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A SIMPLE MODEL FOR RANDOM OSCILLATIONS

F. PAPANGELOU,∗ University of Manchester

Abstract

A simple model for a randomly oscillating variable is suggested, which is a variant of the
two-state random velocity model. As in the latter model, the variable keeps rising or falling
with constant velocity for some time before randomly reversing its direction. In contrast
however, its propensity to reverse depends on its current value and it is for this desirable
feature that the model is proposed here. This feature has two implications: (a) neither
the changing variable nor its velocity is Markovian, although the joint process is, and
(b) the linear differential equations arising in the case of our model do not have constant
coefficients. The results given in this paper are meant to illustrate the straightforward
nature of some of the calculations involved and to highlight the relationship with one-
dimensional diffusions.
Keywords: Random oscillation; random evolution; inertia; hazard field; Markov
process; generator; stationary distribution; renewal; level crossing; recurrence time; exit
distribution; exit time; diffusion; scale and speed measure
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1. Introduction

The purpose of the present paper is to suggest a model for random oscillations in one
dimension which is simple, reasonably discrete, amenable to calculation, and not entirely
unrealistic. There are many systems that undergo random expansion and contraction, and
whose swings are reflected in a numerical index which rises or falls as the system grows or
retrenches. Our object of study will be such an index, which we will imagine as a ‘particle’
moving up or down the real line in a manner that incorporates the two principles mentioned in
the abstract above, which are explained more precisely below.

Our model is inspired by the two-state random velocity model, which is the most basic
‘random evolution’ and is lucidly presented in Chapter 0 of [4]. In that model a particle moves
on the line with constant velocity, either γ or −γ say, switching from one velocity to the other
at random times given by a Poisson process of rate λ. It is more suggestive to imagine the
velocity process as a two-state Markov chain which ‘instructs’ the particle to adopt one or the
other velocity and proceeds regardless of where the particle is at any given moment. To describe
the motion informally, we can say that at any given time t the particle, which is moving with
constant speed, has probability λ�t + o(�t) of reversing its direction of motion before time
t+�t (�t → 0). The position process of the particle is not Markovian, but the velocity process
as well as the position-cum-velocity process are. This idea has been greatly generalised to that
of random evolution, where an (often discrete) Markovian environment drives the development
of a system without any feedback from the ‘position’ of the system. See [4] and the references
given therein for the theory and many applications of such processes.
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A simple model for random oscillations 1165

The model studied here is a two-state velocity model, but with a modification which is an
essential ingredient and a defining characteristic of the process. The modification is this: if at
time t the particle is at position x and is moving up, then it has probability r(x)�t + o(�t)

of reversing its motion before time t + �t , whereas if it is moving down it has probability
l(x)�t + o(�t) of reversing before time t + �t . Here r(x) and l(x) are functions of the
position x of the particle and represent the propensity of the particle to reverse its motion while
passing through x. If, for any time t ≥ 0, we denote by X(t) the position and by V (t) the
velocity of the particle, then the stochastic process (X(t), V (t)) is Markovian, but neither the
marginal process X(t) nor V (t) is Markovian. Despite this, the obvious generalisations of the
infinitesimal generator of (X(t), V (t)), t ≥ 0, and the differential equations appearing in [4]
hold in this modified context and the interesting thing is that, although these linear differential
equations (unlike the case of [4]) do not have constant coefficients, they admit elementary
explicit solutions when applied to some of the usual entities of interest in probability, such as
stationary distributions, exit distributions, mean exit times, etc.

The crucial aspect of the model is the dependence of the propensity functions r(·) and l(·)
on location. To take a simple example, assume that there is a pole at the origin 0, such that the
further away a particle is from 0 the greater its propensity to reverse if it is actually moving
away from 0 and the less if it is moving towards 0. This can be modelled by choosing r(·) to
be increasing and l(x) to be equal to r(−x) on (−∞,∞). There is an infinity of variations
on this theme. In general, we can imagine that, as the particle moves, it senses a ‘field’ which
manifests itself not as a field of forces but as a ‘hazard field’ defined by the two propensity
functions. Thus, the model embodies two features: (a) the particle, whether moving up or
down, has a tendency to carry on in the same direction for a while before it reverses (‘inertia’)
and (b) its propensity to reverse depends on location, so that, for instance, a reversal becomes
more and more likely as the particle reaches excessively high or low levels, as so often happens
with indices in the economic sphere.

