EMBEDDING SEMIRINGS IN SEMIRINGS WITH MULTIPLICATIVE UNIT

K. R. PEARSON 1

(Received 28 November 1966)

A topological semiring is a system $(S, +, \cdot)$ where (S, +) and (S, \cdot) are topological semigroups and \cdot distributes across + as in a ring; that is, for all x, y, z in S,

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z),$$

$$(x+y) \cdot z = (x \cdot z) + (y \cdot z).$$

The operations + and \cdot are called addition and multiplication respectively.

If S is any topological semiring and we adjoin to S an element 0 as an isolated point and let 0 be a multiplicative zero and either an additive unit or an additive zero for $S' = S \cup \{0\}$, then it can be easily seen that S' is also a topological semiring. Thus it is always possible to embed S in a semiring S' with multiplicative zero; also S' is compact when S is.

Selden has shown in Theorem 7 of [6] (see also [7]) that each additive group in a compact semiring with multiplicative unit must be totally disconnected. This means that the semiring $(C, +, \cdot)$, where (C, +) is the circle group and $x \cdot y = 0$ for all $x, y \in C$, cannot be embedded in a compact semiring with multiplicative unit. We investigate here conditions under which it is possible to embed a semiring in a semiring with multiplicative unit. In particular, we derive in Theorem 3 a necessary and sufficient condition for the embedding of a compact additively commutative semiring in a compact semiring with multiplicative unit to be possible. The special case of embedding a compact ring in a compact ring with unit is also dealt with.

It is first necessary to establish some points of notation. If x is a member of an additive semigroup and n is a positive integer, we shall use nx to mean the semigroup sum of n elements each equal to x. Note that if 1 is a multiplicative left unit of a semiring then n denotes the semiring sum of n elements each equal to 1. Hence nx also equals the product of n and x. For any x in $(S, +, \cdot)$, let

¹ This paper is part of the author's Ph.D. thesis, written under the supervision of Dr. J. H. Michael.

$$0[+](x) = \{nx | n \text{ a positive integer}\},$$

$$\Gamma[+](x) = 0[+](x)^{-},$$

$$K[+](x) = \bigcap_{n=1}^{\infty} \{mx | m \ge n\}^{-},$$

where $\bar{\Gamma}$ denotes topological closure. Then $\Gamma[+](x)$ is a commutative (additive) semigroup. If it is compact, then K[+](x) is the minimal ideal of $\Gamma[+](x)$ and is also the maximal additive group in $\Gamma[+](x)$ (see [5], Theorem 3.1.1 or [2], Theorems 3.3 and 3.4). A semiring is said to be additively Γ -compact if $\Gamma[+](x)$ is compact for each x in S.

S is said to be a *subsemiring* of a topological semiring T if and only if for each x, y in S, both x+y and $x\cdot y$ are in S; S, given the relative topology, is a topological semiring. We shall say that a topological semiring S can be *embedded* in a topological semiring T if there is a subsemiring S_1 of T which is topologically isomorphic with S; note that S_1 need not be topologically closed in T.

If S is an additively Γ -compact subsemiring of a topological semiring T then, for each x in S, the closure of 0[+](x) in the relative topology of S is compact so that it is also compact in the topology of T. Because T is Hausdorff, it follows that the closure of 0[+](x) in the relative topology of S is the same as its closure in the topology of T. Thus we can use the symbol $\Gamma[+](x)$ without fear of confusion.

The first result is a topological extension of a familiar construction (see, for example, [4], page 49).

THEOREM 1. Any additively commutative topological semiring S can be embedded in some additively commutative topological semiring T with multiplicative unit. Further, T can be made locally compact when S is locally compact.

PROOF. We first adjoin to S an element α as an isolated point and let α be an additive unit and a multiplicative zero for $S' = S \cup \{\alpha\}$. Let N denote the (locally compact) semiring of non-negative integers with ordinary addition and multiplication. Then we put $T = N \times S'$ and define addition * and multiplication \circ on T by

$$\begin{aligned} &(n_1, x_1) * (n_2, x_2) = (n_1 + n_2, x_1 + x_2), \\ &(n_1, x_1) \circ (n_2, x_2) = (n_1 n_2, x_1 x_2 + n_1 x_2 + n_2 x_1), \end{aligned}$$

where $0x = \alpha$ for all x in S'. It is a simple matter to check that $(T, *, \circ)$ is a topological semiring which is locally compact when S is locally compact. Also $(1, \alpha)$ is a multiplicative unit for T and $\{0\} \times S$ is a subsemiring topologically isomorphic with S.

