depend on the action of O on wg, and another invariant hasse; (G)
related to the Verschiebung for 1 < i < f. One can relate the unramified partial Hasse
invariants to these ones.

Proposition 1.10  The Verschiebung induce maps
L.
Vo {l/e}/wz {1/e} ( i1 {1/e}/“’1 1, {l/e})
forall1< i< fandl< j<e. This map is equal to the composition

(p)

(Ml[iu{ﬂ)(p) 60 (Ml[ﬂ)(p) o Hasse; oMP] o~-~oMlU].

Let Hagj](G) € Ok (1/¢} be the determinant of this map, and halm(G) € [0,1/e] its
valuation. We have the following equalities in [0,1/e]:

Ul S SEG
ha;"'(G) = hasse;(G) + Y, m; (G)+p >. m;1(G)
k=2 k=j+1

ha;(G) = e-hasse;(G) + Y (e +1-k)m; G)+p2(k l)m (G)

k=2
foralll < i < fand1 < j < e (we say that the equality a = b holds in [0,r] if
min(a,r) = min(b,r)).
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Proof We first prove that the Verschiebung sends w! {1 /ey into ( 1 (1/e })(P We
keep the notations from the previous proposition. Let yew jgl Jey- We see y as an
element of €; 1/,}; we have X7y = 0 so there exists z € £; such that y = X*/z. There-
fore, we have Vy = X¢/Vz. But Vz € (w,,l,{l/e})(f’), and X maps (wi—l,{l/e})(p)

into (w {]1/ })(1’) forall1< k < e. Thus,
)P,

Vye(a) L{1/e)}

Since the Verschiebung respects the filtration on w; f1/.}, it induces maps on the
graded pieces as claimed.

Let us write Vi[j], (M I[J“])(") 0-:-0 (M[e])(f’) o Hasse; OM?] 0-:-0 Ml[j]. We
= v Lety e “’[31/ i then i = (M o0 MUT) () s
equal to [7]/™'y. Since [7]7y = 0, there exists z € €; {1/} such that y = X*/z. Thus
y1 = X'z, and Hasse; () = Vz. Finally, we get

will prove that V,

VIV (y) = [2]*7 Hasses(y1) = [#]*7/Vz = V(X*Iz) = Vy.

The rest of the equalities are obtained by taking the valuation of the determinant of
the previous relation. ]

We will also set
. foo.
al1(G) = Y ha1(G)
i=1
for 1< j < e. From the previous proposition, we have

1(G) = Z(hasse (G) + Zm (G)+p2m (G))

k=j+1

The elements Eha (G)), j will be called the partial Hasse invariants. We will call
the elements (ha 7] (G)); the ramified partial Hasse invariants. Finally, the elements

(hasse;(G), m 1. (G))l,] will be called the primitive Hasse invariants.
Remark 1.11  We have the following inequalities:

hal®! < hal*™ <... < hal < p - hal®!

If the Hasse invariant is small enough, then so are the invariants m (G) and
hasse; (G). In particular, they do not depend on the choice of an ordermg for the
sets X; and can be computed using any adequate filtrations.

Proposition 112 Suppose that ha(G) < 1/e. Then the elements m (G) and
hasse; (G) can be computed using any adequate filtrations on the modules w,,{l/e}

Proof From the assumption ha(G) < 1/e, we easily get

hasse; (G) + p-ri(G) <1/e

https://doi.org/10.4153/CJM-2016-052-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-052-8

754 S. Bijakowski

for any elements i, i’ between 1 and f. We get1/e > p-r;(G) > 2r;(G) > r;(G) +
mgj](G) forany1l < i < fand 2 < j < e, so that the hypothesis of Corollary 1.5 is
satisfied. We also get 1/e > hasse;(G) + max(r;(G), r;-1(G)), and the hypothesis of
Proposition 1.9 is satisfied forall 1 < i < f. ]

1.2 Compatibility with Duality

The Hasse invariants we defined satisfy a compatibility with duality. We write G? for
the Cartier dual of G. It is a p-divisible group over O with an action of Op. It has
height e f h and dimension e f (h — d). We start with the following lemma.

Lemma 1.13  There exists a free Ox ®z, ,0 r-module € of rank h with an exact sequence
of Ok ®z, Op-modules

0— wg — & — wip — 0.
G

Proof Forallintegersn > 1,let £, be the contravariant Dieudonné crystal of Gx o,
Ok, (n) evaluated at Ok (,,} ([BBM, section 3.3]). It is a free Ok (,)-module of rank
efh with an action of Op. As we have seen in the proof of Proposition 1.8, it is free as
an Ok, () ®z, Op-module. Define

&= l(ing,{n}

n

Itis a free Ox ®7, Op-module of rank h. The Hodge filtration ([BBM, corollary 3.3.5])
gives exact sequences for each integer n > 1
00— wG,{,,} —> 8{,,} — w\ép){n} — 0.

This concludes the proof. ]

We now state the duality property verified by the Hasse invariants.

Proposition 1.14  We have the equalities ha(G) = ha(GP) and ha;(G) = ha;(GP)
forall1 <i < f. We also have m)(G) = mVN(GP) forall1 < i < fand2 < j<e.
Suppose, moreover, that ha(G) < 1/e Then hasse;(G) = hasse; (GP) forall1<i < f.

Proof The relation ha(G) = ha(GP) was proved in [Fa2, Proposition 2]. The same
proof (decomposing each module according to the elements of T) gives the equalities
ha;(G) = ha;(GP) for1<i < f

We will now prove that m (GD) l[j](G) forall1<i< fand2 < j<e. This
will allow us to conclude thanks to the relation in [0,1/e],

ha;(G) =e- hasse,(G)+Z(e+1—k)m (G)+p2(k 1)m1 1(G)

k=2

Let us ﬁx an integer i between 1and f. The free Ok ®z, Op-module € decomposes in
€= EB; 1€i, where &; is a free Ox ®0ur,r; OF- module. Note the equality

Ok ®0ue,7; OF = OK[X]/EI(X - 0;k(m)).
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We will denote by [7] the action of 7 in €;. Recall the exact sequence

0 — wg, — & — wép)i — 0.