This paper is essentially an exploration of the role played by the propensity functions r(·) and
l(·), and concentrates on problems which admit explicit closed-form solutions, some of which
can be compared with the corresponding solutions for one-dimensional diffusions. It is written
partly as a piece of advocacy for the use of state-dependent propensities as modelling tools.
After setting up the model and displaying its infinitesimal generator in Section 2, we calculate
the stationary distribution of the process (X(t), V (t)), t ≥ 0, under appropriate assumptions
on r(·) and l(·). Under stationarity, we show in Section 3 how these two functions appear in
the study of level crossings, recurrence times, and points of reversal. In Section 4 we show
how exact formulae for exit distributions, mean exit times, and other additive functionals are
obtained from the appropriate differential equations. In Section 5 we investigate what happens
if we increase the erraticism of our process by replacing r(·) and l(·) by r(·)+ λ and l(·)+ λ,

respectively, and letting λ → ∞: a link emerges with one-dimensional diffusions whose drift
and diffusion coefficients involve the entities r(x)− l(x) and γ . We conclude with a comment
on the case of more than two possible values for the velocity.

2. The model

The stochastic process we consider here has two components, X(t) and V (t), where X(t)
denotes the position and V (t) denotes the velocity at time t (t ≥ 0) of a particle moving on the
real line R. The velocity is assumed to take only two possible values, γ or −γ (where γ > 0),
and will be seen to jump from one value to the other only a finite number of times in any finite
time interval, so that V (t), t ≥ 0, is a (non-Markovian) pure-jump process. The particle is
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1166 F. PAPANGELOU

thus assumed to move with constant velocity between the consecutive random times at which it
reverses its velocity from γ to −γ or vice versa. We will takeX(·) to be continuous and V (·) to
be right continuous. The occurrence of these reversals is specified informally (for the moment)
as in the introduction above: if at time t the particle is at position x and moving with velocity γ ,
then its conditional probability of reversing its velocity before time t +�t is r(x)�t + o(�t)

as�t → 0, where r(·) is a nonnegative continuous function satisfying certain conditions to be
stated below. Likewise, if its velocity is −γ, the conditional probability of a reversal before
time t + �t is l(x)�t + o(�t) as �t → 0, where l(·) is another nonnegative continuous
function. To be more precise, givenX(t) = x and V (t) = γ, regardless of past history, the first
reversal after time t occurs at time t + τ, where τ is random and has a conditional distribution
with probability density function

q(s) = r(x + γ s) exp

(
−

∫ s

0
r(x + γ u)du

)
, s ≥ 0,

and with a possible atom exp(− ∫ ∞
0 r(x + γ u)du) at {τ = ∞}.No such atom will arise below.

The function r(x + γ s), s ≥ 0, can be recognised as a ‘failure rate’ or ‘hazard’ function in the
language of reliability theory and it is an elementary fact that exp(− ∫ s

0 r(x + γ u)du) is the
conditional probability that τ ≥ s (i.e. the so-called reliability function). Thus, during the time
interval [t, t + τ ], the motion of the particle is given by X(t + s) = x + γ s and immediately
after time t + τ we have X(t + τ + s′) = x + γ τ − γ s′ until the next reversal.

If we are given an initial position and an initial velocity, then the above specification defines
a stochastic process (X(t), V (t)), t ≥ 0, which is Markovian (in fact, strong Markov, with
stationary transition probabilities), although in general neither the marginal process X(t) nor
the marginal process V (t) is Markovian.

