DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL
3-SPACE

N. D. LANE and F. A. SHERK

Introduction. This paper is a generalization of the classification of the
differentiable points in the conformal plane given in (1). The main tools are
the intersection and support properties of all the spheres through a differentiable
point of an arc in conformal 3-space.

The discussion is also related to the classification (2) of the differentiable
points of arcs in projective 4-space, since conformal 3-space can be represented
on the surface of a 3-sphere in projective 4-space.

1. Pencils of spheres. In the following discussion, p, ¢, P, Q, and R will
denote points of conformal space, while S and C will denote a sphere and a
circle respectively. A sphere .S decomposes the space into two open regions, its
interior S and its exterior S. If P is any fixed point which does not lie on S,
the “interior’”’ of .S may be defined as the class of all points which do not lie
on .S and which are not separated from P by S. The exterior of S is then the
class of points which are separated from P by S. The sphere through a proper
circle C and a point P Z C will be denoted by S(P; C). Much of the following
discussion will depend on the use of pencils 7 of spheres and circles, determined
by certain incidence and tangency conditions. A circle (point) which is com-
mon to all the spheres (circles) of a pencil is called a fundamental circle
(fundamental point) of the pencil. In the pencil = of spheres through a funda-
mental circle C, there exists one and only one sphere S(P; 7) of = through
any point P which does not lie on C. Similarly, in the pencil 7 of the spheres
(circles) which touch a given sphere (circle) at a given point Q, there is one
and only one sphere S(P; 7) [circle C(P; )] of = which passes through any
point P % Q. The fundamental point Q is regarded as a point-sphere (point-
circle) belonging to .

2. Convergence. A sequence of points Py, P, . . ., is said to be convergent
to P if to every sphere S with P C S, there corresponds a positive integer
N = N(S), such that P, C.S if v > N. The convergence of spheres and
circles to a point is defined in a similar fashion.

A sequence of spheres Si,S,, ..., is said to be convergent to S if to every
pair of points P C S and Q C S, there corresponds a positive integer
N = N(P, Q),suchthat P C S,and Q C Syforeveryv > N.
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Finally a sequence of circles C, is said to be convergent to a circle C, if
to every circle D which links with C, there corresponds a positive integer
N = N(D) such that C, links with D whenever v is greater than N.

3. Arcs. An arc A is the continuous image of a real interval. If a sequence
of points of this parameter interval converges to a point p, the corresponding
sequence of image points is defined to be convergent to the image of p. The
same small italics p, ¢, ..., will be used to denote both the points of the
parameter interval and their images on A. The end-(interior-) points of A
are the images of the end-(interior-) points of the parameter interval. A
neighbourhood of p on A is the image of a neighbourhood of the parameter p
on the parameter interval. If p is an interior point of 4, this neighbourhood is
decomposed by p into two (open) one-sided neighbourhoods. The images of
distinct points of the parameter interval are considered to be different points
of A, even though they may coincide in space. The notation Q # P will
indicate that the points Q and P do not coincide.

4. Differentiability. Let p be a fixed point of an arc 4, and let ¢ be a
variable point of 4. If P, Q, and p are mutually distinct points, the unique
circle through these points will be denoted by C(P, Q; vo). The symbol v,
itself will denote the family of all circles through p, including the point-
circle p.

A is called once-differentiable at p if the following condition T'; is satisfied:

T'y: If the parameter ¢ is sufficiently close to, but different from, the para-
meter p, the circle C(P, ¢;v,) is uniquely defined, and converges if ¢ tends to p.

Thus the limit circle, which will be denoted by C(P;~v,), is independent
of the way ¢ converges to p. The family of all such circles, (i.e., the circles
C(P; v1) for all points P ## p), together with the point circle p, will be denoted
by Y1.

A is called twice-differentiable at p if, in addition to the condition I'y, the
following condition is also satisfied:

T'»: If the parameter ¢ is sufficiently close to, but different from, the parameter
p, the circle C(¢; v1) is uniquely defined, and converges if ¢ tends to p.

The limit circle of the sequence C(¢;v:) will be denoted by C(y:), the
osculating circle of A at p, and, occasionally, also by the symbol vy, alone.