To ease the notations, let us write 77y := 0; ¢ () for 1 < k < e. Let us define
"J"lm = {y € Si,( IEI ([=] - nk)) -y € wg]i}
k=j+1 ’

for 0 < j < e. The module F ,U Vs free of rank he — j(h — d) over Ok. Furthermore,

since ([7] - ﬂk)w[Gk)]i c wE;k;l] for all1 < k < e, we have inclusions

(1]

OCwG,iC“.Cw

[e]‘ _ gge] cC...C Sfl[o] =¢&;.

Moreover, the map [7] acts by 7; on S"Ej_l]/ﬁ"gj] forall1 < j < e. We thus have a
filtration
0c (&/FMyY c e (&/F )Y = weo s,

with (Ei/fr"l[j])v free of rank j(h — d), and [7] acts on the quotient
&/ (e

by 7, for 1 < j < e. This proves that (Ei[/fﬂ[j])v = a)[GJ,]) ;> or in other terms,

’J"l[j]/wg,,- = (wGD,,-/w[Gjl],,i)V.
We have thus related the filtration on wgo ; to the one on wg,;. We want to com-
pute the element ml[.z](GD ). For this, one can work with &; /., which is a free
Ok, {1/} [ X]/X°-module, with X acting by [7]. Note that since wg)]i is contained in
the set of elements killed by H{(:l ([7] = 7k ), we have

(] B e—j [j]
ffi,J{l/e} - {y € Ei,{l/e}’X Tye wGJJ){l/f}}'

(2]

The action of [7] on WG 11/

) is of the form

)

0
with the valuation of the determinant of M i[z] equal to ml[.z] (G). From the elementary
divisors theorem for valuation rings, one can moreover suppose that M 1[2] is diagonal.
Let us write yy, ..., y4 the diagonal coefficients; we order them so that y;, ..., y, are
not units, and yy41,..., ¥4 are. We can thus find a basis (ey, ..., eyq) of wE?Z,i,{l/e
such that w!!) ) is generated by (ey, ..., eq), and [7]egx = yrep forall1 <k <d.

One can thgﬁiﬁlll/é abasis (e1,...,x) of &; f1/¢y over Ok g1/.1[X]/X® such that
ex = X ek forl<k<d,
eark = X eark + X e forl<k<r,
eark = X yek forr+1<k<d.
Note that one has necessarily d + r < h. We then see that F m s generated by

i,{1/e}
X¢&; 1/} and (&x)1<k<q. The module 3"1[,2{]1/6} is generated by X2€i,{1/e}, (Xex)1k<as
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(Xegek + ykek)lgkgr, and (yxéx) r+1<k<d- We can then take (e441, ..., &) for a basis
of &; {1/e}/5t, %1/ ) and (e, .., €& X€41r41>- - .- Xep) for a basis of ?[1%1/e}/rf;[2{]1/e .

; . (1] (1]
With these bases, the matrix of [7]: Ei»{l/e}/?i,{l/e} -7 {1/6}/3"1 (1/¢} is €qual to

-

.

1

Indeed, we have the relation Xeg,x + yxer = 0 in "J"l {l/e}/ﬁ"l {1/} foralll < k <r.

In particular, the determinant of this matrix has valuation mg J (G). This proves that
m(G) = m} (GD>

Cons1der1ng gl b which is a free O, 1/¢}[X]/X¢'-module of rank

i {1/e}/“’c i{1/e
h, one can prove by induction that the action of [7] on w{p ; (1/¢} s of the form

o M o

2]’

Al .
with the property that the determinant of M I[J 1" has valuation ml[J ] (G)for2<j<e.
This concludes the proof. u

1.3 Partial Hasse Invariants in Family

Let S be an Og-scheme. In this section only, we will consider a p-divisible group
G — S ofheight e f h with an action of Or. Let wg/s be the conormal sheaf of G along
its unit section; it is a locally free sheaf over S. It also has an action of Op, and thus

decomposes into wg/s = EB{:1 wg/s,i- We also assume the following hypothesis.

Hypothesis 1.15 For each integer 1 < i < f, there exists a filtration
(1] [e]

_ ,[0]
0=w G/S i CCWgsi T Ways,io

G/Sz cw

such thatforall1< j<e, ol e /s / w is a locally free sheaf of rank d, and Op acts

G/S
by o;,j on it.

This hypothesis is satisfied, for example, when one considers certain moduli spaces
of abelian varieties satisfying the Pappas—Rapoport condition ([P-R]). It implies that
the dimension of G over S is equal to def. Each wg/s,; is then a locally free sheaf of
rank ed. We will also define

= det(wG/s /“’G/s 1)

https://doi.org/10.4153/CJM-2016-052-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-052-8

Partial Hasse Invariants, Partial Degrees, and the Canonical Subgroup 757

forall1<i< fand1< j<e.Itisan invertible sheaf over S. We will define the partial
Hasse invariants as sections of certain products of these invertible sheaves. For this,
we need to work over Ok (1/¢- Let Sgi/e) = S xog Ok, 1/}

Proposition 1.16  The Verschiebung map induces sections
Hal e HY(Spye)s (8,0 © (£, 07)

forall1<i< fand1< j<e. The primitive Hasse invariants are sections

Hasse; € H*( S(1/e} (Lgﬂ/e}’i_l)m ® (Lgl{]l/e}’i)fl)
and
M e B (Spye £50 @ (£ )7)
for1<i< fand?2< j<e. Moreover, one has the relations forall1< i < fand1< j<e

Hall = (M) (MIe])? - Hasse; -MP) .. MU,
Proof This is exactly the construction done in [R-X]. [ |

2 Partial Degrees
2.1 Definitions

We are still considering a p-divisible G endowed with an action of Op satistying Hy-
pothesis 0.1. Let N > 1 be an integer and let H be a finite flat subgroup of G[ p™] stable
by Op. Its height is thus a multiple of f, which we write f h. Let wgy be the conormal
sheaf of H along its unit section; it is a finitely generated Ox-module of p"-torsion.
We have an exact sequence

0 —> wg/y —> W <— Wy —> 0.