On the space of bounded Borel functions f (x, i), x ∈ R, i = ±γ , we define the operators

(Ttf )(x, i) = E(f (X(t), V (t)) | X(0) = x, V (0) = i), t ≥ 0,

which form the contraction semigroup of the Markov process (X(t), V (t)), t ≥ 0. Adopting
the notation of [4], whereby the function f (x, i), x ∈ R, i = ±γ, is denoted by the vector
(fγ (x), f−γ (x))� with fi(x) = f (x, i), we easily obtain as in [4] the infinitesimal generator
G of the semigroup Tt , t ≥ 0, defined by

Gf = lim
ε↘0

1

ε
(Tεf − f ) (2.1)

for functions f with a continuous first derivative f ′ with respect to x (in which case the
convergence in (2.1) is uniform on any boundedx-interval). In fact, noting that, by the continuity
of the functions r(·), l(·), and f (·, i),

(Tεf )(x, γ ) = (1 − r(x)ε)f (x + γ ε, γ )+ r(x)εf (x,−γ )+ o(ε),

we see that G is given by the (variable) matrix

G =
⎛
⎜⎝γ

d

dx
− r(·) r(·)
l(·) −γ d

dx
− l(·)

⎞
⎟⎠ ,
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i.e.

G

(
fγ
f−γ

)
=

(
γf ′

γ − r(fγ − f−γ )
−γf ′−γ + l(fγ − f−γ )

)
,

where we have omitted the variable x in the notation. Compare with [4], where of course r(·)
and l(·) are both equal to a constant λ.

Under appropriate conditions on r(·) and l(·), we can obtain a stationary distribution for
the process (X(t), V (t)), t ≥ 0, something which does not exist if r(·) and l(·) are constant.
The forward (adjoint) differential equation for a stationary probability density function θ(x, i),
x ∈ R, i = ±γ, is

(θγ , θ−γ )G∗ = (0, 0), (2.2)

where, as before, θi(x) = θ(x, i) and

G∗ =
⎛
⎜⎝−γ d

dx
− r(.) r(·)

l(·) γ
d

dx
− l(·)

⎞
⎟⎠ .

(Apply an integration by parts to the condition that
∫ ∞
−∞

∑
i=±γ θi(x)(Gf )i(x)dx = 0 for

sufficiently many f .)
The unique solution of (2.2), i.e. of the system

γ θ ′
i (x) = −r(x)θγ (x)+ l(x)θ−γ (x), i = ±γ,

which is a probability density function, is given by

θγ (x) = θ−γ (x) = Ca exp

(
−

∫ x

a

r(u)− l(u)

γ
du

)
, (2.3)

where a is an arbitrary fixed number andCa is a normalising constant, provided the exponential
in (2.3) is integrable. This is certainly the case if the following condition holds, which we will
assume from now on.

Assumption 2.1. There exist constants k > 0 andm > 0 such that r(u)− l(u) ≥ k for u ≥ m

and l(u)− r(u) ≥ k for u ≤ −m.
For convenience, we will use the notation

ha(x) = exp

(
−

∫ x

a

r(u)− l(u)

γ
du

)
, (2.4)

and we will write θ(x) for θγ (x) = θ−γ (x), so that from now on θ(x) stands for θ(x, i).
Trivially, (2.3) implies that Ca = θ(a), so that

θ(x) = θ(a)ha(x). (2.5)

Proposition 2.1. Under Assumption 2.1, there exists a unique stationary distribution with
density given by (2.3).

Note that results from the classical theory of Markov processes imply that

lim
t→∞ P(a < X(t) < b, V (t) = j | X(0) = x, V (0) = i) =

∫ b

a

θ(y)dy (2.6)

for any interval (a, b), bounded or not, and any x, i, j.We will make use of this below.
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At this point it is worth giving a simple example of a ‘random pendulum’. Let γ = 1. Take
r(x) to be equal to x for x ≥ 0 and equal to 0 for x < 0. Likewise, take l(x) to be −x if
x ≤ 0 and 0 if x > 0. Note that r(x), x ≥ 0, is the hazard function of the Weibull (Rayleigh)
distribution with probability density function x exp(− 1

2x
2), x ≥ 0. In this case the density of

the stationary distribution is just the standard normal density. The motion is a pure oscillation
in the sense that, if the particle starts from 0 with velocity 1, it continues its upward motion
until the time of first reversal (which has the above Rayleigh distribution), then switches to a
downward motion which cannot be interrupted as long as the particle is on the positive half-line.
After the first downcrossing of level 0, the hazard function l(·) comes into play, representing
the particle’s propensity to turn upwards, and the motion undergoes a reversal at some negative
level which has as distribution the mirror image of the above Rayleigh distribution. The particle
then proceeds uninterrupted to level 0, etc. Such an oscillation can easily be studied through
its renewal structure. Below we will look at a simple modification of this example.

