T. KurokawaNagoya Math. J.Vol. 103 (1986), 29-37

EXISTENCE OF NORMAL MEROMORPHIC FUNCTIONS WITH A PERFECT SET AS THE SET OF ESSENTIAL SINGULARITIES

TOSHIKO KUROKAWA

§1. Introduction

1. We are interested in whether there is a Cantor set E admitting no exceptionally ramified or normal meromorphic functions with E as the set of essential singularities. As for an exceptionally ramified meromorphic function, we [2] have recently given the following result.

Theorem A. Let E be a Cantor set with successive ratios ξ_n satisfying the condition

$$\xi_{n+1} = o(\xi_n^5)$$
,

then the domain complementary to E admits no exceptionally ramified meromorphic functions with E as the set of essential singularities.

However, for a normal meromorphic function, S. Toppila [4] proved that if the set F is an infinite closed set, there exists a normal meromorphic function in the domain F^c complementary to F with at least one essential singularity in F. In [4], he gave a normal meromorphic function in F^c with one essential singularity in F.

In this paper, using the analogous method in S. Toppila [4], we shall give a normal meromorphic function with a Cantor set as the set of essential singularities.

Our result is stated as follows:

Theorem. Let E be a Cantor set with successive ratios ξ_n such that

$$\lim_{n\to\infty}\xi_n=0$$

and

(2)
$$\xi_{n+1} = O(\xi_n)$$
.

Received June 20, 1984.

Then there exists a normal meromorphic function in the domain complementary to E with E as the set of essential singularities.

Thus it follows from Theorem that the conclusion of Theorem A is false if we assume that a function is normal, instead of exceptionally ramified.

§ 2. Proof of Theorem

2. We form a Cantor set with successive ratios ξ_n , $0 < \xi_n < 2/3$, in the usual manner. We remove first an open interval of length $(1 - \xi_1)$ from the interval $I_{0,1}$: [-1/2, 1/2], so that on both sides there remains a closed interval of length $\xi_1/2 \equiv \ell_1$. The remained intervals are denoted by $I_{1,1}$ and $I_{1,2}$. Inductively we remove an open interval of length $(1 - 2\eta_n) \prod_{p=1}^{n-1} \eta_p$, with $\xi_p/2 \equiv \eta_p$, $p = 1, 2, 3, \cdots$, from each $I_{n-1,k}$, $k = 1, 2, \cdots, 2^{n-1}$, so that on both sides there remains a closed interval of length $\prod_{p=1}^n \eta_p \equiv \ell_n$. The remaining intervals are denoted by $I_{n,2k-1}$ and $I_{n,2k}$. By repeating this procedure endlessly, we obtain an infinite sequence of closed intervals $\{I_{n,k}\}_{n=0,1,2,\dots,\ k=1,2,\dots,2^n}$. The set given by

$$E = \bigcap_{n=0}^{\infty} \bigcup_{k=1}^{2^n} I_{n,k}$$

is said to be the Cantor set in the interval $I_{0,1}$ with successive ratios ξ_n . Denoting by $z_{n,k}$ the midpoint of $I_{n,k}$ and setting $\alpha_{n,k}=z_{n,k}+i\ell_n/2$, we shall give an infinite product

$$f(z) = \prod_{n=1}^{\infty} \prod_{k=1}^{2^n} \frac{z - \alpha_{n,k}}{z - \overline{\alpha}_{n,k}}.$$

Obviously this function f has the set E as the set of essential singularities. In order to prove Theorem it is enough to show that f is normal in the domain Ω complementary to E.

The proof of this is based on the following result due to O. Lehto and K. I. Virtanen [3].

Theorem B. A function f meromorphic in a domain G of hyperbolic type, is normal in G if and only if there exists a finite constant C so that for every $z \in G$

$$rac{|f'(z)|}{1+|f(z)|^2}|dz| \leqq C\,d\sigma_{\scriptscriptstyle G}(z)$$
 ,

where $d\sigma_c(z)$ denotes the hyperbolic element of length of G.

In order to estimate $|dz|/d\sigma_{\varrho}(z)$, we need the following

LEMMA. Let D be the domain complementary to the set $\{0, 1, \infty\}$. Then

$$\lim_{w o 0} \left(|w| \log rac{1}{|w|}
ight) rac{d\sigma_{\scriptscriptstyle D}(w)}{|dw|} = rac{1}{2}$$

(see C. Constantinescu [1]).