5. Structure of the families of circles through p. In this section,
relations among the families of circles vy, v1, v2 are discussed.

THEOREM 1. Suppose A satisfies condition Ty at p. Then t does not coincide
with p if the parameter t is sufficiently close to, but different from, the parameter p.

Proof. Let P be any point different from p. By condition T';, C(P, t; o) is
uniquely defined when the parameter ¢ is close to, but different from, the
parameter p. Thust # p.
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THEOREM 2. Suppose A satisfies condition Ty at p. Then the angle at p
between any two circles of v11s 0.

Proof. Let P, Q, Ry, R, be variable points, and let R, and R, converge to the
same point R. Suppose there is a fixed sphere separating R from both P and Q.
Then
) lim £ [C(P, Ry, Rs), C(Q,Ry, Ry)] =0

whether or not the circles themselves converge. In particular, the angle
between C(P; v;) and C(Q; v1) is equal to 0.

CoROLLARY 1. If C(P; 1) and C(Q; v1) have another point in common, they
are 1dentical; thus there is one and only one circle of vy through each point P 5% p.

COROLLARY 2. i consists of those circles C which meet a given circle of
viat p at the angle 0. Thus the circles of v1 all touch at p.

Proof. Let P C C, P # p. Suppose C meets some circle of vy; at angle 0
at p. Then C and C(P;v:) also meet at angle 0 at » and have the point P
in common. Hence they are identical.

COROLLARY 3. If Ty holds for a single point P 5 p, then 1t holds for all such
points.

Proof. 1f Q # p, by (1)
lim £ [C(Q, ¢, p), C(P,t,p)]=0.
Thus C(Q, t;ve) converges to the unique circle through Q which touches

C(P;v1) atp.
THEOREM 3. Suppose A satisfies the conditions T'yand Teat p. Then
(2) Yo D 11D v

Proof. It is clear that vo D v1. If C(y2) = p, it belongs to y; by definition.
Suppose C(vy:) # p. Then C(y:), being the limit of a sequence of circles
C(t; v1) each of which touches a given circle C(P; %,) of v;, must itself touch
C(P; v1) at p. Thus C(y2) € v1 (cf. Theorem 2, Corollary 2.)

CoRrROLLARY. IfP C C(yz), P # p,then C(ys) = C(P;v1)-

The conditions T'; and T, are independent. For example, suppose a rec-
tangular cartesian coordinate system is introduced and the arc

B e Ja=~N1=-F=Fsint o< |t <}
x—-t,y—t,z—{ 0 t=0
is considered. T'; is satisfied at ¢ = 0, but I';is not satisfied there.

6. Differentiable points of arcs. In addition to the conditions I'y and
T's, three more conditions involving spheres are introduced. Suppose P, Q,
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and R are any three fixed points such that P, Q, R, and p do not lie on the same
circle. It will be convenient to denote the unique sphere through p and the
points P, Q, and R by the symbol S(P, Q, R; a¢). oo will denote the family of
all spheres through p, including the point-sphere p.

A is called thrice-differentiable at p if the following three conditions are
satisfied:

21: The sphere S(P, Q, t; o) is uniquely defined when the parameter ¢
is sufficiently close to, but different from, the parameter p, and converges, if
¢ tends to p, to a limit sphere which will be denoted by S(P, Q; a1).

Z,: The sphere S(P,¢; ¢,) is uniquely defined when the parameter ¢ is
sufficiently close to, but different from, the parameter p, and converges, if ¢
tends to p, to a limit sphere which will be denoted by S(P; a).

23: The sphere S(¢; o2) is uniquely defined when the parameter ¢ is sufficiently
close to, but different from, the parameter p, and converges, if ¢ tends to p,
to a limit sphere which will be denoted by S(a3).

The families of all the spheres S(P, Q; a1), (i.e., the spheres S(P, Q; 1)
for all pairs of points P and Q such that P # Q and P, Q # p), together with
the point-sphere p, will be denoted by o,. Similarly, the family of all the
spheres S(P; ¢s) (including the point-sphere p if C(y.) = p) will be denoted
by 2. The unique osculating sphere S(o;) will occasionally be denoted by o3
alone.