3. Level crossings, recurrence times, and reversals

In the presence of a stationary distribution simple stationarity and/or renewal arguments can
give us a handful of expected values without recourse to the differential equations set up in
Section 4 for the calculation of other related entities. This hinges on the following proposition,
in which ‘stationarity’ means that the process (X(t), V (t)), t ≥ 0, is started in its stationary
distribution.

Proposition 3.1. Under stationarity, for each x ∈ R, the expected number of crossings of level
x in a unit of time is 2γ θ(x), where θ is the density of the stationary distribution given by (2.3).

This is a discrete mean local time at level x.

Proof of Proposition 3.1. Consider a range [a, b] of values x and, for t ∈ [0, 1], define
Y (t) = X(t) if a ≤ X(t) ≤ b, Y (t) = a if X(t) < a, and Y (t) = b if X(t) > b. The total
variation U of Y (t), 0 ≤ t ≤ 1, is U = ∫ 1

0 |Y ′(t)|dt = γµ{t ∈ [0, 1] : a ≤ X(t) ≤ b} (where
µ denotes the Lebesgue measure), since Y ′(t) = ±γ almost everywhere on {t ∈ [0, 1] : a ≤
X(t) ≤ b}. For each x ∈ [a, b], let N(x) be the number of values of t ∈ [0, 1] for which
X(t) = x. The function N(·) is the Banach indicatrix of X(·) and, by Banach’s well-known
theorem U = ∫ b

a
N(x)dx; hence,

∫ b

a

EN(x)dx = E

(∫ b

a

N(x)dx

)

= EU

= γ Eµ{t ∈ [0, 1] : a ≤ X(t) ≤ b}

= γ E
∫ 1

0
1[a,b](X(t))dt

= γ

∫ 1

0
E 1[a,b](X(t))dt

= γ E 1[a,b](X(0))

= γ

∫ b

a

2θ(x)dx.
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Since this is true for arbitrary [a, b], we deduce that, for almost all x, EN(x) = 2γ θ(x), and
it is easy to show that EN(x) is a continuous function of x.

Corollary 3.1. Under stationarity, for each x ∈ R, the expected number of upcrossings of level
x in a unit of time is γ θ(x) and if τ = min{t > 0 : X(t) = x, V (t) = γ } then E(τ | X(0) = x,

V (0) = γ } = γ−1θ(x)−1.

In fact, since upcrossings and downcrossings alternate and the process is stationary, the
expected number of upcrossings must be equal to the expected number of downcrossings. The
second assertion follows from standard renewal theory: since the process (X(t), V (t)), t ≥ 0,
has the strong Markov property, the times of consecutive upcrossings of level x form a stationary
renewal process.

We can use the renewal approach to obtain the mean time between an upcrossing and the
subsequent downcrossing of the same level.

Corollary 3.2. If x ∈ R and σ = min{t > 0 : X(t) = x, V (t) = −γ }, then

E(σ | X(0) = x, V (0) = γ ) = 2

γ

∫ ∞

x

exp

(
−

∫ y

x

r(u)− l(u)

γ
du

)
dy. (3.1)

Proof. Assume that X(0) = x and V (0) = γ, and denote by P′ and E′ the conditional
probabilities and expectations given X(0) = x and V (0) = γ. Let τ0 = 0, τ1, τ2, . . . be the
consecutive upcrossings of level x, and let σ0, σ1, σ2, . . . be the consecutive downcrossings, so
that 0 < σ0 < τ1 < σ1 < τ2 < · · · . The theory of renewal processes with two components
implies that

lim
t→∞ P′(X(t) ≥ x) = lim

t→∞ P′
(
t ∈

∞⋃
k=0

(τk, σk)

)
= E′ σ0

E′ τ1
.