3. We first discuss $|dz|/d\sigma_0(z)$. By Lemma, there exists a positive number δ_0 , $1/8 > \delta_0 > 0$, such that

$$(3) \qquad \frac{|dw|}{d\sigma_{_D}(w)} \! < 4|w|\log\frac{1}{|w|} \qquad \text{in } w \in \! \{w| \,\, 0 < |w| < 4\delta_{_0} \! \} \equiv R_{_0} \, .$$

Applying the linear transformations $w=1-\zeta$ and $w=1/\zeta$ to (3), we have

$$rac{|dw|}{d\sigma_{\scriptscriptstyle D}(w)} < 4|w-1| \log rac{1}{|w-1|} \ ext{in} \ \ w \in \{w| \ 0 < |w-1| < 4\delta_0\} \equiv R_1$$

and

(5)
$$rac{|dw|}{d\sigma_n(w)} < 4|w|\log|w| \qquad ext{in } w \in \{w|\ 1/4\delta_0 < |w| < \infty\} \equiv R_{\scriptscriptstyle\infty}$$
 ,

respectively. Since the set $R \equiv \{w \mid |w| \ge \delta_0/4, |w-1| \ge \delta_0/4, |w| \le 4/\delta_0\}$ is compact, there exists a positive number C_1 such that

$$\frac{|dw|}{|d\sigma_n(w)|} < C_1 \quad \text{in } w \in R.$$

We now set

$$egin{aligned} \hat{f}_{n,k} &= \left\{ z | \; | z - z_{n,k} | = \delta_0 \ell_{n-1}
ight\}, \ \check{f}_{n,k} &= \left\{ z | \; | z - z_{n,k} | = \ell_n / \delta_0
ight\}, \ \Gamma_{n,k} &= \left\{ z | \; | z - z_{n,k} | = \sqrt{\ell_n \ell_{n-1}}
ight\}. \end{aligned}$$

and

$$(\Gamma_{n,k}) = \{z \mid |z - z_{n,k}| < \sqrt{\ell_n \ell_{n-1}} \},$$

for $n=1,2,3,\cdots$, $k=1,2,\cdots,2^n$. We denote by $S_{n,k}$ (resp. $T_{n,k}$) the closed ring domain bounded by $\hat{r}_{n,k}$ (resp. $\check{\gamma}_{n,k}$) and $\Gamma_{n,k}$. The triply connected closed domain bounded by $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$ and $\Gamma_{n+1,2k}$ (resp. $\check{\gamma}_{n,k}$, $\hat{r}_{n+1,2k-1}$ and $\hat{r}_{n+1,2k}$) is denoted by $\Delta_{n,k}$ (resp. $\Delta'_{n,k}$), where $\Delta'_{0,1}$ denotes the

closed ring domain bounded by $\Gamma_{1,1}$ and $\Gamma_{1,2}$ in the extended complex plane \hat{C} . Immediately we have

$$\Omega = \bigcup_{\substack{k=1,2,\cdots,2^n\\n=0,1,2,\cdots}} \Delta_{n,k}.$$

Denoting by $a_{n,k}$ (resp. $b_{n,k}$) the left (resp. right) endpoint of $I_{n,k}$, we write

$$D_{\scriptscriptstyle n,k} = egin{cases} ext{the domain complementary to the set } \{a_{\scriptscriptstyle n,k},\ b_{\scriptscriptstyle n,k},\ 1\}\,, \ & ext{if } k=1,2,\cdots,2^{n-1}\,, \ & ext{the domain complementary to the set } \{0,\ a_{\scriptscriptstyle n,k},\ b_{\scriptscriptstyle n,k}\}\,, \ & ext{if } k=2^{n-1}+1,\ 2^{n-1}+2,\cdots,2^n\,. \end{cases}$$

We take the conformal mapping $w = \phi_{n,k}(z)$ from $D_{n,k}$ onto D such that

$$\phi_{n,k}(a_{n,k}) = 0$$
, $\phi_{n,k}(b_{n,k}) = 1$

and

$$\left\{egin{aligned} \phi_{n,k}(1) &= \infty \;, & ext{ if } k = 1,2,\cdots,2^{n-1} \;, \ \phi_{n,k}(0) &= \infty \;, & ext{ if } k = 2^{n-1}+1, \; 2^{n-1}+2, \, \cdots, \, 2^n \;. \end{aligned}
ight.$$