The degree of H (defined in [Fa]), written deg H can be defined as the valuation of
the determinant of the map wg/y — wg. Alternatively, we have deg H = v (Fitty wg ),
where Fitt, is the Fitting ideal, and the valuation of an ideal xOg is the valuation of
X.

The definition of the partial degrees according to the elements of T is very natural.
It has already been done in [Bi]. We have a decomposition wy = GB{=1 wg,i> where
Opur acts on wy,; by 74, and exact sequences

0 - wg/n,i > wG,i > wH,i >0

foralll1<i< f.

Definition 2.1 The unramified partial degree deg; H is defined as the valuation of
the determinant of the map wg,y,; » wg,; forall1 < i < f. Alternatively, we have
deg, H = v(Fitty wp,;).

Example 2.2 We have deg; G[p"] = Ned and deg, G[n"] = Nd forall1<i < f.If
H is multiplicative, then deg, H = hy for all i; if H is étale, then deg;, H = 0 for all i.
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The unramified partial degree of H” can be defined either by using the module
wyp,; or the map wgp ; > w(g/myp,; forall1 < i < f. The unramified partial degrees
are thus canonically defined and depend only on the subgroup H and not on the p-
divisible group G. This will not be the case for the general partial degrees.

We will now refine the unramified partial degrees, to take into account the full
action of Op. These general partial degrees have already been defined by Sasaki for
the Hilbert modular variety ([Sa]), although very few properties were known. We

‘ 5]

recall that we have filtrations (a)[GJ’]i)lngf2 and (“)G/H,i)lﬁfﬁe' The map wg/p,; > WG,

respects this filtration; we thus get maps

G

WG/H,i Wé i

forall1<i< fandl<j<e.

Definition 2.3 The partial degree deggj 1 H is defined as the valuation of the deter-
minant of the map

[j] [i-1] L1, [i-1]
“’G]/H,i/“’GJ/H,i — wg/wg;

foralll1<i< fandl<j<e.

Example 2.4 We have deggj] G[nV]=Nd/eforalll1<i< fandl1<j<e.

Define wg)]i to be the image of 0 in wy forall1<i < fand1< j<e. Then we

G,i
also have
deggj] H-= v(Fitto(wg,]i/wg,_il]))

for1<i< fand1< j<e. We define the element deg,[.j JHP to be the valuation of the
determinant of the map

1, o] 1]

(7] [j-1 [j-
wG]D,i/wG]D,i (G/H)D,i/w(]G/H)D,i'

Remark 2.5 One can define the partial degrees of a finite flat Op-stable subgroup
H c G[p"] even if the p-divisible group G does not satisfy Hypothesis 0.1.

2.2 Properties

The unramified partial degrees enjoy the following properties.

Proposition 2.6  Let H be an Op-stable finite flat subgroup of G[ p™] of height f hy.

(i) WehavedegH = Y1, deg; H.
(ii)  The unramified partial degrees are additive: if H; ¢ H, are two finite flat Op-stable
subgroups of G[pN ], then

deg, H, = deg; H; + deg, H,/H,;

foralll<i< f.
(iii) We have deg; HP = hy —deg, H forall1<i < f.
(iv) The unramified partial degree deg; H is in [0, ho] forall1< i < f.
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Proof The first relation comes from the decomposition wy = 69{:1 wg, ;- The second
relation is implied by the exact sequences

0 — wn,/Hy,i — WH,,i — WH,i — 0

for1< i < f. For the third equation, one reduces to the case where H is p-torsion by
additivity. Let g and €/ be the free Ox-modules constructed in Lemma 1.13 for
G and G/H respectively. Let £ be the Dieudonné crystal associated to H evaluated
at Og/p ([BBM, section 3.1]). Finally, let vy be the cokernel of the map w\(/G/H)D -
wéD. We have a commutative diagram

0 0 0
0 wG/H wag wH 0
0 E'G/H 8G EH 0

0—— wZG/H)D Wép VD 0

0 0 0

Moreover, one checks that the horizontal and vertical lines are exact sequences. The
modules €y and vyp have an action of O, and thus decompose in €y = 69{:18 H.i>

VgD = @L vyp ;. We have an exact sequence
00— WH,; —> EH,,' — VHD),' — 0
for all i between 1 and f. We deduce the third equality, since deg, H” = v(Fitto v ;)

and Ep,; is a free Ok /p-module of rank hy. From this relation one can easily deduce
the last assertion. u

The properties verified by the general partial degrees are similar, but the proofs of
these properties are more difficult.

Proposition 2.7 Let H ¢ G[p"] be a finite flat Og-stable subgroup, and let i be an
integer between 1 and f.

(i) We have Zj=1 degl[.j] H = deg; H.
(ii) The partial degrees are additive: if Hy c H, are two finite flat Og-stable subgroups
of G[pN], then
degl[.j] H, = deggj] H + degl[.j] H,/H,;
foralll< j<e.
(iii) We have deggj] HP = ho/e - degl[J] Hforalll<j<e.
(iv) The partial degree degl[.j] Hisin [0, ho/e] foralll1< j<e.
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Proof For the first assertion, one has just to observe that the determinant of the map
WG/H,i = Wg,i is the product of the determinant on the graded pieces

i-1]

U gl gl g e,

W6 H,il Y6 H,i

The second relation is obtained by remarking that the map wg/p,,; = wg, factor-
izes as

WG/H,,i — WG/H,,i — WG,i»
and that this factorization respects the filtrations on the three modules.