In what follows we are concerned with additively Γ -compact semirings.

For each x, $\Gamma[+](x)$ is then a compact monothetic semigroup and the structure of all such semigroups, first found by Hewitt in [2], is given in Theorems 3.1.6 and 3.1.7 of [5]. In broad outline, our procedure is to construct what is roughly speaking the largest relevant compact monothetic semigroup and use it in a cartesian product with S' (as in Theorem 1) to be the space in which S is embedded when S is additively commutative.

LEMMA 1. If S is a topological semiring then $\Gamma[+](x)$ is a subsemiring if and only if $x^2 \in \Gamma[+](x)$.

PROOF. Suppose $x^2 \in \Gamma[+](x)$. Then if p, q are positive integers, $(pq)x^2 \in \Gamma[+](x)$; but $(pq)x^2 = (px)(qx)$ and so $(px)(qx) \in \Gamma[+](x)$. Hence $\{0[+](x)\}^2 \subset 0[+](x)$ and it follows from the continuity of multiplication that $\{\Gamma[+](x)\}^2 \subset \Gamma[+](x)$.

LEMMA 2. If S is a topological semiring and x is a multiplicative idempotent, then $\Gamma[+](x)$ is a subsemiring for which x is a multiplicative unit.

PROOF. It follows from Lemma 1 that $\Gamma[+](x)$ is a subsemiring. Also, for any positive integer m, $(mx) \cdot x = mx^2 = mx = x \cdot (mx)$. Thus x is a multiplicative unit for 0[+](x) and hence for $\Gamma[+](x)$.

LEMMA 3. Let S be a topological semiring containing an element x for which $\Gamma[+](x)$ is compact. Then for each y in S,

- (i) $y \cdot \Gamma[+](x) = \Gamma[+](yx)$ and $\Gamma[+](x) \cdot y = \Gamma[+](xy)$;
- (ii) $y \cdot K[+](x) = K[+](yx)$ and $K[+](x) \cdot y = K[+](xy)$.

PROOF. The mapping $\phi: S \to S$ given by $\phi(z) = yz$ is continuous and $\phi(0[+](x)) = 0[+](yx)$. It follows from the compactness of $0[+](x)^-$ that

$$\phi(0[+](x)^{-}) = 0[+](yx)^{-} = \Gamma[+](yx)$$

(see Corollary 2, page 101 and Prop. 9, page 61 of [1]). Hence $\Gamma[+](yx)$ is compact and so K[+](yx) exists. Because K[+](x) is an additive group and ϕ is an additive homomorphism onto $y \cdot K[+](x)$, we see that $y \cdot K[+](x)$ is an additive group, so that $y \cdot K[+](x) \subset K[+](yx)$, the maximal additive group in $\Gamma[+](yx)$. On the other hand, if $z \in \Gamma[+](yx)$ and $w \in y \cdot K[+](x)$, then there are z_1 , w_1 in $\Gamma[+](x)$, K[+](x) respectively with $z = yz_1$, $w = yw_1$, and therefore $z+w = y(z_1+w_1) \in y \cdot K[+](x)$ since K[+](x) is an additive ideal of $\Gamma[+](x)$. Thus $y \cdot K[+](x)$, being an additive ideal of $\Gamma[+](yx)$, contains the minimal such ideal K[+](yx), and the result follows.

We now make the construction previously referred to.

Example. Let P be the set of prime integers and put

$$N_1 = \underset{\rho \in P}{\textstyle \times} \varDelta_{\rho}$$

where, for each $\rho \in P$, Δ_{ρ} is the (compact) ring of ρ -adic integers (see, for example, [3], § 10) and N_1 is given the product topology. If we give N_1 coordinate-wise addition and multiplication, N_1 is a compact ring. For any $\rho \in P$ we let 0_{ρ} be the additive unit and 1_{ρ} be the multiplicative unit of Δ_{ρ} . Then let $u \in N_1$ be such that u_{ρ} , the coordinate of u in Δ_{ρ} , is equal to 1_{ρ} for all $\rho \in P$. Clearly u is a multiplicative unit for N_1 . It also follows that $\{nu|n \text{ a positive integer}\}$ is dense in N_1 ; we prove this in Lemma 4 below. Thus the additive group of N_1 is monothetic with generator u.

