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ABSTRACT An original approach, the moment technique, is applied to 
analyze the shapes of spectral lines of Ap stars recorded in both circular 
polarizations. The longitudinal magnetic field, the asymmetry of the 
longitudinal magnetic field, and the quadratic field of the studied stars are 
derived. From the consideration of these quantities and of their variations 
through the stellar rotation cycle, constraints on the spatially unresolved 
structure of the magnetic fields are obtained. 

INTRODUCTION 

Spectropolarimetry, and in particular, observation of spectral lines in right 
and left circular polarizations (RCP and LCP), has for more than 40 years 
been a privileged tool to diagnose the magnetic fields of Ap (and Bp) stars. 
However, its use has up to recently been mostly restricted to the determination 
of a single quantity, the mean longitudinal magnetic field, through the 
measurement of the wavelength shift of spectral lines between RCP and LCP. 
The diagnostic potential of high-resolution circularly polarized spectra of Ap 
stars is nevertheless much larger: the shapes of the spectral lines contain a 
wealth of information on the field properties. This information has now become 
accessible through the availability of low-noise spectra. One approach to its 
exploitation is described in the present paper: the moment technique. 

THE MOMENT TECHNIQUE 

In the moment technique, the shapes of the spectral lines observed in the 
Stokes parameters / (unpolarized light) and V (difference between RCP and 
LCP) are characterized by a set of simple parameters: their moments of 
various orders about the line centre. The nth-order moment about wavelength 
A0 of a line in Stokes / (resp. V) is denoted Ry'(X0) (resp. flj, (Ao)). Under 
a number of approximations, the dependences of these moments on atomic 
parameters pertaining to the corresponding transitions can be interpreted in 
terms of quantities related to the magnetic field. The theoretical developments 

*) Based on observations collected at the European Southern Observatory, La 
Silla, Chile 
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Fig. 1. Simple examples of line profiles in LCP (II), RCP (IR), Stokes I 
and Stokes V (see text). The dashed vertical line indicates the location of 
the nominal wavelength of the transition. 
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TABLE I Moments of the profiles represented in Figure 1 
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underlying this interpretation have been presented elsewhere (Mathys 1988, 
1989) and will not be repeated here. Instead, an intuitive introduction to the 
moment technique will be given. 

Figure 1 shows six examples of line profiles in LCP, RCP, Stokes I and 
Stokes V, which will hereafter be used to give some intuitive insight into 
the physical meaning of the notion of moments of the profiles (at least, for 
the lowest orders). For the sake of simplicity, the unperturbed (i.e., in the 
absence of a magnetic field) I profile of the line has been taken triangular. 
This unperturbed profile is represented in example 1 in the figure. In what 
follows, its FWHM will be denoted a, and its depth d. In the absence of a 
magnetic field, the / profile is identical to the RCP and LCP profiles, while V 
is uniformly zero. 

Examples 2 to 6 in Fig. 1 can be related to some simple magnetic field 
configurations. If the Zeeman pattern of the line is a triplet, the profiles shown 
in examples 2 to 5 can, for instance, result from the following configurations. 
The profiles of case 2 are obtained in a purely longitudinal magnetic field, 
pointing toward the observer, having an intensity such that the wavelength 
separation AAff between the centres of gravity of the a components of the line 
is a. Case 3 corresponds to a field of similar strength, but purely transversal. 
Case 4 is obtained when observing two regions having longitudinal fields such 
that AA,, = a of opposite polarities, with the region where the field points 
toward the observer approaching the latter with a velocity corresponding to a 
Doppler shift AA# = —a, while the other region recedes with the same velocity. 
Case 5 is similar, except that the field pointing away from the observer has a 
strength such that A\„ = la. Finally, in case 6, the same field configuration 
as in case 2 is considered, but for an anomalous Zeeman pattern whose <r 
components look as shown in the figure. 