Let us now prove the third relation. Note that it implies the last assertion. By
additivity, one reduces to the case where H is a subgroup of G[n]. Let & be the
free Ox ®z, Op-module constructed in Section 1.2. We keep the notation from
that section. Let us fix an integer i between 1 and f. The module &; is a free
Ok[X]/ M1 (X — 05,k () )-module, with X acting by 1 ® 7. To simplify the nota-
tion, let us write 7 := 0, () for all 1 < k < e. Recall that we have exact sequences
coming from the Hodge filtration

0— wg; — & — wép,i — 0.
Moreover, we have the following filtration on &;:

ch[Gl)]iC-ncw[Ge’]i:fﬂ[e] <:~--<:3"1[0] =&,

with FU/] wg,i = (wgp; w[j[], ) foralll < j<e. Let€g/y; be the module con-
i > > GD,i ] / >
structed for G/H; it is a free Ox[X]/ [Tf_;(X — 7x) contained in &; and containing
XE&;. Moreover, &;/XE; ~ (Ok/p)", and the quotient €; /€ p,; is free over O /p of
rank hg. The module €/p,;/XE; is thus a direct factor of €;/X&;.
Letey, ..., ey beabasis of &; over Ox[X]/ [Tf_; (X -k ) such that w[Gl’]l. is generated

by

H (X - ﬂk)é‘l, ey H (X - T[k)Sd.

k=2 k=2 L
Thus, 9’1[1] is generated by (X —m;)&; and ¢, ..., &4. Let w[Gl’]l. and 3"1[1] be the images
of w[Gll. and F ;m in &;/X&;, respectively. We then have:

* the module w[Gl}i is generated by ([T;_, 7k )€1 - - > (IThoz 7k ) €4

¢ the module ?lm is generated by €1, ..., €4, M€4415 - - ., M ER.

The quotient @/wg]l is thus a free O/ [}, mx-module of rank h.
Let Ep,; be the quotient €;/Ey,;; it is a free Ox/p-module of rank hg. The image
(1]

of wg; in Ep,; is equal to wg?i, and if 3"2)]1. is the image of ?El], then SH,i/rfE,]i is

isomorphic to (a)l[;,}J ;). To sum up, one has a filtration

0c wgi c ?EL c&m,i.

From the calculations made above, one sees that 3"2’]1. / wBL is a free Ox/ [1io, 7k
module of rank k. This implies the relation

1
dEgl[l] H + ho(l— E) + dEggl] HD = ho.
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This gives the relation for the first partial degree. Considering the module J° ,m / wg,]i,
which is free over Ox[X]/ 15, (X k), one gets all the other relations by induction.
|

The elements (degl[.j 'H )i<j<e depend on a choice of an ordering for the set X;.
However, we have the following property.

Proposition 2.8  Let H be a finite flat Og-stable subgroup of G[p™ ], and let i be an
integer between 1 and f. Suppose that min(deg, H, deg, H”) + r;(G) < 1/e. Then the
elements (deg[ ]H)1<]<e do not depend on any choice.

Proof Suppose that deg, H + r;(G) < 1/e. The elements (deg,[.j] H)i<j<e can be

computed using the modules w[;?i, e wl[,;’]i. We recall that for all 1 < j < e, the

module w} ‘] is the image of wG.I in wy. Since deg; H < 1/e — r;(G), this module

is also the i 1mage of a)G i,(1/e-r;(G)} 0 @n. But Proposition 1.4 states that the mod-
ules (wG : {l/e (G} )i<j<e do not depend on any choice. We conclude that so do the

modules w! H ., and the elements deg H,for1<j<e.
Suppose now that deg; H” + r;(G) < 1/e. Since r;(G) = r;(G"), the previous
argument shows that the elements degE J] H D are well defined for all j between land

e. The formula deg; U H = hy Je - deg 1 g implies that the elements deg; U1 H are
well defined too forall1< j<e. [ |

2.3 Partial Degrees in Family

Let X be an admissible formal Og-scheme [Bo, section 2.4]. In this section only, G
will denote a p-divisible group over X of height e f i, with an action of Og. Suppose
also that there is a finite flat subgroup H ¢ G[p"] over X for some integer N. We will
denote the p-divisible group G/H by G’, and ¢: G — G’ the isogeny. Let wg/x and
wgr/x denote the conormal sheaves of G and G’ along their unit sections. They are
locally free sheaves over X, and thus decompose according to the elements of T:

f
wg/x = EBI wG/x,is
i=

and similarly for wg//x. We thus have a map ¢*: wgr/x,i = wg/x,i- We will also use
the following hypothesis.

Hypothesis 2.9  For each p-divisible G, equal to G or G’, and for each integer 1 <
i < f, there exists a filtration

[0]
G /X,i

(1] [e]

0=w Go/X,i & C Wayyx,i T WGo/X,i

Cw

such that o! G /x / wg /x is a locally free sheaf of rank d, and O acts by o;,; on it for
alll<j<e. Moreover, the map ¢* respects these filtrations.

We will define

£l = det( Wl Jol7)

G/x 1/wG/.’{,i )
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and similarly for L[GJ,] ;forall1<i< fand1< j< e. They are invertible sheaves over
X. The map ¢~ give sections

R . a -1
8%,]i€HO(:{’LE?],]i'LE}J’],i )

foralll < i< fand1< j < e. Let X™'8 be the generic fiber of X in the sense of Raynaud
[Bo, section 2.7]. We will still denote by L[GJ’]i the invertible sheaves on X", and by

(Sg] ; the sections induced on X rig, Moreover, we have a norm map ([Kas, section 2])

Xrig >R

x — |0 (o)

Definition 2.10 Let1< i< fand1< j<e. The partial degree deggj ! His a function
X"& - R defined by

8 ()] = 28”1,

for all x € X",

3 The Canonical Subgroup
3.1 An Alternative Approach

We recall the main theorem of Fargues [Fa2] regarding the construction of the canon-
ical subgroup.