Let N_2 be the set of positive integers and put $N_3 = N_1 \cup N_2$. We can make N_3 a compact monothetic additive semigroup by proceeding as in Theorem 3.1.7 of [5] (see also Theorem 5.3 of [2]). We take addition in N_2 to be ordinary addition, put

$$x+m=x+mu=m+x$$
 if $x \in N_1$ and $m \in N_2$,

and retain the same addition in N_1 . We define a topology on N_3 by letting each point in N_2 be isolated and, for each x in N_1 , we take

$$\left\{ \left. V_n^*(x) \right| \begin{array}{l} V_n^*(x) = V(x) \cup \{m | m \ge n \text{ and } mu \in V(x)\}, \text{ where } \\ V(x) \text{ is any neighbourhood of } x \text{ in } N_1 \text{ and } n \ge 1 \end{array} \right\}$$

as the set of all neighbourhoods of x. It is shown in [5], Theorem 3.1.7 (see also [2], Theorem 5.3) that N_3 is a compact additive semigroup with $N_2^- = \Gamma[+](1) = N_3$ and $K[+](1) = N_1$.

Finally we make N_3 a semiring by taking ordinary multiplication on N_2 , putting

$$m \cdot x = x \cdot m = mx$$
 if $x \in N_1$, $m \in N_2$,

and retaining the multiplication on N_1 . It is not difficult to check that N_3 becomes a compact semiring with multiplicative unit 1.

LEMMA 4. Let u and N_1 be as in the example above. Then $\Gamma[+](u) = N_1$.

PROOF. It follows from Theorem 25.16 of [3] that there is an element v of N_1 such that

$$\{nv|n \text{ any integer}\}$$

is dense in N_1 and so, as shown on page 109 of [5] (see also § 2 of [2]), $\Gamma[+](v) = N_1$. For any $\rho \in P$, let v_ρ be the coordinate of v which is in Δ_ρ . Because $\Gamma[+](v_\rho)$ must be Δ_ρ , it follows from Lemma 3 that

$$\varDelta_{\rho} = \varGamma[+](v_{\rho}) = \varGamma[+](1_{\rho} \cdot v_{\rho}) = \varGamma[+](1_{\rho}) \cdot v_{\rho} = \varDelta_{\rho} \cdot v_{\rho}$$

since $\Gamma[+](1_{\rho}) = \Delta_{\rho}$ (see § 10.6 of [3]). Thus there exists an element w_{ρ} of Δ_{ρ} with $1_{\rho} = w_{\rho}v_{\rho}$. Let w be the element of N_1 which has its coordinate in Δ_{ρ} equal to w_{ρ} for all $\rho \in P$; then wv = u. Hence, since u is a multiplicative unit for N_1 ,

$$N_1 = \mathbf{u}N_1 = (\mathbf{w}\mathbf{v})N_1 = \mathbf{w}(\mathbf{v}N_1) \subset \mathbf{w}N_1 \subset N_1$$

and we see that $wN_1 = N_1$. Thus, by Lemma 3,

$$\Gamma[+](u) = \Gamma[+](wv) = w\Gamma[+](v) = wN_1 = N_1.$$

Our main effort is devoted to proving the following theorem.

Theorem 2. Let S be an additively commutative and additively Γ -compact semiring. The following are equivalent.

- (i) S can be embedded in an additively commutative and additively Γ -compact semiring with multiplicative unit.
- (ii) S can be embedded in an additively Γ -compact semiring with multiplicative left unit.
- (iii) There is a continuous extension $\Psi: N_3 \times S \to S$ of the mapping $\psi: N_2 \times S \to S$ defined by $\psi(n, x) = nx$ for $n \in N_2$, $x \in S$.

Clearly (i) implies (ii). We shall prove the theorem by showing that $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (i)$. That $(ii) \Rightarrow (iii)$ follows from the following more general result.

LEMMA 5. Let S be any additively Γ -compact subsemiring of a topological semiring T with multiplicative left unit α such that $\Gamma[+](\alpha)$ is compact. Then there is a continuous additive extension $\Psi: N_3 \times S \to S$ of the mapping $\psi: N_2 \times S \to S$ defined by $\psi(n, x) = nx$. (Note that Ψ is uniquely determined by ψ because N_2 is dense in N_3 .)