The moments Ry\\o) and R)p(Xo), for n = 0 to 3, of the line profiles 
illustrated in Fig. 1 are listed in Table I. The physical meaning of the moments 
of orders 0 and 1 is rather straightforward. The Oth-order moments are the 
areas between the continuum and the line profile: for Stokes / , this is the line 
equivalent width, which is independent of the magnetic field, while for Stokes 
V, this area is always zero, due to the antisymmetry of this parameter. Ry'(Xo) 
is zero, by definition of the central wavelength of the line. Ry(Xo) is half of 
the wavelength shift of the line between RCP and LCP. The interpretation 
of the other moments is a little less straightforward; their meaning can be 
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Fig. 2. Some Zeeman patterns, and the global parameters characterizing 
them. On the wavelength axis, the interval between two consecutive dots 
is H AXz. 
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better understood by considering simultaneously the profiles in Fig. 1 and 
the corresponding values in Table I. Ry\X0) characterizes the spread of the 
intensity distribution in the line about the central wavelength. It is to some 
extent related to the FWHM of the line, as can be seen from examples 2 and 
3: the / profile has the same zero-intensity width in both cases, but both the 
FWHM and Ry*\\0) are larger in the former than in the latter. But Rf\x0) 
is more general than the FWHM; it remains useful in cases when the FWHM 
becomes meaningless. An illustration of this is provided by the I profile in 
example 6: the FWHM cannot be defined, but Ry\x0) can, and it is larger 
than in example 4, because there is more intensity in the profile far from 
the line centre in case 6 than in case 4. Ry'(X0) characterizes the difference 
of width (or more precisely, the difference of spread of the distribution of 
intensity) between the RCP and LCP profiles. Indeed, it is zero in all examples 
but 4 and 5, and it is larger in the latter than in the former. Rj'(Xo) gives 
a quantitative estimate of the asymmetry of the I profile: its only non-zero 
value is found for example 5. The meaning of Rf$\x0) is much less obvious. 
Ry (^o) is to some extent sensitive to the wavelength shift between the centres 
of gravity of the IR and IL profiles. This can be seen by computing its value for 
a configuration similar to that of example 2, but with a different field strength. 
For instance, if the field is taken to have the same configuration but to be 
twice as large as in case 2, Ry{Xa) is multiplied by 4. This contribution has 
little interest in practice, because it already comes out in Rv

1\xa). But there 
is another component to Ky\x0), which can be perceived from the comparison 
of examples 2 and 6. Ry\Xo) has the same value in both of them or, in other 
words, there is the same shift between the centres of gravity of the IR and the 
II profiles in both cases. But R^'(X0) is twice as large in case 6 than in case 2. 
This is clearly due to the difference of the distribution of intensity in the IR 
and Ii profiles between both cases. 

On the other hand, the considered examples show that the moments 
of the I and V line profiles depend on various factors: the intrinsic profile of 
the line in the absence of a magnetic field, the magnetic field strength and 
orientation, the Doppler effect undergone by the line forming region (due 
to stellar rotation), and the Zeeman pattern of the transition. Within the 
frame of the moment technique, the latter is best characterized by global 
parameters (as opposed to individual shifts and relative strengths of the 
pattern components). The theoretical developments leading to the introduction 
of these global parameters have been presented elsewhere (Mathys & Stenflo 
1987; Mathys 1989). Here, an intuitive presentation of the physical meaning 
of those involved in the interpretation of the moments of the profiles up to the 
third order will be given. 

Figure 2 shows Zeeman patterns representative of the various 
configurations that can be encountered in practice. The values of the 
corresponding global parameters g, S2, D2, and C^~^ are indicated in the 
figure. The first of these parameters, g, the effective Lande factor (also called z-
value in older works), has been used for a long time. It is the wavelength shift 
of the centre of gravity of the <r+ components of the transition with respect to 
its centre A0, in units of H AXZ. H denotes the field strength, and AAZ = kX\, 
with k = 4.67 10~13 A - 1 G - 1 . The second parameter, S2, characterizes the total 
width of the transition, or more precisely, the spread of all the components, 
weighted by their strengths. One can indeed see that the triplet of example 9 
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has (almost) the same effective Lande factor as the anomalous patterns of 
examples 1 to 6, but that the latter have consistently larger values of S2. S2 is 
furthermore greater for transition 1 than for transition 4, for 2 than for 5, and 
for 3 than for 6. On the other hand, the same value of S2 holds for transition 1 
and for transition 3, though the latter is wider, but its outermost a components 
are the weakest, while the outermost <r components of transition 1 are the 
strongest. It is easier to understand the meaning of the difference S2 — D2 

than that of D2. S2 — D2 characterizes the spread of the n components, again 
weighted by their strengths. Indeed, S2 — D2 is zero for the triplet 9. It has the 
same nonzero value for transitions 7 and 8, which have the same w components, 
but whose a components have different wavelength shift. It also has a single 
value for transitions 1 and 3, for which respectively the outermost and the 
innermost a components are the strongest. The understanding of C^1' is a 
little less straightforward, as it is sensitive to several factors. For given effective 
Lande factor and mutual separation of the a components, C^1' depends on 
the way in which the strengths of the <r components are ordered (compare 
patterns 1 and 3). For fixed mutual relation betv/een the a components, it 
depends on the shift of their centre of gravity from the line centre (see cases 7 
and 8). And as can be seen from the comparison of the pairs of cases of 
the first two columns of Fig. 2 (1 and 4, etc.), C^-1^ depends on the mutual 
separation of the <r components. 