Theorem 3.1 (Fargues) Suppose p # 2, and let Go be a p-divisible group of height hy
and dimension do over Ox. We suppose that ha(Gy) < 1/2, and that ha(Gy) < 1/3 if
p = 3. Then there exists a canonical subgroup Cy c Go[ p], such that the following hold:
(i)  Co has height d,;

(i) degCQ =ha(Go);

(iii) Co is the kernel of the Frobenius in G x o, Ok, {1-ha(Go)}s

(iv) ifha(Go) <1/(p +1), then we have ha(Gy/Cy) = p - ha(Gy).

Moreover, the construction of the canonical subgroup is compatible with duality.

This theorem says that if a p-divisible group is close to being ordinary, then one
can construct a subgroup of large degree in its p-torsion and that this construction
is canonical. Another possible approach is to assume the existence of a subgroup of
large degree, and then to prove that it is canonical and verifies some other properties.
More precisely, one can prove the following theorem using simple arguments.

Theorem 3.2  Let Gy be a p-divisible group of height ho and dimension do over
Ok. Suppose that there exists a finite flat subgroup Co ¢ Go[p] of height do such that
deg CP < 1/2. Then C, is the unique finite flat subgroup of Go[p] satisfying these prop-
erties. Moreover, we have the relation deg CY = ha(Gy), and C, is the kernel of the
Frobenius in G x o, Ok, {1-ha(Gy)}-
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Proof Let H be a finite flat subgroup of G[p] of height dy and let h be the height
of Hn Cy. Suppose that h < dy — 1, and that deg H > do — 1/2. Then we have by the
properties of the degree function ([Fa])

deg H + deg Cy < deg(H + Cy) + deg(H N Cy) < deg G[p] + h <2dy -1,

and we get a contradiction, since both H and C, have a degree strictly larger than
do —1/2.
Let w = deg CL = deg Go[p]/Co. We have an exact sequence
00— wGo[P]/Co —> wGo,{l} —> wg, —> 0.

We thus have an isomorphism wg, (1-4} ~ @¢,, {1-0}- The Verschiebung map

Viwg, 1wy — “’g,),{lfw}

has a determinant of valuation ha(G) by definition. On the other side, one can filter
the subgroup Cy by finite flat subgroups
0=HycHjc---cHy = C
such that H;/H;_; has height 1 for all 1 < i < dy. We thus get a filtration
0c WCy/Hyy 4 " * C @cy/H, C WC,-
Let wc,/n;,{1-w) denote the image of w¢, /g, in W, 1-4}. We have exact sequences
0 — wcy/H, (1-w) — Wco,{1-w}) — WH, ®ox Ok, (1-w) —> 0

forall1<i < dg—1. We claim that wy, ®o, Ok {1y} is a free module over Ok (1,
of rank i. Indeed, wy, is generated by i elements, so there is a surjective map

(Ok,q13)" — o,

The kernel of this map is killed by any element of valuation greater than i — deg H; =
deg H < w. The previous map is thus an isomorphism after tensoring with O (1_y}»
and this proves the claim.

Since wc,, (1w} and wg; ®o, Ok, (1-} are free modules over Ok ¢;_,,) of rank d
and i, respectively, we deduce that wc, g, (1-w} is @ free O ;- -module of rank
do — i. We have thus filtered the module w¢, (;-, by free Ok (1, subspaces, and
the graded pieces are isomorphic to wg, /u, , ® 0 Ok, {1-w}- The groups H;/H;_ sat-
isfy the conditions of those studied by Oort and Tate [T-O]. In particular, the Ver-
schiebung map for this group is the multiplication by an element whose valuation is
the degree of the dual of the group. Putting everything together, one gets

do
ha(G) = Zdeg(H,‘/Hz‘—l)D =degCg’ = w,
i-1

this equality being in [0, 1-w]. Since w < 1—w, we have the relation ha(G) = deg CJ.
For the last relation, one observes that the morphism

wep ®ox Ok, (1-w} — @GP, {1-w}

is 0, since the degree of CJ is strictly less than w. We can then apply [Fa2, Proposition
1]. [ |
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Note that there is no assumption on p in the previous theorem. The canonical
subgroup constructed by Fargues is thus uniquely determined by the fact that it has
height the dimension of the p-divisible group, and that its dual has degree strictly less
than 1/2 (or equivalently that its degree is strictly larger than its height minus 1/2).
This leads to the following definition.

Definition 3.3 Let Gy be a p-divisible group of height h, and dimension d, over
Ok. Let Cy be a finite flat subgroup of Gy [ p]. We say that Cy is the canonical subgroup
of Gy if the height of C is dy and if deg CJ < 1/2.

Theorem 3.1 then gives a criterion for the existence of a canonical subgroup. Note

that Theorem 3.2 says that the existence of a canonical subgroup implies the relation
ha(G) < 1/2.

3.2 The Partial Degrees of the Canonical Subgroup

We have seen that one can relate the degree of the canonical subgroup and the Hasse
invariant. When one considers a p-divisible group G with an action of O, much more
can be said. We keep the notation from the previous sections. We have the following
result.

Theorem 3.4 Let G be a p-divisible group over Ok with an action of OF satisfying
Hypothesis 0.1. Suppose that there exists a canonical subgroup C c G[p] (in the sense
of Definition 3.3).