PROOF. As $\Gamma[+](\alpha)$ is a compact subsemiring in which α is a multiplicative unit (Lemma 2), it is a consequence of [6], Theorem 7 that $K[+](\alpha)$ is totally disconnected, and hence 0-dimensional (Theorem 3.5 of [3]). Because $K[+](\alpha)$ is a monothetic additive group with generator $\alpha' = \alpha + e$, where e is the unit of $K[+](\alpha)$ ([5], Theorem 3.1.2 or [2], Theorems 3.2 and 3.4), it follows from Theorem 25.16 of [3] that $(K[+](\alpha), +)$ is topologically isomorphic with a cartesian product $X_{\rho \in P} A_{\rho}$ where for each ρ in P, A_{ρ} is either the trivial group with one member or the group $Z(\rho^{r_{\rho}})$ of residues modulo $\rho^{r_{\rho}}$ for some integer $r_{\rho} \geq 1$ or the group Δ_{ρ} . (If $K[+](\alpha)$ is finite then it is cyclic and the result follows from Theorem 17, Chapter III of [9].) In what follows we shall assume that $K[+](\alpha)$ is identical with $X_{a \in P} A_a$. For each $\rho \in P$ we introduce a multiplication o on A_a as the natural ring multiplication and denote by 1, its multiplicative unit. We give $X_{\rho \in P} A_{\rho}$ the coordinate-wise multiplication, for which the element β , whose coordinate in A_{ρ} is 1_{ρ} for all ρ , is a multiplicative unit. It is clear that for each $\rho \in P$ there is a continuous additive homomorphism ϕ'_{ρ} from Δ_{ρ} onto A_{ρ} with $\phi'_{\rho}(1_{\rho}) = 1_{\rho}$. (If A_{ρ} is isomorphic with $Z(\rho^{r_{\rho}})$, put

$$\phi'_{\rho}(x) = x_0 + x_1 \rho + \cdots + x_{r_{\rho}-1} \rho^{r_{\rho}-1}$$

for each $x=(x_0,x_1,x_2,\cdots)$ in Δ_ρ .) If for each x in N_1 we let x_ρ be the coordinate of x in Δ_ρ and we define a function $\phi':N_1\to K[+](\alpha)$ by putting the coordinate of $\phi'(x)$ in A_ρ equal to $\phi'_\rho(x_\rho)$ for all $\rho\in P$ and all x in N_1 , then ϕ' is clearly a continuous additive homomorphism with $\phi'(u)=\beta$ and $\phi'(N_1)=K[+](\alpha)$. The mapping $f\colon K[+](\alpha)\to K[+](\alpha)$ given by $f(x)=\alpha'\circ x$ is a continuous additive homomorphism and $f(\beta)=\alpha'\circ\beta=\alpha'$. Also $f(K[+](\alpha))$ is closed and contains $0[+](\alpha')$ and hence its closure $\Gamma[+](\alpha')=K[+](\alpha)$; hence f maps $K[+](\alpha)$ onto $K[+](\alpha)$. We now see that the mapping $\phi:N_1\to K[+](\alpha)$ given by $\phi(x)=f(\phi'(x))$ is a continuous additive homomorphism of N_1 onto $K[+](\alpha)$ for which

$$\phi(u) = f(\phi'(u)) = f(\beta) = \alpha'.$$

We extend ϕ to become $\Phi: N_3 \to \Gamma[+](\alpha)$ by putting $\Phi(n) = n\alpha$ if $n \in N_2$. It is not difficult to show that Φ is a continuous additive homomorphism of N_3 onto $\Gamma[+](\alpha)$. (However the proof must be split into two cases according as $\Gamma[+](\alpha) \setminus K[+](\alpha)$ is infinite or finite, and use must be made of the characterization of $\Gamma[+](\alpha)$ in either [5], Theorems 3.1.7 and 3.1.6 respectively or in [2], Theorem 5.6.)

Finally, we put $\Psi(y, x) = \Phi(y) \cdot x$ (where \cdot is multiplication in T) for each y in N_3 and x in S. For each x in S,

$$\Psi(N_3 \times \{x\}) \subset \Phi(N_3) \cdot x = \Gamma[+](\alpha) \cdot x = \Gamma[+](\alpha x) = \Gamma[+](x) \subset S,$$

and so Ψ maps $N_3 \times S$ into S. Clearly Ψ is continuous and, for all n in N_2 ,

$$\Psi(n, x) = \Phi(n) \cdot x = n\Phi(1) \cdot x = (n\alpha) \cdot x = n(\alpha \cdot x) = nx = \psi(n, x).$$

We now show that $(iii) \Rightarrow (i)$.