OBSERVATIONAL RESULTS 

The moment technique has been applied to analyze spectra of Ap stars 
recorded simultaneously in RCP and in LCP with the ESO CASPEC 
spectrograph fed by the ESO 3.6 m telescope. Up to now, the following 
quantities related to the magnetic field have been determined: the mean 
longitudinal magnetic field (Hz), the mean asymmetry of the longitudinal 
magnetic field {xHz), and the mean quadratic magnetic field ((H2) + (H2))1!2. 
(Hz) is the average, over the visible stellar hemisphere, of the component of the 
field vector along the line of sight. (xHt) is the first-order moment about the 
plane defined by the line of sight and the stellar rotation axis of the component 
of the magnetic field along the line of sight (x is the distance of a point of 
the stellar disk to the mentioned plane, expressed as a fraction of the stellar 
radius). {(H2) + (H2))1!2 is the square-root of the average over the observed 
stellar hemisphere of the sum of the square of the modulus of the magnetic 
field and of the square of its line-of-sight component. All these averages are 
weighted by the local emergent line intensity. 

Physically, the mean longitudinal field is essentially responsible for a 
wavelength shift of the lines between RCP and LCP. The mean asymmetry 
of the longitudinal field primarily induces a difference of width of the lines 
between both circular polarizations. Such differences had already been 
observed by Babcock (1951), who named the effect the crossover effect, but 
they have not been studied quantitatively up to now. Finally, the quadratic 
field mostly manifests itself through broadening of unpolarized lines. From the 
physical interpretation of the moments of the profiles that has been presented 
above, it can thus be seen that (H„), {xHz) and ((H2) + (H2))1/2 are diagnosed 
respectively from the first- and second-order moments of the V line profiles, 
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and from the second-order moments of the / line profiles. This diagnosis is 
achieved through application of the following relations: 

B$\\0) = § *\z (H.) , (1) 
R<$\\o) = 2gA\zA\R(xHz), (2) 

and 
R<?\\o) = * ( 2 ) + AAR/5 + (1/4) (3 S2 + D2) AA| ((H2) + (H?)). (3) 

These relations are only approximate. The assumptions that have been 
made to derive them are discussed elsewhere (Mathys 1988, 1989, and in 
preparation). This discussion will not be repeated here. 

AAR = Ao (we/c) sin i, where ve is the equatorial velocity of the star and 
i the inclination of its rotation axis on the line of sight, and Ao is the average 
wavelength of the studied spectral region. V^ contains all the contributions to 
the second-order moment of the I profile but those of the magnetic field and of 
the rotational Doppler effect. It is dominated by the instrumental broadening, 
and can be regarded as a constant for all the observations considered here. 
Accordingly, it was determined by combining observations of various stars, 
to achieve a better accuracy, and it was subtracted from the observed values 
of Ry\x0) prior to any subsequent analysis. Somewhat similarly, AAR is 
constant through the stellar rotation cycles, so that it could be determined 
accurately by averaging observations of a given star at various phases. Its 
contribution to Ry'(Xo) was then subtracted before performing the magnetic 
field determination for each individual observation. 

On the other hand, it is straightforward to extract the projected 
equatorial velocity ve sin i of the studied star from AAR. Not only is this an 
additional information yielded by the analysis, but furthermore, for stars with 
good published values of ve sin i, this provides a means of testing the applied 
technique. Comparison of the values of ue sin i determined in this work with 
reliable values from the literature show an excellent agreement, which supports 
the validity of the approach used here. 