(i)  Suppose that ha(G) < min(1/e,1/2); then we have
deg, C® =ha;(G) and deg,C[n]" = hal[e](G)

forall1< i < f. This implies deg C[]” = hal*l (G).
(ii) Under the same hypotheses, we have

degl[.l] C[7]P = hasse;(G) and degl[j] C[n]P = ml[.j](G)

foralll<i< fand2< j<e.

(iii) Ife = 1, we suppose that ha(G) < 1/(p +1); if e > 2, we suppose that ha(G) <
1/(pe) as well as the existence of a canonical subgroup for G/C. Thenha,;(G/C) =
p-ha;_1(G) for1<i < f. Wealso have

hal'l(G/C[n]) = p-hal(G) and hal!(G/C[n]) = ha/(G)

foralll1 < i< fand?2 < j< e. The Hasse invariant of G/C| ] is then equal to
ha(G)+ (p-1) ha[e](G). Moreover, if e > 2, then

hasse; (G/C[n]) = p- ml}(G), ml?)(G/C[n]) = hasse;(G),
mI(G/Cln) = mI ) (G)
foralll<i< fand3<j<e.

From the result of Fargues [Fa2], the existence of the canonical subgroup for G is
guaranteed by the conditions p > 3 and ha(G) < 1/2, or p = 3 and ha(G) < 1/3. The
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existence of the canonical subgroup for G/C is guaranteed by the conditions p > 3
and ha(G) <1/(2p), or p = 3 and ha(G) < 1/(3p).

One can then not only relate the degree of C to the Hasse invariant, but also the
degree and partial degrees of C[ 7] to the partial Hasse invariants. One can also com-
pute the partial Hasse invariants of the p-divisible group G/C[n]. Actually, one can
get information on C[77*]. Indeed, we have the following propositions.

Proposition 3.5 Let G be a p-divisible group over Ok with an action of O satisfying
Hypothesis 0.1, and suppose that there exists a canonical subgroup C c G[p]. Suppose
that e > 2 and let 1 < k < e be an integer. Suppose that ha(G) < 1/e; then we have

deg,(Cl7*)/C[])” =halM(G)  fprais<isf.

Thus, deg(C[*]/C[7*1])? = hal®""(G). Suppose that ha(G) < 1/(pe), and that
there exists a canonical subgroup for G/C. Then for all1 < i < f, we have
degl (C[x*]/Cl* )P = p-m{ETN(G) for1<j<k-1,

degll(C[7*]/C[7*1])P = hasse; (G),
deg(C[A)ClAN)P =m/(G)  Jork+1<j<e.

Proposition 3.6 Let G be a p-divisible group over Og with an action of O satisfying
Hypothesis 0.1, and suppose that there exists a canonical subgroup C c G[p]. Suppose
e > 2, ha(G) < 1/(pe), and that there exists a canonical subgroup for G/C. Then we
have

(hal(GrC(7*])) . . =

1<j<e

(p-ha ¥ (G),...,p-had(G),nal"(G),... ., halM(G))

for1<i< fandl<k<e. These relations are equivalent to

(hassei (G/Cn*]), mPN(G/Ca*])......mi(G/Cr*])) =

(p-ml TG, .., p-ml(G), hasse; (G), mI(G), ..., ml*™(G))

foralll1<i< fand1<k<e—1 Fork = e we get hasse;(G/C) = p-hasse;_1(G) and
mlm(G/C) = p-ml[.f]l(G)foralll <i<fand2<j<e.

We could have presented these two results as corollaries of the theorem, but to get
sharper bounds on the Hasse invariant, we will prove these three results together. This
will be done in the next section. We sum up all the information in the following two
tables.

These two tables are valid if G is a p-divisible group as in Theorem 3.4, C is the
canonical subgroup, ha(G) < min(1/(pe),1/(p + 1)), and if there exists a canonical
subgroup for G/C.
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Cl=]” | (C[=*]/C[x])” (c/clm'p> | c?
degl[.l] hasse; (G) p- mgf]l(G) p- mE]l(G) hagl](G)
deggz] ml[.z] (G) hasse; (G) p- mEi]I(G) hagz](G)
degge] mEe] (G) mge_l] (G) hasse; (G) hage] (G)
deg, | hal)(G) | hal“l(G) hal'(G) ha;(G)
deg | hal’(G) hal*(G) ha'(G) ha(G)
Table 1: The partial degrees of the graded parts of the canonical subgroup
G/C[n] G/C[n*] G/C
hasse; | p- mgf]l(G) p- ml[:l](G) p-hasse;_1(G)
mgz] hasse; (G) mei]l(G) me]l(G)
mPl | mlPl(G) | hasse(G) p-mPY(G)
m | miG) | omiG6) P mii(G)
Table 2: The primitive Hasse invariants of the p-divisible groups G/C[7*]
Remark 3.7 Itis not difficult to see that if G does not satisfy Hypothesis 0.1, then

ha(G) = 1and there cannot be a canonical subgroup for G[p]. We could thus have
removed this assumption in the theorem and in the propositions.