LEMMA 6. Let S be an additively commutative and additively Γ -compact semiring for which there is a continous extension $\Psi: N_3 \times S \to S$ of $\psi: N_2 \times S \to S$ defined by $\psi(n, x) = nx$. Then S can be embedded in an additively commutative and additively Γ -compact semiring with multiplicative unit.

PROOF. We first adjoin an element γ as an isolated point to S so that γ is an additive unit and a multiplicative zero for $S' = S \cup \{\gamma\}$; then S' is an additively Γ -compact semiring. We also adjoin an element 0 as an isolated point to N_3 so that 0 is an additive unit and a multiplicative zero for $N_4 = N_3 \cup \{0\}$; then N_4 is a compact semiring. We extend Ψ to $N_4 \times S'$ by putting $\Psi(0,x) = \Psi(y,\gamma) = \gamma$ for all x in S', y in N_4 ; then Ψ is continuous on $N_4 \times S'$. Let $T = N_4 \times S'$ and define addition * and multiplication o on T by

$$(y_1, x_1) * (y_2, x_2) = (y_1 + y_2, x_1 + x_2),$$

 $(y_1, x_1) \circ (y_2, x_2) = (y_1 y_2, x_1 x_2 + \Psi(y_1, x_2) + \Psi(y_2, x_1)).$

Then clearly *, o are continuous and * is associative and commutative. To complete the proof that T is a semiring we first note that, for all x_1 , x_2 in S' and y_1 , y_2 in N_4 ,

- (a) $[\Psi(y_1, x_1)] \cdot x_2 = \Psi(y_1, x_1x_2) = x_1 \cdot [\Psi(y_1, x_2)];$
- (b) $\Psi[y_1, \Psi(y_2, x_1)] = \Psi(y_1y_2, x_1);$
- (c) $\Psi(y_1, x_1+x_2) = \Psi(y_1, x_1) + \Psi(y_1, x_2)$;
- (d) $\Psi(y_1+y_2, x_1) = \Psi(y_1, x_1) + \Psi(y_2, x_1)$.

(These properties are clear for all x_1 , x_2 in S' and y_1 , y_2 in $N_2 \cup \{0\}$ because Ψ is an extension of ψ . The results follow from the continuity of Ψ and the fact that N_2 is dense in N_3 .) It is a simple matter to use (a)—(d) and the commutativity of + to check the distributive laws and the associativity of \circ .

That T is additively Γ -compact follows because

$$\Gamma[*](y, x) = \{n(y, x) | n \ge 1\}^-$$

= $\{(ny, nx) | n \ge 1\}^- \subset \Gamma[+](y) \times \Gamma[+](x).$

Also, $(1, \gamma)$ is a multiplicative unit for T since

$$(y,x)\circ(1,\gamma)=(y\cdot 1,x\gamma+\Psi(y,\gamma)+\Psi(1,x))$$

= $(y,\gamma+\gamma+x)=(y,x)=(1,\gamma)\circ(y,x).$

Finally we note that $\{0\} \times S$ is a subsemiring which is topologically isomorphic with S since

$$\begin{aligned} (0, x_1) * (0, x_2) &= (0+0, x_1+x_2) = (0, x_1+x_2), \\ (0, x_1) \circ (0, x_2) &= (0 \cdot 0, x_1x_2 + \Psi(0, x_2) + \Psi(0, x_1)) \\ &= (0, x_1x_2 + \gamma + \gamma) = (0, x_1x_2). \end{aligned}$$

When S is compact we have the following result.

THEOREM 3. Let S be a compact additively commutative semiring. Then the following are equivalent.

- (i) S can be embedded in a compact additively commutative semiring with multiplicative unit.
- (ii) S can be embedded in an additively Γ -compact semiring with multiplicative left unit.
- (iii) There is a continuous extension $\Psi: N_3 \times S \to S$ of the mapping $\psi: N_2 \times S \to S$ defined by $\psi(n, x) = nx$.
 - (iv) The mapping $\psi: N_2 \times S \to S$ is uniformly continuous.

PROOF. As S is compact, the semiring T constructed in Lemma 6 is compact; hence the equivalence of (i), (ii) and (iii). Because $N_3 \times S$ is a compact Hausdorff space, it can be regarded as a uniform space (see Theorem

1, page 225 of [1]). Then if $N_2 \times S$ is given its relative uniformity as a subset of $N_3 \times S$, the equivalence of (iii) and (iv) follows from Corollary 2 to Theorem 2, page 228 of [1].

Our analysis includes the embedding of rings in rings with unit as a special case.