Comparing with (2.6) we see that

E′ σ0

E′ τ1
=

∫ ∞

x

2θ(y)dy.

By Corollary 3.1 and in view of (2.5),

E′ σ0 = γ−1θ(x)−1
∫ ∞

x

2θ(y)dy = 2

γ

∫ ∞

x

hx(y)dy.

This proves (3.1) by (2.4).

Another simple fact worth mentioning is that if [a, b] is any bounded interval then the
expected number of points (t, x) ∈ (0, 1]×[a, b] at which the process (X(t), V (t))) undergoes
a reversal from ‘up’ to ‘down’ (in the sense that X(t) = x, V (t−) = γ, and V (t+) = −γ ) is,
under stationarity,

∫ b
a
θ(x)r(x)dx. This can easily be proved by considering nested partitions

of (0,1].

4. Exit distributions, mean exit times, and additive functionals

Suppose that −∞ < a < b < ∞ and that a < X(0) < b. Define T = min{t > 0 :
X(t) ∈ {a, b}}, and let B be the event {X(T ) = b}. Since the process (X(t), V (t)), t ≥ 0,
has a stationary distribution (and, hence, is ‘positive recurrent’), all conditional expectations
E(T | X(0) = x, V (0) = i), x ∈ (a, b), i = ±γ, are finite.

https://doi.org/10.1239/jap/1294170527 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170527


1170 F. PAPANGELOU

For x ∈ (a, b), consider the probabilities

φ(x, i) = φi(x) = P(B | X(0) = x, V (0) = i), i = ±γ,
and, for a fixed continuous (in y) function g(y, i) (a ≤ y ≤ b, i = ±γ ), the expectations

ψ(x, i) = ψi(x) = E

(∫ T

0
g(X(s), V (s))ds

∣∣∣∣ X(0) = x, V (0) = i

)
, i = ±γ. (4.1)

In line with diffusion theory and the theory of the two-state random evolution, the functions φi
and ψi can be shown to satisfy Gφ = 0 (where 0 = (0, 0)�) and Gψ = −g, respectively, i.e.
the system

γφ′
γ (x) = r(x)(φγ (x)− φ−γ (x)), (4.2)

γφ′−γ (x) = l(x)(φγ (x)− φ−γ (x)), (4.3)

and the system
γψ ′

γ (x) = r(x)(ψγ (x)− ψ−γ (x))− gγ (x), (4.4)

γψ ′−γ (x) = l(x)(ψγ (x)− ψ−γ (x))+ g−γ (x), (4.5)

respectively. The relevant boundary conditions are φγ (b−) = 1, φ−γ (a+) = 0, ψγ (b−) = 0,
and ψ−γ (a+) = 0.

These differential equations can be derived either from first principles differentiation or, as
the referee has suggested, from the standard martingale approach to such problems. See [3] for
the case of diffusion. As a matter of fact, if, for example, ζ(x, i) is a solution ofGζ = −g, we
can appeal directly to Dynkin’s formula in the form

E(ζ(X(T ), V (T )) | X(0) = x, V (0) = i)

= ζ(x, i)+ E

(∫ T

0
(Gζ)(X(s), V (s))ds

∣∣∣∣ X(0) = x, V (0) = i

)
,

which is valid since E(T | X(0) = x, V (0) = i) < ∞. See [1, p. 133]. This implies that,
subject to the right boundary conditions, ζ(x, i) = ψ(x, i). For the alternative approach via
differentiation, note, for example, that, for small h > 0,

φ(x, γ ) = E(φ(X(h), V (h)) | X(0) = x, V (0) = γ )

= φ(x + γ h, γ )(1 − r(x)h)+ φ(x +O(h),−γ )r(x)h+ o(h),

etc.
The solution of the system (4.2), (4.3) is elementary. Subtracting (4.3) from (4.2) we obtain

an equation which we can readily solve for φγ (x) − φ−γ (x). Adding (4.3) to (4.2) we obtain
another equation which gives us φγ (x)+ φ−γ (x) in terms of φγ (x)− φ−γ (x). Taking account
of the boundary conditions we arrive at the following exact solution.