Remark 3.8 The condition ha(G) < 1/e implies that all the partial and primitive
Hasse invariants of G are well defined. Ifha(G) < 1/e and C is the canonical subgroup
of G[p], then we have

e—1 i
deg, C[n]P +1:(G) <hal)(G) + " hall (G) < ha(G) < 1/e.

j=1

Thus, the partial degrees of C[7]” are well defined too, thanks to Proposition 2.8.
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Remark 3.9 If G satisfies the Rapoport condition, then we have ml[j ] (G) =0forall
1<i< fand2 < j<e. Then we have

deg,(C[#*]/C[7*])P = hasse;(G)

foralll < i < fand1 < k < e. Moreover, the element degl[.j](C[nk]/C[ﬂk_l])D
is equal to hasse;(G) if j = k and 0, otherwise. Let k be an integer between 1 and
e — 1. The elements (hasse; (G/C[7¥]), ml[.]](G/C[rzk])) are all 0 except the relation

Ekﬂ](G/C[nk]) = hasse;(G) for all1 < i < f. Note that if G is not ordinary, then
G/C[n*] does not satisfy the Rapoport condition for 1 < k < e — 1. This is consistent
with the fact that the U, operator on the Hilbert modular variety does not stabilize

the Rapoport locus (see [A-Go]).

m

Remark 3.10 Suppose that e > 2, that the Hasse invariant of G is small enough,
and that there exists a canonical subgroup C c G[p]. Consider G’ = G/C[n]; it has a
subgroup Hy = G[7]/C[]. This subgroup has partial degrees
(degl[.j] Hp)1<jce = (hasse; (G), ml[z] (G),..., ml[e] (G))

forall1<i< f.In G"” = G/C[n?], the image of H}, is Hy = G'[x]/(C[n*]/C[n]). It
has partial degrees

(degl! HY)1cjee = (p- ml)(G), hassei(G), mIN(G),..., ml ) (G))
forall1< i < f. This shows that the U, operator on the Hilbert modular variety does
not increase, in general, any of the partial degrees.

3.3 Proof of the Theorem

Before proving the theorem, we recall the structure theorem of Raynaud [Ra] con-
cerning finite flat group schemes of height f over Ok, of p-torsion and with an action
of O Fur.

Proposition 3.11  Let H be a finite flat group scheme of height f over Ok, of p-torsion,
and with an action of Opur. Then there exist elements (a;, bi)i<i<f of Ok such that
a;b; = pu (where u is a fixed p-adic unit), with H isomorphic to the spectrum of

Ok[X1,..-» Xf]/(X{) - ai1Xiv),

where we identify Xy, and X;. The dual of the group with parameters (a;, b;) is
the one with parameter (b;,a;). Moreover, we have wy; = Ox/a;, and therefore
deg, H = v(a;), deg, H? = v(b;) forall1 < i < f. The Verschiebung map wy,; —
W) ;1 IS given by

Ox/a; — Ok/(p.al_,)

1—>b,’

foralll<i< f.

We will refer to such group schemes as Raynaud group schemes.
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Remark 3.12  Since the group is defined over Ok, the condition (x*) of [Ra] is
automatically satisfied.

We now turn to the proof of Theorem 3.4 and of Propositions 3.5 and 3.6. Let G
and C be as in the theorem. Let us write w = ha(G). We have an exact sequence

0 — wgpp)/c — wg,{1y — we — 0.
But the degree of G[p]/C is w, thus we have an isomorphism

WG, {1-w} = WC,{1-w}-

It gives isomorphisms wg ; {1-w} = @c,i,{1-w} forall1 < i < f. The space C(Ok) is
a [Fy-vector space, with a map [7] such that [7]° = 0. Let us give a filtration on this
vector space; it gives a filtration Hy ¢ --- ¢ Hy, = C such that each Hy,;/Hy is a
Raynaud group scheme. Moreover, one can do it in a way that Hyy = C[7¥] for all
1 < k < e. This gives a filtration

0 C we/Hg, © 0 C We/n, © We-

Let wc/m,,i,(1-w) be the image of wc/p, in wc,i1-w). We have thus filtered the
free Ok (1-y}-module of rank de wc ; ;-4 by de submodules such that each of
the graded pieces is monogeneous (since Hy,1/Hy is a Raynaud group scheme, the
quotient wcyy,,i/@c/H,,,,i = @H,.,/H,,i i monogeneous). This forces each module
Wc/Hy,i,{1-w} to be free of rank de — k over Ok (1_,,). We have filtered wc,; (1-w}
by free Ok (1, submodule, and the Verschiebung acts on the graded pieces by the
multiplication by an element of valuation deg, (Hy/H—1)”. We will first compute the
unramified partial degrees of C. When one takes the valuation of the determinant of
the Verschiebung acting on wc ; {1-w}> one gets the following equality in [0,1 - w]:

de
ha;(G) = Zdegi(Hk/Hk,l)D = deg; cP
k=1

for1 < i < f. Since ha;(G) < w < 1— w, this relation is simply an equality. This
settles the first assertion of Theorem 3.4 in the case e = 1. We now assume e > 2. The
filtration

0c weyclne]if1/ey € C Wefclnlifife} © WC,i{1/e}
is thus an adequate filtration of wg ; {1/} = wc,i {1/} forall1 < i < f. Moreover, from
the result on Raynaud group schemes, the determinant of the map
Viwe/crm)i /ey [ Ocicat )i /ey — (Oc/cmyion ey /Ocscrdioniyer)

has a determinant with valuation equal to deg,;(C[7*]/C[7*"'])P for1 < i < f and
1 < k < e. From Propositions 1.9 and 1.10, one gets

haEeH_k] (G) = degi( C[T[k]/C[T[k_l]) P

foralll < i < fand1 < k < e. This concludes the proof of the first assertion of
Theorem 3.4, and the first part of Proposition 3.5.
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Now let us turn to the computation of the partial Hasse invariants of the p-divisible
groups G/C[n*], for 1 < k < e. The p-divisible group (G/C) x o, Ok, 1-w} is isomor-
phic to (G %o, OK,{I,W})(P), where the subscript means a twist by the Frobenius.
First we suppose that and w < 1/(p + 1). We have the following equality in [0,1 - w]:

ha,(G/C) =p- ha,-_l(G)

for1<i< f.Since p-ha;_1(G) < pw <1—w, this is just an equality. This proves the
first assertion of Theorem 3.4 in the case e = 1.