It should also be noted that the quantity that is directly derived from the 
study of the second-order moment of the V profiles is not the mean asymmetry 
of the longitudinal field, but rather its product with the projected equatorial 
velocity, ve sini{xHz), which in what follows is called the crossover. The 
determination of {xHz} from the latter implies an additional step, namely the 
division by the value of ve sin t, which needs to be independently determined 
(e.g., from the consideration of Ry'(Xo))-

Extensive tables of the measurements of the above-mentioned quantities 
are to be found elsewhere (Mathys 1991, and in preparation). In this 
presentation, the main trends emerging for them will be summarized. In 
addition, plots of the measurements against phase are shown in Figs. 3 and 4 
for the stars HD 125248 and HD 175362, to illustrate the following discussion. 

Twenty-nine stars have been studied in this work, a large fraction of 
which were repeatedly observed, at up to 24 phases. Comparison of the derived 
values of the mean longitudinal magnetic fields with those of the literature for 
stars previously considered by other authors demonstrate the proper operation 
of the Zeeman analyzer of CASPEC, which was used for the first time. The 
accuracy of the {H2} determinations that is achieved in the best cases is of 
the order of 80 G. It is limited by the spectral resolution of the observations, 
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Fig. 3. Observations of {H,), ve sini {x Hz) and ((H2) + (H2))1!2 in 
HD 125248. The curves are least-squares fits of the data by sinusoids. 
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Fig. 4. Observations of (Ht), ve sin i (x Hz) and ({H2) + {H2
z)fl

2 in 
HD 175362. The curves are least-squares fits of the data by superpositions 
of a sinusoid with the rotation frequency of the star and of its first 
harmonic. 
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and consistent with theoretical estimates. Ten of the stars of the sample were 
observed with (fairly) good phase coverage: HD 83368, HD 96446, HD 119419, 
HD 122532, HD 125248, HD 137509, HD 137909, HD 147010, HD 153882, 
and HD 175362. The curves of rotational variation of the longitudinal field of 
eight of these stars are closely sinusoidal. Figure 3 shows an illustration of this 
typical behaviour. In the remaining two stars, HD 119419 and HD 175362 (see 
Fig. 4), the (Hz) variations are definitely nonsinusoidal; rather, they are well 
represented by the superposition of a sinusoid with the rotation frequency of 
the star and of a sinusoid with twice that frequency. 

Ten only of the twenty-nine stars of the sample have a detectable 
crossover effect. This is mostly due to the fact that the crossover effect results 
from the combination of Zeeman and rotational Doppler shifts, so that it can 
only be observed in stars where the latter is sufficiently large. In particular, 
stars with periods much in excess of ten days are not expected to show 
crossover effect. From the consideration of these slowly rotating stars, a lower 
limit of 2 kms"1 kG to the detectable crossover is derived, which agrees well 
with the expectations based on an uncertainty analysis taking into account 
the signal-to-noise ratio and the resolution of the spectra. Eight of the stars 
where crossover effect was detected were repeatedly observed throughout 
their rotation cycle. In five of them, the variations of {xHz) are essentially 
sinusoidal and symmetric about 0, and they occur in phase quadrature with 
respect to the variations of {Hz). Again, the star shown in Fig. 3, HD 125248, 
is a typical example. Three stars behave differently: HD 137509, HD 147010, 
and HD 175362 (see Fig. 4). In the latter, the variation of the asymmetry 
of the longitudinal field, like that of the mean longitudinal field, is better 
represented by the superposition of a sinusoid with the rotation frequency of 
the star and of a sinusoid with twice that frequency (no significant crossover 
effect was detected in the other star whose {//.,) variations are anharmonic, 
HD 119419). HD 147010 is possibly another case where the variations of 
(x Hz) are better represented by the superposition of a sinusoid and of its 
first harmonic, but these variations are not well defined. Finally, HD 137509 
has a very large crossover with pronounced variations, which do not appear 
symmetric about 0 and which occur with a phase difference of 0.125 with 
respect to the variations of the longitudinal field. The phase coverage of the 
observations of this star is however rather poor, and the adopted value of its 
period is somewhat ambiguous (it might be a 1 d - 1 alias of the true value), so 
that further observations would be needed. 