Proposition 4.1. We have

φ±γ (x) = C

[
1 +

∫ x

a

r(u)+ l(u)

γ
exp

(∫ u

a

r(v)− l(v)

γ
dv

)
du± exp

∫ x

a

r(u)− l(u)

γ
du

]
,

where C is such that φγ (b−) = 1.
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The solution of the system (4.4), (4.5) is no less elementary. The only difference is that the
equation we obtain by subtracting (4.5) from (4.4) requires an integrating factor for its solution.
Explicit expressions are thus obtained for the expectations ψi(x) in (4.1); however, these are
too lengthy to deserve displaying here. Discontinuous additive functionals, such as the number
of ‘reversals’ of the process in a time interval (t1, t2), can be handled similarly.

The formulae become less daunting in the special case g(x, i) ≡ 1. In this case the functions
ψi(x), a < x < b, in (4.1) are the mean exit times from the interval (a, b), given X(0) = x

and V (0) = i. In this special case (4.4) and (4.5) yield the following result.

Proposition 4.2. The mean exit times ψi(x) = E(T | X(0) = x, V (0) = i), x ∈ (a, b),

i = ±γ, can be obtained from

ψγ (x)− ψ−γ (x) = ha(x)
−1

(
ψγ (a+)− 2γ−1

∫ x

a

ha(u)du

)

and

ψγ (x)+ ψ−γ (x) = ψγ (a+)
+ γ−1

∫ x

a

(r(u)+ l(u))ha(u)
−1

(
ψγ (a+)− 2γ−1

∫ u

a

ha(v)dv

)
du,

where ha(x) is given by (2.4) and the constantψγ (a+) is determined by virtue of the boundary
condition ψγ (b−) = 0.

Having exact expressions for exit distributions and mean exit times may be a modest enough
result, but it is worth remembering that the corresponding entities for one-dimensional diffusions
determine the scale measure and the speed measure which are defining characteristics of such
diffusions. In this connection the asymptotic results of the next section may be of some interest.

5. Some asymptotics

Let us increase the erraticism of our process as follows. Replace r(x) and l(x) by r∗(x) =
r(x) + λ and l∗(x) = l(x) + λ, respectively, where λ is a positive number, and denote by
φ∗
i (x), i = ±γ, the corresponding probabilities of exit through b and by ψ∗

i (x), i = ±γ, the
corresponding mean exit times from (a, b).We intend to let λ → ∞.A large value of λmeans
of course that the process undergoes rapid reversals. Routine calculations show that

lim
λ→∞φ

∗
i (x) = S(x)

S(b)
, i = ±γ,

where

S(x) =
∫ x

a

exp

(∫ u

a

r(v)− l(v)

γ
dv

)
du. (5.1)

Thus, we have the following result.

Proposition 5.1. As λ → ∞, the exit probabilities φ∗
i (x) converge to those of any one-

dimensional diffusion process with drift µ(x) and diffusion coefficient σ 2(x) such that

µ(x)

σ 2(x)
= − r(x)− l(x)

2γ
.
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The function S(x) given in (5.1) is the scale function of such a diffusion (see [2]). We see
that, as λ → ∞, the effect of V (0) = i wears off asymptotically due to the rapid reversals of
direction.

For the mean exit times ψ∗
i (x), we can show that

lim
λ→∞

ψ∗
γ (x)

λ
= lim
λ→∞

ψ∗−γ (x)
λ

= 2γ−2
(∫ x

a

ha(u)
−1du

)(∫ b

a

ha(u)
−1du

)−1 ∫ b

a

ha(u)
−1

∫ u

a

ha(v)dvdu

− 2γ−2
∫ x

a

ha(u)
−1

∫ u

a

ha(v)dvdu. (5.2)

A glance at the top of page 197 of [2] confirms the truth of the following.