Now we suppose that e > 2 and w < 1/(pe). Since the element p - w is strictly less
than 1/e, we have

hal’l(G/C) = p-hal’}(G)

forall1< i< fand1< j< e. This gives the result for G/C. Now assume the existence
of a canonical subgroup for G/C. We will write C, ¢ G[p?] the subgroup such that
C,/C is the canonical subgroup of G/C. Since ha(G/C) < 1/e, we can apply our
previous result to this p-divisible group. We note that (C,/C)[n*] = C,[#**¢]/C,
and get

deg, (Colm**)/Caol 1)) = p-haif]7H(6)

forall1< i< fand 1<k < e. Next, we consider the p-divisible group G/C[7*]. One
easily checks that it as a canonical subgroup equal to C,[7%*¢]/C[n*]. Applying our
previous result to this p-divisible group, one gets

hal[.j] ( G/C[nk]) = degi( Cz[ﬂk+e+1—j]/cz[ﬂk+e—j]) D

foralll1 <i < f,1<j<eandl < k < e. Putting all these relations together, we
conclude that

(ha!(G/Cln* D)rsjee =
(p-hal"™M(G),...,p-hall(G),hal(G), ..., hal* ()

for1 < i < fand1 < k < e. This proves the third assertion of Theorem 3.4 and
Proposition 3.6.

We now compute the partial degrees of C[7]”. We will prove that degl[.j e [7]P =
ml[j](G) foralll1 < i < fand2 < j < e. Since we have already computed the un-
ramified partial degree deg, C[n]" = ha,[e] (G), this will imply that deggl] C[n]P =
hasse; (G).

Let us fix an integer i between 1and f, and let us denote by v¢[,p,; the cokernel

of the map w\(/G/C[n])D,i = wgGp ;- We thus have an exact sequence

0 — @(g/c[app,i — WGn,;

i Vc[n]D)i — 0.

Since deg; C[7]P = hal[e] (G) < 1/e, we have an exact sequence

O(G/Clal)P,ir{1fe) ~ ©Gpi,01/ey — Velalp.i — 0.
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On wgp ; 1/, the action of [r] is given by a matrix of the form

0 Ml.[e] *
0 *

M ’
0

where this matrix is written in a basis respecting the filtration
) v
(wGD,i,{l/e}/wgb i {1/9}) >

and the determinant of the matrix M ! has valuation m (G) forall2 < j < e
Here, all the blocks are of size h — d. By a slight abuse of notatlon we will still denote
by wZG/C[n])D,i,{l/e} the image of this module in w\C/;D,i,{l/e}’ and will work with this
module from now on. This module contains [7] - (s ; (/e and the image of this
module in the quotient wgp ; /1 /[7] - WG ; 11/, is generated by h — d elements
(since the height of G[7]/C[n] is f(h — d)). We will write the matrix of these h — d

elements by
Y
Y=|:1
Y.

Since the module v¢[,p ; has a module isomorphic to th<,_{dl Je} /Y. O;&dl Je} 382 quo-
tient, we see that v(det Y, ) < deg, C[n]” = hal[.e] (G). We now claim that the intersec-
tion of WG c(a1)p,, 11/} With the first step of the filtration (a)GD,,-,{l/e}/wgD_}i]){l/e} )Y
is generated by the image of the matrix M i[e]. Indeed, let us write by V3,..., V, the

(non zero) columns of the matrix of [7]. An element X in w\(/G/C[n])D,i,{l/e} can then
be written as a linear combination

X=Vooa+ -+ Veao_1+Ya,

for some (h —d) x 1 columns «;. If X is in the first step of the filtration, then one sees
that Y,a, = 0in Ol‘i /et This implies that the elements of «, have a valuation greater
than 1/e — ha[e (G). We then get the relation M[ Yooy = 0in O4

] . The

K[,é]l e—ha; (G?
valuations of the elements of a,_; are thus greater than 1/e — ha}(G) - (G)
By induction, one sees that the coefficients of a5, ..., &, all have a valuation greater

than1/e - ha,[e] (G) - ml[z] (G)----- ml[e*l] (G). This concludes the claim, with the
hypothesis

hal(G) + S ml(G) < 1/e.
j=2

This hypothesis guarantees that degge] C[n]? = m (G) Reasoning by induction,
considering the module (w[Gel; 11] (1/e} )Y, one gets that under the same hypothesis,

degl’) C[n]” = mP(G)
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for all 2 < j < e. This concludes the second assertion of Theorem 3.4, since the hy-
pothesis is implied by the relation ha(G) < 1/e. Indeed, if e > 2, one has

hal(G) + 3 ml(G) < 2hall(G) < 2hal)(G) < hal*)(G) + hal*(G) < ha(G)
j=2

forall1<i< f.

To conclude, it remains to prove the second part of Proposition 3.5, i.e., to compute
the partial degrees of (C[7**!]/C[#*])? for 1 < k < e — 1 with the assumption that
ha(G) < 1/(pe) and the existence of a canonical subgroup for G/C. We want to apply
our previous result to the p-divisible group G/C[7¥]. For this we need the hypothesis

hal*)(G/C[7*]) + 3" mU(G/C[7*]) < 1/e
j:2

foralll1<i < fandl< k < e—1 But from the computation on the primitive Hasse
invariants of G/C[7*], we have

hal*)(G/Cl*]) + Y ml (G/Clat))
j=2

e i e—k .
~ha"™ MG +p Y ml(G) +hasse;(G) + 3 ml(G)

j=e—k+2 j=2
<2hal*™M(G) <2/(pe) <1/e

forall1 <i < fand1 < k < e — 1. This concludes the proof of Theorem 3.4 and
Propositions 3.5 and 3.6. u

Remark 3.13 Incidentally, we have proved that if H is a finite flat subgroup of G[ ]
of height f(h — d) such that

deg, H+ )" ml[.j](G) <1/e
=2

for some integer i, then deggj] H= ml[jﬂ](G) foralll1<j<e-1
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