From (1), there is a positive integer N, $N \ge 2$,

$$\xi_n < \delta_0^2/2 \,, \qquad \text{for } n \ge N \,.$$

We denote by Ω_0 the closed domain bounded by the circles $\{\Gamma_{N,k}\}_{k=1,2,\dots,2^N}$ in \hat{C} . For every $z \in \Omega - \Omega_0$, we choose the integers n and k such that $z \in \mathcal{L}_{n,k}$. Since $d\sigma_{\Omega}(z) \geq d\sigma_{D_{n,k}}(z)$ and since the hyperbolic element of length is conformally invariant, we have for $z \in \mathcal{L}_{n,k}$

$$(8) \qquad \frac{|dz|}{d\sigma_{\scriptscriptstyle D}(z)} \leq \frac{|dz|}{d\sigma_{\scriptscriptstyle D_n}(z)} = \frac{|dz|}{|dw|} \cdot \frac{|dw|}{d\sigma_{\scriptscriptstyle D}(w)} < 9\,\ell_{\scriptscriptstyle n} \frac{|dw|}{d\sigma_{\scriptscriptstyle D}(w)} \; ,$$

where $w = \phi_{n,k}(z)$.

By elementary computations, we have

$$\phi_{n,k}(\hat{r}_{n+1,2k-1}) \subset \{w | \delta_0/4 < |w| < 4\delta_0\},$$
 $\phi_{n,k}(\hat{r}_{n+1,2k}) \subset \{w | \delta_0/4 < |w-1| < 4\delta_0\}$

and

$$\phi_{n,k}(\check{\gamma}_{n,k}) \subset \{w \mid 1/4\delta_0 < |w| < 4/\delta_0\}$$

in view of (7). Thus

$$\phi_{n,k}(S_{n+1,2k-1})\subset R_0$$
 , $\phi_{n,k}(S_{n+1,2k})\subset R_1$, $\phi_{n,k}(T_{n,k})\subset R_\infty$

and

$$\phi_{n,k}(\Delta'_{n,k}) \subset R$$
.

Hence applying (3), (4), (5) and (6) to the image of $\Delta_{n,k}$ under $w = \phi_{n,k}(z)$, we deduce from (8) that

$$egin{aligned} \left\{ egin{aligned} & rac{|dz|}{d\sigma_{arrho}(z)} < C_{2}|z-a_{n,k}| \log rac{3\ell_{n}}{|z-a_{n,k}|} \,, & ext{for } z \in S_{n+1,2k-1} \,, \ & rac{|dz|}{d\sigma_{arrho}(z)} < C_{3}|z-b_{n,k}| \log rac{3\ell_{n}}{|z-b_{n,k}|} \,, & ext{for } z \in S_{n+1,2k} \,, \ & rac{|dz|}{d\sigma_{arrho}(z)} < C_{4}|z-a_{n,k}| \log rac{2|z-a_{n,k}|}{\ell_{n}} \,, & ext{for } z \in T_{n,k} \,, \ & rac{|dz|}{d\sigma_{arrho}(z)} < C_{5}\ell_{n} \,, & ext{for } z \in \mathcal{J}'_{n,k} \,, \end{aligned}$$

where C_j are constant.

4. We next discuss the spherical derivative $\rho(f(z)) \equiv |f'(z)|/(1+|f(z)|^2)$ of f. We have for $z \in A_{n,k}$, $n \ge N$,

$$egin{aligned}
ho(f(z)) & \leq rac{|f(z)|}{1+|f(z)|^2} \sum_{h=1,2,\dots,2^m top m=1,2,3,\dots} rac{\ell_m}{|z-lpha_{m,h}||z-\overline{lpha}_{m,h}|} \ & \leq rac{1}{2} \sum_{h=1,2,\dots,2^m top m=1,2,\dots,n} rac{\ell_m}{|z-lpha_{m,h}||z-\overline{lpha}_{m,h}|} \ & + rac{|f(z)|\ell_n}{(1+|f(z)|^2)|z-lpha_{n,k}||z-\overline{lpha}_{n,k}|} \ & + rac{1}{2} \sum_{h=1,2,\dots,2^m top m=n+1,n+2,\dots} rac{\ell_m}{|z-lpha_{m,h}||z-\overline{lpha}_{m,h}|} \ & \equiv \mathrm{I} + \mathrm{II} + \mathrm{III}. \end{aligned}$$