Proposition 5.2. When λ → ∞, the functions ψ∗
i (x)/λ, a < x < b, both converge to the

mean exit times of a one-dimensional diffusion with drift µ(x) = −γ (r(x) − l(x))/2 and
diffusion coefficient σ 2(x) = γ 2.

The speed density of this diffusion corresponding to the scale density ha(x)−1 appearing in
(5.1) is the function γ−2ha(x).

Let us specialise these asymptotics to the random pendulum described at the end of Section 2,
by setting r∗(x) = λ+ max{x, 0} and l∗(x) = λ+ max{−x, 0} (λ > 0). In this case it is easy
to prove that

lim
λ→∞φ

∗
i (x) =

∫ x
a

exp(u2/2γ )du∫ b
a

exp(u2/2γ )du
, i = ±γ.

The expression on the right-hand side can be recognised as the probability that an Ornstein–
Uhlenbeck process with drift −γ u/2 at u and diffusion coefficient γ 2, starting from x, will hit
b before a. Likewise, the limit (5.2) in this special case can be recognised as the mean exit time
from (a, b) of this same Ornstein–Uhlenbeck process.

According to Proposition 5.2, mean exit times from (a, b) tend to ∞ when λ → ∞, for
every interior point x. It is natural to see what happens if we speed up our process by a factor
of λ. For any random oscillation (X(t), V (t)), t ≥ 0, the component V (t) is the derivative of
X(t) (except at reversal points). We can change the time scale by a factor β > 0 by defining
(Xβ(t), Vβ(t)) = (X(βt), βV (βt)), t ≥ 0. This new process is itself a random oscillation
with parameters r̄(·) = βr(·), l̄(·) = βl(·), and γ̄ = βγ. The functions ha(·) are the same for
X(·) and Xβ(·). Returning to the process with propensity functions r(·) + λ and l(·) + λ, if
we introduce the corresponding scaled process with β = λ, we see that its mean exit times
ψ̄i(x) are equal to ψ∗

i (x)/λ (a < x < b) and, therefore, converge, when λ → ∞, to those
displayed on the right-hand side of (5.2). Combining this with Propositions 5.1 and 5.2 we
have the following result.

Theorem 5.1. The exit distributions and mean exit times of the random oscillation with
parameters r̃(·) = λ(r(·)+ λ), l̃(·) = λ(l(·)+ λ), and γ̃ = λγ converge, as λ → ∞, for
both V (0) = ±γ, to the exit distributions and mean exit times of the diffusion with drift
µ(x) = −γ (r(x)− l(x))/2 and diffusion coefficient σ 2(x) = γ 2.

A different example with growing erraticism is the following. Take γ = 1 and, for x ≥ 0,
let r(x) = (L+ 1)x and l(x) = Lx, while, for x < 0, let r(x) = −Lx and l(x) = −(L+ 1)x,
whereL > 0.The diffusion which appears as above in the asymptotics of this random oscillation
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whenL → ∞ is the one with (for x > 0) driftµ(x) = − 1
2 (1 + 1/x2) and diffusion coefficient

σ 2(x) = 1/x.

6. Comment on the multispeed case

The differential equations corresponding to a random oscillation in which the two possible
values of the velocity are γ1 and γ2, where γ2 < 0 < γ1, but −γ2 �= γ1, can be solved just as
easily as in the case −γ2 = γ1. This is not so for the obvious extension of the model to the case
of more than two possible values, say γ1, γ2, . . . , γN , although the corresponding differential
equations can be set up very easily. The formal structure of such an extension can be defined
as follows. Given X(t) = x and V (t) = γi, the first change of velocity after time t occurs
at time t + τ and is a change to velocity γν, where τ and ν are random with conditional joint
distribution given by

P(τ ∈ ds, ν = j | X(t) = x, V (t) = γi) = rij (x + γis) exp

(
−

∫ s

0

∑
k �=i

rik(x + γiu)du

)
ds

for s > 0 and j �= i.Here appropriate assumptions have to be made for the propensity functions
rij (x).
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