If S is any topological ring and M is the ring of integers then S can be embedded in the product ring $M \times S$, which is locally compact when S is; the construction is given in [4], page 49, and is similar to that in Theorem 1.

In an additively Γ -compact ring, $\Gamma[+](x)$ is a group and so is identical with K[+](x). (This follows immediately from the Corollary to Theorem 1.1.10 of [5]. Alternatively, $\Gamma[+](x)$ contains an additive idempotent (the additive unit of K[+](x)); this idempotent must be the additive unit of the ring and so it follows from [8], Theorem 3.2 that $\Gamma[+](x)$ is a group.) In this case we have the following analogue of Lemma 5.

LEMMA 7. Let S be an additively Γ -compact subring of a topological semiring T with multiplicative left unit α such that $\Gamma[+](\alpha)$ is compact. Then there is a continous extension $\bar{\chi}: N_1 \times S \to S$ of the mapping $\chi: \{nu|n \geq 1\} \times S \to S$ defined by $\chi(nu, x) = nx$.

PROOF. Let $\bar{\chi}$ be the restriction to $N_1 \times S$ of the function $\Psi: N_3 \times S \to S$ defined in Lemma 5. Then for each positive integer n and each x in S,

$$\bar{\chi}(nu, x) = \Phi(nu) \cdot x = n\Phi(u) \cdot x = (n\alpha') \cdot x = n(\alpha'x).$$

But

$$\alpha' x = (\alpha + e)x = \alpha x + ex = x + ex$$

where e is the additive identity of $K[+](\alpha)$. Now

$$ex+ex = (e+e)x = ex$$

and

$$ex \in K[+](\alpha) \cdot x = K[+](\alpha x) = K[+](x)$$

so that ex is the additive identity of K[+](x). However $K[+](x) = \Gamma[+](x)$ because S is a ring and so x+ex=x. Thus $\bar{\chi}(nu,x)=nx$ which means that $\bar{\chi}$ is an extension of χ .

Conversely, if S is an additively Γ -compact ring for which $\bar{\chi}$ of Lemma 7 exists, then we can construct an additively Γ -compact ring on $N_1 \times S$ (using $\bar{\chi}$ in place of the Ψ of Lemma 6), and S is topologically isomorphic with $\{\varepsilon\} \times S$ where ε is the additive unit of N_1 . Also, if γ is the additive unit of S, (u, γ) is a multiplicative unit for the ring $N_1 \times S$.

Hence we have the following results.

THEOREM 4. Let S be an additively Γ -compact ring. Then the following are equivalent.

- (i) S can be embedded in an additively Γ -compact ring with unit.
- (ii) S can be embedded in an additively Γ -compact semiring with left unit.
- (iii) There is a continuous extension $\bar{\chi}: N_1 \times S \to S$ of the mapping $\chi: \{nu | n \geq 1\} \times S \to S$ defined by $\chi(nu, x) = nx$.

THEOREM 5. Let S be a compact ring. Then the following are equivalent.

- (i) S can be embedded in a compact ring with unit.
- (ii) S can be embedded in an additively Γ -compact semiring with left unit.
- (iii) There is a continuous extension $\bar{\chi}: N_1 \times S \to S$ of the mapping $\chi: \{nu | n \geq 1\} \times S \to S$ defined by $\chi(nu, x) = nx$.
 - (iv) The mapping $\chi : \{nu | n \ge 1\} \times S \to S$ is uniformly continuous.

References

- [1] N. Bourbaki, Topologie générale (Actualités scientifiques et industrielles no. 1142, 1961).
- [2] E. Hewitt, 'Compact monothetic semigroups', Duke Math. J. 23 (1956), 447-457.
- [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. 1 (Springer-Verlag, Berlin, 1963).
- [4] A. G. Kurosh, Lectures on general algebra (Chelsea, New York, 1963).
- [5] A. B. Paalman-de Miranda, *Topological semigroups* (Mathematisch Centrum, Amsterdam, 1964).
- [6] J. Selden, Theorems on topological semigroups and semirings (Doctoral Dissertation, University of Georgia, 1963).
- [7] J. Selden, 'A note on compact semirings' Proc. Amer. Math. Soc. 17 (1966), 882-886.
- [8] A. D. Wallace, 'The structure of topological semigroups', Bull. Amer. Math. Soc. 61 (1955), 95-112.
- [9] H. Zassenhaus, The theory of groups (2nd ed., Chelsea, New York, 1958).

University of Adelaide South Australia