The second term II is simply estimated as follows: We have

$$ext{II} < rac{\ell_n}{|oldsymbol{z} - \overline{lpha}_{n,k}|^2} \prod_{(m,h)
eq (n,k)} \left| rac{oldsymbol{z} - lpha_{m,h}}{oldsymbol{z} - \overline{lpha}_{m,h}}
ight| < rac{\ell_n}{|oldsymbol{z} - \overline{lpha}_{n,k}|^2} < rac{36}{\ell_n} \,, \ ext{for } oldsymbol{z} \in U_{n,k} \equiv \{oldsymbol{z} \mid oldsymbol{z} - lpha_{n,k}
vert \leq \ell_n/6 \} \,,$$

$$\|\mathrm{II} < \ell_n \Big/ \Big\{ |z-lpha_{n,k}|^2 \prod\limits_{(m,h)
eq (n,k)} \left| rac{z-lpha_{m,h}}{z-arlpha_{m,h}}
ight| \Big\} < rac{\ell_n}{|z-lpha_{n,k}|^2} < rac{36}{\ell_n}, \ ext{for } z \in U'_{n,k} \equiv \{z| |z-arlpha_{n,k}| \le \ell_n/6 \}$$

and

$$\mathrm{II} < rac{\ell_n}{2|z-lpha_{n,k}||z-\overline{lpha}_{n,k}|} < 18/\ell_n \,,$$
 $\mathrm{for} \,\,\, z \in \mathit{\Delta}'_{n,k} - (U_{n,k} \,\cup\, U'_{n,k}) \,.$

so that

(10) II
$$< 36/\ell_n$$
, for $z \in \mathcal{A}'_{n,k}$.

For $z \in S_{n+1,2k-1} \cup S_{n+1,2k} \cup T_{n,k}$ we have immediately

(11)
$$\Pi < \frac{\ell_n}{2|z - \alpha_{n,k}||z - \overline{\alpha}_{n,k}|} .$$

In order to estimate I and III, we take roughly a lower bound of $|z - \alpha_{m,h}|$ or $|z - \overline{\alpha}_{m,h}|$, $(m,h) \neq (n,k)$. We may without loss of generality suppose that k = 1, i.e. $z \in \mathcal{L}_{n,1}$.

(i) If
$$\alpha_{m,h} \in (\Gamma_{p,2}), p = 1, 2, 3, \dots, n$$
, we have

(12)
$$|z - \alpha_{m,h}| \ge d(\Gamma_{n,1}, \Gamma_{p,2}) \ge d(\Gamma_{p,1}, \Gamma_{p,2}) \ge \ell_{p-1}/3$$
,

where $d(\Gamma_{p,q}, \Gamma_{r,s})$ denotes the distance between $\Gamma_{p,q}$ and $\Gamma_{r,s}$.

(ii) If
$$\alpha_{m,h} \in (\Gamma_{n+1,j})$$
, $j = 1, 2$, we have

$$(13) \quad \begin{cases} |z - \alpha_{n,h}| \geq (\ell_n/\delta_0) - (\ell_n/2) > \ell_n, & \text{for } z \in T_{n,1}, \\ |z - \alpha_{n,h}| \geq d(\Gamma_{n+1,j}, \alpha_{m,h}) \geq \sqrt{\ell_n \ell_{n+1}}/3, & \text{for } z \in \mathcal{I}_{n,1} - T_{n,1}. \end{cases}$$

(iii) For the others, i.e. $\alpha_{1,1}, \alpha_{2,1}, \dots, \alpha_{n-1,1}$, we have

(14)
$$|z - \alpha_{m,1}| \ge d(\Gamma_{n,1}, \alpha_{m,1}) \ge d(\Gamma_{m+1,1}, \alpha_{m,1}) \ge \ell_m/3$$
,

for $m=1,2,\cdots,n-1$. Here we may substitute $\overline{\alpha}_{m,h}$ for $\alpha_{m,h}$ in (12),

(13) and (14). We need also

(15)
$$\ell_p/\ell_q = \eta_p \eta_{p-1} \cdots \eta_{q+1} < (1/3)^{p-q} \qquad (p > q).$$