For twenty-three stars of the sample, meaningful values of the quadratic 
field could be determined. The lower limit of detection of the quadratic fields, 
set by the spectral resolution and the signal-to-noise of the observations, is of 
the order of 5 kG. The observed quadratic fields range from this value up to 
37 kG, in the star HD 137509. The magnetic field of this star appears to be 
the second strongest known field in Ap stars. Quadratic field values derived for 
stars where resolved magnetically split lines are observed in higher-dispersion 
spectra are consistent with the values of the mean field modulus (H) measured 
in those stars from the line splitting. ((H2) + (H2))1!2 should be somewhat 
stronger than (H), due to the fact that it contains contributions from the 
square of the longitudinal field and from the variance of the field modulus over 
the stellar disk ((H2) = (H)2 + <r2{H)). This is indeed what is found for the 
seven stars of the present sample having resolved magnetically split lines. An 
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Fig. 5. Observations of the magnetic field of HD 126515. Squares: mean 
quadratic field ((H2) + (H2))1/2. Circles: mean field modulus {H} [open 
symbols: data from Preston (1970); filled symbols: data from Mathys 
etal. (1992)]. 

example of this is shown in Fig. 5, in the case of HD 126515. 
For nine stars, repeated determinations of ((H2) + (H2))1!2 were performed 

throughout the rotation cycle. The variations appear to be satisfactorily 
represented by a sinusoid with the rotation frequency of the star, or by the 
superposition of such a sinusoid and of its first harmonic. In several cases, 
however, the phase coverage of the observations is not quite sufficient to 
determine unambiguously the shape of the variations of ((H2) + {H2})1^2, 
which generally have a low amplitude; both types of curves mentioned above 
appear to be almost as suitable. The extrema (or at least one of them) of 
the quadratic field seem to coincide in phase with (one of) the extrema of the 
longitudinal field in HD 119419, HD 147010, and HD 153882. But the absence 
of a phase coincidence between the extrema of (Hz) and of ((H2) + {H2})1/2 

is often observed. This definitely happens in HD 125248, HD 137509 and 
HD 137909, and possibly also in HD 83368 and HD 175362. 

CONSTRAINTS ON THE FIELD GEOMETRY 

No actual modelling of the spatially unresolved structure of the stellar 
magnetic fields accounting for the new constraints set by the above-described 
diagnosis of the field properties has up to now been achieved. As a matter of 
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fact, such a step would still be prematurate, since the information contents 
of the line profiles has not been fully extracted yet (higher-order moments 
can still be analyzed). Nevertheless, a number of interesting properties of the 
magnetic fields can already be derived from simple considerations. 

The simplest model of the geometry of the magnetic field of an Ap star 
is the centred dipole. Within the frame of this model, one can, consistently 
with the approximations made to derive them, predict analytically how the 
quantities (Hz), (xHz), and {(H2) + (H2)) should vary along the stellar rotation 
cycle. Confrontation of these predictions with the observations permits one 
to test whether the centred dipole is an acceptable model of the field of the 
studied stars. 

If the stellar field was a centred dipole, the following behaviour should 
be observed. (Hz) and {xHz) should vary sinusoidally, the latter reversing 
symmetrically about 0; these variations should occur in phase quadrature. 
The variations of ((H2) + (H2)) should have the form of the superposition of 
a sinusoid with the rotation frequency of the star, and of a sinusoid with twice 
that frequency, with the extrema of the fundamental and two of the extrema 
of the harmonic coinciding in phase with those of (Hz). Furthermore, the 
following relations should be obeyed. Be (Hz)

+ and (Hz)~ the maximum and 
the minimum of the longitudinal field over the rotation period, and (xHz}

+ 

and (x Hz)~ the extrema of the asymmetry of the longitudinal field. {(Hz)
+, 

(Hz)~, ve smi{xHz}
+ and ve smi(xHz)~ all are observable quantities.) Then 

one should have: 
• .(xHM)+-(xH,)~ 15 

" e S m ' (H.)+ -(Hz)~ =32V°- ( 4 ) 

From there, one could derive ve and, since the rotation period is known, the 
stellar radius R. Comparison of the value of R derived in that way with the 
typical value for stars of the same spectral type provides an additional test 
of the validity of the centred dipole model. Another prediction of this model 
is that the ratio p between the amplitudes of the fundamental and of the 
harmonic in the variations of ((H2) + (H2)) should be equal to 4(1 + r)/(l -
r), where r = (HZ)~/{HZ)+. This is again a relation between observable 
parameters, that can be tested. 