The point p is called a differentiable point of A if A is thrice-differentiable
at p.

7. Structure of the families of spheres through p. Although the
conditions I'; and I'y are independent, not all the conditions T'y, Ta, Z;, 2o,
and Z; are independent. In addition, the families of spheres aq, oy, 09, and o3
are closely connected with the families of circles vy, v1, and v..

THEOREM 4. Suppose A satisfies condition 2, at p. Let C be any fixed circle.
Then t  C if the parameter t is sufficiently close to, but different from, the
parameter p. :

Proof. The assertion is clearly true if p ¢ C. Suppose p C C, and let
P, Q, p be mutually distinct points on C. By condition =4, S(P, Q, {; a0) is
defined when ¢ is sufficiently close to p. Thust & C(P, Q, p) = C.

The following example shows that I'y does not imply 2, in general (cf.,
however, Theorem 5). Consider the arc

ffeost™ 0< <1 {12 sin ™, 0 <t <1

10 L 1=0 "F 50 =0 ’

in the neighbourhood of { = 0. If P = =, Q = (1,0,0), and p = (0,0, 0),
the sphere S(P, Q, t; o) does not converge, while, e.g., C(P, t; vs) converges
to the x-axis and by Theorem 2, Corollary 3, T'; is satisfied.

x=1tLy=
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THEOREM 5. If A satisfies 1 at p, then Ty holds there and
(3) CO;v) = N s 0;0).
P#Q,p

Conversely, let A satisfy Ty at p. Then Z1 holds at p for all pairs P, Q such that
P Z C(Q; 1), and S(P, Q; a1) = S[P; C(Q; v1)].

Proof. Suppose Z; holds at p. Theorem 4 implies that t = p if ¢ is close to p.
Let Q # p. Since C(Q, t;vo) C S(P, Q, t; 00), any limit circle of C(Q, ¢; vo)
lies on S(P, Q; a1) for every choice of P % Q, p. Thus if Py Z S(Ps, Q; a1),
any limit circle of C(Q, ¢; vo) lies on S(Py, Q; o1) M S(Ps, Q; o1) and is therefore
uniquely determined. Hence C(Q, ¢; vo) converges and we have

C(Q;m) = PDQ.,,SUD' 0; o).

Conversely, suppose that T'; holds. If P ¢Z C(Q;~v1), then P & C(O, t; vy
when ¢ is sufficiently close to p and
4) S[P; C(Q; v1)] = lim S[P; C(Q, £; vo)] = lim S(P, Q, £; a0).
t15p t5p
Thus for all pairs of points P and Q such that P ¢Z C(Q; v1), S(P, Q, t; o0)
converges, 2 is satisfied, and S(P,Q; ¢1) is the sphere through P and C(Q;~,).

CoROLLARY. There is only one sphere of oy which contains two points not
on the same circle of v1.

Remark. Condition Ty is still satisfied when 2, is replaced by a weaker
assumption:

Suppose S’y = S(Py, Q1, t; 00) = S1, 5’2 = S(Ps, Qs, t; 00) — Sy, and suppose
further that S; M\Sy = C # p. Then T, holds at p. For, let ', NS, = C'.
Then ¢’ — Cand C’' D pand . Asin equation (1),lim £ [C(Py, t; v,), C'] = 0.
Thus C(Py, t; vo) converges to the unique circle through P; which touches C
at p. By Theorem 2, Corollary 3, T'; holds at p.

If, however, S; M S, = p, 'y need not hold; e.g., take P; = =, 0, = (1,0,0),
P, = (0,0,2),0, = (1,0, 1),p = (0,0, 0), and let 4 be the arc,

v_{tsinzf"l,0<|t|<1 g
=0 =0 , y=1t z=1t.

S’; converges to the xy-plane, S’y converges to the sphere x* 4 y? + 22 — 22=0,
but T'; does not hold.

THEOREM 6. Suppose Zi holds at p. Choose C € vi, C 5% p. Then o, is the
set of all spheres which touch C at p.