Using (12) and (14) we deduce

$$\mathbf{I} = \sum_{m=1 \atop (m,h) \neq (n,1)}^n \frac{\ell_{\scriptscriptstyle m}}{2} \bigg(\sum_{\scriptscriptstyle h=1,2,\cdots,2^m} \frac{1}{|z-\alpha_{\scriptscriptstyle m,h}||z-\overline{\alpha}_{\scriptscriptstyle m,h}|} \bigg)$$

$$\begin{split} &= \sum_{m=1}^{n-1} \frac{\ell_m}{2} \left\{ \sum_{p=1}^m \left(\sum_{\alpha_{m,h} \in (\Gamma_{p,2})} \frac{1}{|z - \alpha_{m,h}||z - \overline{\alpha}_{m,h}|} \right) + \frac{1}{|z - \alpha_{m,1}||z - \overline{\alpha}_{m,1}|} \right\} \\ &\quad + \frac{\ell_n}{2} \sum_{p=1}^n \sum_{\alpha_{n,h} \in (\Gamma_{p,2})} \frac{1}{|z - \alpha_{n,h}||z - \overline{\alpha}_{n,h}|} \\ &\leq \sum_{m=1}^{n-1} \frac{\ell_m}{2} \left\{ \left(\frac{3}{\ell_m} \right)^2 + \left(\frac{3}{\ell_{m-1}} \right)^2 + 2 \left(\frac{3}{\ell_{m-2}} \right)^2 + 2^2 \left(\frac{3}{\ell_{m-3}} \right)^2 + \cdots + 2^{m-1} \left(\frac{3}{\ell_0} \right)^2 \right\} \\ &\quad + \frac{\ell_n}{2} \left\{ \left(\frac{3}{\ell_{m-1}} \right)^2 + 2 \left(\frac{3}{\ell_{m-2}} \right)^2 + \cdots + 2^{n-1} \left(\frac{3}{\ell_0} \right)^2 \right\}. \end{split}$$

Also in view of (15) we have

(16)
$$I < C_6/\ell_{n-1} = C_6 \eta_n/\ell_n.$$

Similarly we deduce from (12) and (13)

$$egin{aligned} ext{III} &< \sum\limits_{m=n+1}^{\infty} 9 \cdot 2^{m-n-1} rac{\ell_m}{\ell_n^2} \ & ext{$ imes \left\{ rac{1}{9} + \left(rac{\ell_n}{\ell_{n-1}}
ight)^2 + 2 \left(rac{\ell_n}{\ell_{n-2}}
ight)^2 + \cdots + 2^{n-1} \left(rac{\ell_n}{\ell_0}
ight)^2
ight\}, \ & ext{for $z \in T_{n,1}$,} \end{aligned}$$
 $ext{III} &< \sum\limits_{m=n+1}^{\infty} 9 \cdot 2^{m-n-1} rac{\ell_m}{\ell_n \ell_{n+1}} \ & ext{$ imes \left\{ 1 + rac{\ell_n \ell_{n+1}}{\ell_{n-1}^2} + 2 rac{\ell_n \ell_{n+1}}{\ell_{n-2}^2} + \cdots + 2^{n-1} rac{\ell_n \ell_{n+1}}{\ell_0^2}
ight\}, \ & ext{for $z \in A_{n+1} - T_{n+1}$.} \end{aligned}$

and so we have

(17)
$$\begin{cases} \operatorname{III} < C_{7}\eta_{n}/\ell_{n} , & \text{for } z \in T_{n,1}, \\ \operatorname{III} < C_{8}/\ell_{n}, & \text{for } z \in \Delta_{n,1} - T_{n,1}, \end{cases}$$

in view of (2) and (15).