In the ten stars observed through their rotation cycle, many 
inconsistencies between these predictions and the observations are found. 
In HD 83368, though the variations of the quadratic field are not perfectly 
determined, the phase lag between the extrema of (Hz) and of ((H2) + (H2)) 
appears to differ from 0, by 2.5 <r. The upper limit of the crossover derived 
for HD 96446 yields a value of the stellar radius of (0.6 ± 0.2) Re, which is 
of course much too low for a B2 star. The longitudinal field variations of 
HD 119419 are definitely anharmonic. The mean value of the crossover for 
HD 122532 differs from 0 at the 2.4(T level. The radius of HD 125248 that is 
derived [(1.27 ± 0.17) RQ] is too small for an Al star. Moreover, a phase lag 
between (Hz) and ((H2) + (H2)) departing from 0 by almost 4a is found (it 
is clearly seen in Fig. 3), and the centred dipole model predicts the double 
frequency component in the variations of ((H2) + (H])) to have approximately 
ten times the amplitude of the fundamental (again in total contradiction with 
the observed behaviour shown in Fig. 3). In HD 137509, (x Hz) does not reverse 
symmetrically about 0 (at the 6<r level), the phase lag between the variations of 
(Hz) and of (xHz) is 0.125, and the quadratic field varies in phase quadrature 
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with respect to the longitudinal field. As already mentioned, however, more 
observations should be obtained to improve the phase coverage and to check 
the validity of the adopted value of the period, before these discrepancies 
can be definitely regarded as real. For HD 137909, a plausible value of the 
radius is derived, but there is a definite phase shift between the variations of 
(Ht) and of ({H2) + {H2}). The existence of a (related) phase shift between 
the variations of the mean field modulus (determined from the observation of 
resolved magnetically split lines) and the longitudinal field has, as a matter of 
fact, been known for a long time (Wolff & Wolff 1970). In HD 147010, there 
is some evidence that the crossover undergoes a double-wave variation. Even 
if it eventually proved to vary sinusoidally (if the presumed anharmonicity 
were only due to the limited number and quality of the available data), the 
observed crossover would still be much too small to be compatible with the 
centred dipole model (it would imply that the star has a radius smaller than 
the solar radius). Furthermore, from the better defined variations of ({H2) + 
(H2)), the observed p, of the order of 3, is much smaller than the predicted 
one (10), and the observed phase relation between the fundamental and the 
harmonic in the variations of ({H2} + (H2)) is opposite to what is expected 
for a centred dipole. In HD 153882, the ratio of ve sini to ve is (1.5 ± 0.2). 
Finally, the variations of (Hz) and of (x Hz) in HD 175362 are definitely 
nonsinusoidal. 

Thus, the centred dipole model usually does not appear to represent 
satisfactorily the actual geometry of the magnetic field of the Ap stars. This 
is not surprising, as this was already known in some cases, in particular for 
the four stars with resolved magnetically split lines that have been observed 
throughout their rotation cycle (Landstreet 1980, and references therein). This 
result is independently confirmed here, for a larger number of stars, which 
makes it more general. 

For a number of stars of the present sample, one can even be more 
restrictive. Most models of magnetic fields of Ap stars derived up to now 
belong to one of the two following types. Either the field is assumed to be 
a dipole offset from the centre of the star along its axis, which goes through 
the centre of the star. Or it is assumed to be a superposition of collinear 
low-order multipoles, centred on the centre of the star. The common feature 
of these two kinds of models is that they both assume that the field has a 
cylindrical symmetry about an axis going through the centre of the star. For 
such a symmetric geometry, it can be shown quite generally that the curves 
of variation of (Ht) and of {(H2) + (H2)) should always be symmetric about 
the phases 0 and 0.5. The latter are defined as the phases when the magnetic 
axis lies in the plane containing the rotation axis and the line of sight. 
Observationally these phases should be those of extrema of the longitudinal 
field and of the quadratic field. The crossover should always be zero, and 
reverse its sign, at these two phases. The variations of its absolute value should 
be symmetric about phases 0 and 0.5, too. 

Of the ten stars repeatedly observed through their rotation cycle, seven 
to some extent do not show the above-mentioned symmetries: HD 83368, 
HD 119419, HD 125248, HD 137509, HD 137909, HD 147010, and HD 175362. 
Though for one or two of them, additional observations would be welcome to 
confirm this result, it clearly appears that most of these seven stars have a field 
that is not cylindrically symmetric about an axis going through the centre of 
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the star. Thus the "usual" models of magnetic field geometry are not suitable 
for these stars. 

Again, such asymmetries had already been evidenced for the two 
stars with resolved magnetically split lines HD 126515 (Preston 1970) and 
HD 137909 (Wolff & Wolff 1970). Their confirmation here for a large fraction 
of the studied stars indicates that they are rather ubiquitous among magnetic 
Ap stars. 