Thus summing (10), (11), (16) and (17), we have

(18)
$$\begin{cases} \rho(f(z)) < \frac{C_9}{\ell_n} + \frac{\ell_n}{2|z - \alpha_{n,k}||z - \overline{\alpha}_{n,k}|}, & \text{for } z \in S_{n+1,2k-1} \cup S_{n+1,2k}, \\ \rho(f(z)) < \frac{C_{10}}{\ell_n} \eta_n + \frac{\ell_n}{2|z - \alpha_{n,k}||z - \overline{\alpha}_{n,k}|}, & \text{for } z \in T_{n,k}, \\ \rho(f(z)) < C_{11}/\ell_n, & \text{for } z \in \Delta'_{n,k}. \end{cases}$$

Hence combining (9) and (18), we deduce that

$$egin{aligned}
ho(f(z)) \, rac{|dz|}{d\sigma_{g}(z)} &< C_{2} \Big(3C_{9} + rac{3\ell_{n}^{2}}{2|z-lpha_{n,k}||z-\overline{lpha}_{n,k}|} \Big) \ & imes rac{|z-a_{n,k}|}{3\ell_{n}} \, \log rac{3\ell_{n}}{|z-a_{n,k}|} \,, \qquad ext{for } z \in S_{n+1,2k-1} \,, \
ho(f(z)) \, rac{|dz|}{d\sigma_{g}(z)} &< C_{3} \Big(3C_{9} + rac{3\ell_{n}^{2}}{2|z-lpha_{n,k}||z-\overline{lpha}_{n,k}|} \Big) \ & imes rac{|z-b_{n,k}|}{3\ell_{n}} \, \log rac{3\ell_{n}}{|z-b_{n,k}|} \,, \qquad ext{for } z \in S_{n+1,2k} \,, \
ho(f(z)) \, rac{|dz|}{d\sigma_{g}(z)} &< C_{4} \left(rac{C_{10}|z-a_{n,k}|^{2}}{\ell_{n}^{2}} \, \eta_{n} + rac{|z-a_{n,k}|^{2}}{2|z-lpha_{n,k}||z-\overline{lpha}_{n,k}|} \Big) \ & imes rac{\ell_{n}}{2|z-a_{n,k}|} \, \log rac{2|z-a_{n,k}|}{\ell_{n}} \,, \qquad ext{for } z \in T_{n,k} \end{aligned}$$

and

$$ho(f(z))\,rac{|dz|}{d\sigma_o(z)} < C_{\scriptscriptstyle 5}\,C_{\scriptscriptstyle 11}\,, \qquad ext{for } z\in {\it \emph{\Delta}}_{\scriptscriptstyle n,\,k}'\,.$$

Using the simple inequalities:

$$egin{aligned} 0 &< x \log rac{1}{x} < 1/e \;, & ext{for } 0 < x < 1 \;, \ &|z - a_{n,k}|/\ell_n < 1 \;, & ext{for } z \in S_{n+1,2k-1} \;, \ &|z - b_{n,k}|/\ell_n < 1 \;, & ext{for } z \in S_{n+1,2k-1} \;, \ &|z - lpha_{n,k}| > \ell_n/3 \;, & ext{for } z \in S_{n+1,2k-1} \; \cup \; S_{n+1,2k} \;, \ &|z - \overline{lpha}_{n,k}| > \ell_n/3 \;, & ext{for } z \in S_{n+1,2k-1} \; \cup \; S_{n+1,2k} \;, \ &|z - \overline{lpha}_{n,k}| < 4 \;, & ext{for } z \in T_{n,k} \;, \ &|z - \overline{lpha}_{n,k}| < 4 \;, & ext{for } z \in T_{n,k} \;, \end{aligned}$$

and

$$rac{2}{3}\,\sqrt{\overline{\eta_n}}<rac{\ell_n}{|z-a_{n,k}|}<rac{1}{4}\,,\quad ext{ for }z\in T_{n,k}\,,$$

we are able to prove that $\rho(f(z))(|dz|/d\sigma_{\varrho}(z))$ is bounded in $\Omega - \Omega_0$. Further, since $\rho(f(z))(|dz|/d\sigma_{\varrho}(z))$ is also bounded in a compact set Ω_0 , it is bounded in Ω . Thus by Theorem B, we deduce that f is normal in Ω . This completes the proof of Theorem.

REFERENCES

- [1] C. Constantinescu, Einige Anwendungen des hyperbolischen Masses, Math. Nachr., 15 (1956), 155-172.
- [2] T. Kurokawa, Exceptionally ramified meromorphic functions with a non-enumerable set of essential singularities, Nagoya Math. J., 88 (1982), 133-154.
- [3] O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math., 97 (1957), 47-65.
- [4] S. Toppila, Linear Picard sets for entire functions, Ann. Acad. Sci. Fennicae, Ser. I, 1 (1975), 111-123.

Department of Mathematics Faculty of Education Mie University Tsu 514, Japan