CONCLUSIONS 

The moment technique is an original method of magnetic field diagnosis from 
the analysis of the information contents of the shapes of spectral lines recorded 
in both circular polarizations. Successful applications of this method to the 
determination of parameters related to the magnetic field have been presented, 
which have led to the derivation of new constraints on the spatially unresolved 
structure of the fields. Up to now, only the moments up to order 2 of the / and 
V profiles have been exploited. It should still be possible to extract valuable 
additional information from the consideration of the third-order moments. 
This is a rather straightforward extension of the present work, which should be 
achieved soon. It is much more doubtful that one can make use of the higher-
order moments of the profiles with the kind of approach described here, as 
the intricacy of the interpretation increases very rapidly. A more promising 
development is the application of the moment technique to the analysis of 
linearly polarized spectra. The necessary theoretical foundations have already 
been developed. In practice, the interpretation of the second- and third-order 
moment of the Stokes Q and U line profiles should be quite straightforward. 
The difficulty may reside in the fact that the polarimetric signal that should 
be recorded in Stokes Q and U is substantially weaker than the one observed 
in Stokes V; lower-noise and higher-resolution may thus be needed to exploit 
linear polarization information. This will be tested soon, as in the course of 
the project presented here, a number of linearly polarized spectra have already 
been obtained for that purpose. It should be stressed that linear polarization 
studies would strongly enhance the possibilities of constraining the magnetic 
field geometry, as they would give access to the components of the field in the 
plane perpendicular to the line of sight (to first order, circular polarization is 
only sensitive to the component of the field parallel to the line of sight). 

Other approaches aiming at diagnosing the magnetic field structure have 
been recently introduced, which are described in other presentations at this 
conference. With respect to these methods, which involve time-consuming 
numerical modelling of line profiles, the moment technique has the originality 
and the advantage of being simple and fast to use. Therefore, there is no 
difficulty to apply it to rather large samples of stars repeatedly observed a 
great number of times. This made possible the achievement of the up to now 
unrivalled systematic study presented here. From such a kind of study, one can 
in the future hope to derive a general picture of the magnetism of Ap stars; 
this would seemingly be much more difficult to achieve using other methods. 
The counterpart of the relative simplicity of the moment technique may be 
some loss of accuracy with respect to other approaches. However, this is still 
to be demonstrated: a comparative application of the moment technique and of 

https://doi.org/10.1017/S025292110002056X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110002056X


246 G. Mathys 

a numerical approach would be very interesting. Moreover, the relative merits 
of a (possibly) higher accuracy and of the feasibility to study larger samples 
of stars should be weighed against each other, with regard to the broader 
scientific context where the magnetic field study belongs. On the other hand, 
as already noted in other astrophysical contexts (e.g., Castor etal. 1981), the 
use of moments is particularly efficient to characterize the shapes of spectral 
lines from observational material that has neither a very high signal-to-noise 
ratio nor a very high resolution. Therefore, the moment technique may be 
especially well suited, and in particular better suited than numerical line-
fitting methods, to the analysis of circular polarization spectra such as those 
obtained with CASPEC and considered in this work. Still another advantage 
of the moment technique is that the steps of extraction of information from 
the line profile and of modelling of the field geometry are uncoupled. This 
means that the latter of these steps can be repeated as needed, starting from 
measurements of quantities such as (Hz), (xHz), or ((H2) + (H2))1/2, which 
can for instance be readily available in the literature. By contrast, line-
fitting methods need to resort to original spectra, which can be somewhat less 
accessible. 

From the point of view of the general knowledge of Ap stars, the main 
result that emerges from this study is that, in a large fraction of them, the 
magnetic field does not have the property of cylindrical symmetry about an 
axis going through the centre of the star. This means that one has to go for 
more complex models of the field than those that have been mostly used 
up to now. A model like the generalized decentred dipole proposed by Stift 
(1975) might possibly be suitable. Such models have not up to now be very 
popular, in particular because they were underdetermined with the available 
observational data. With new constraints emerging, it is time to turn to them. 
Obviously, a future continuation of the work reported here, and actually one 
of its major goals, is to obtain "positive" models of the magnetic fields of the 
stars of the sample (by contrast with the "negative" models presented here, 
that is, the exclusion of some models). This is to be the next step in this study, 
once the third-order moments of the profiles have been analyzed. 
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