Proof. Suppose a sphere S(P, Q; o1) of ¢, meets C in a point R = p. If
R C C(Q; v1), by Theorem 5 and Theorem 2, Corollary 1,

S(P, Q;01) D CQ;v) =C
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whileif R Z C(Q; v1),

S(P, Q;01) = S[R; C(Q;v)] = S(R, Q; 01)
= S[Q; C(R;v1)] = S(Q; C) D C.
Conversely, suppose a sphere S touches C at p. If SO C, then S € g,
(Theorem 5). If S M C = p, chooseapoint Q C S, Q0 = p. Let Co = S(Q; C) N

S. Then C, touches C at p. By Theorem 2, Corollary 2, Cy € v;. Since S D C,
and Cy € v, it follows from Theorem 5 that S € ¢;.

THEOREM 7. If A satisfies Z1 and Zs at p, then Ty and T, will also hold at p,
and equations (3) and
(5) Clr) = N S(P;00)
Pp
will be satisfied there. Conversely, let A satisfy Ty and Ty at p and let C(ys) = p.

If P @ C(vq), then 2, will hold at p for P, and S(P; o) will be the sphere through
Pand C(vy,).

Proof. Suppose Z; and Z, hold at p. In view of Theorem 5, we have only
to show that Z, implies Ty, and that (5) holds. If ¢ is close to p, (3) implies
that C(¢; v1) C S(P, ¢; a1) for every point P 5 p. Hence any limit circle of
C(t; v1) lieson S(P; ¢2). Thusif Py (Z S(P:; os) this limit circle lies on S(P;; o9)
M S(P,; 02) and is therefore uniquely determined. Hence C(¢; v1) converges,
and

Clys) = ﬂ S(P; o).

Thus Z,implies T'; and (5) holds.
Conversely, suppose that T'; and T'; hold and C(y:) # p. If P ¢ C(y2),
then P ¢ C(¢; v1) when ¢ is sufficiently close to p, and by Theorem 5,

S[P; C(y2)] = lim S[P; C(¢t; v1)] = lim S(P, t; o1).
t>p t>p
Hence S(P, t; 01) exists and converges. Thus S(P; ¢3) = S[P; C(v2)].

COROLLARY 1. If A satisfies Z:(Z1 and Z.) at p, then A is once-(twice-)
differentiable there.

In particular, this implies
COROLLARY 2. If p s a differentiable point of A, then Ty and Ty hold there.
COROLLARY 3. S(a3) D C(y2).
Proof. By (5),
S0 D N S(P;0) = Clv).

Hence S(a3) D C(y2).
This implies
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CoroLLARY 4. IfS(a3) = p, then C(yq) = p.
COROLLARY 5. If C(v2) # p, a2 consists of the spheres through C ().

The conditions I'; and TI'» by themselves do not imply Z, in general, whether
or not C(y,) = p. Consider, for example, the arc

{ﬁ sint™, 0< Jt] <1 {t3cos o< il <1
x=54Ly= 2=
0 ,t=0 0 , =0

which satisfies T'; and I'; at ¢ = 0, C(y2) being the x-axis. When P = o,
Q = (1,0, 0), the sphere S(P, Q, ¢; g9) is a plane through the x-axis, and this
plane does not converge when ¢ — 0. Thus Z; is not satisfied.

Condition Z, is a very strong one for it implies not only I';, but, as the
following theorems show, Z, and T’y as well, and even Z; in the case C(y2) # p.

THEOREM 8. Suppose A satisfies 21 at p. Then A also satisfies T, at p.

Proof. Let P be any point #p. Theorem 4 implies that ¢ does not lie on
C(P; 1) if ¢ is close to p. Hence by Theorem 5, S(P, ¢; o1) = S[t; C(P;v1)].
LetQ C C(P;v1),Q # P,p. Then C(P; vi) = C(P, Q;v0). Thus S(P,t;0,) =
Slt; C(P, Q;v0)] = S(P, Q,t; 00), and =, now implies that

(6) lim S(P, t; o1) = S(P, Q; o1).

tsp
Since S(P; o3) exists for each point P = p, T, is satisfied.

CoROLLARY 1. If A satisfies Z1at p, it also satisfies Ts there.

Proof. By Theorem 7, condition Z,implies T',.

COROLLARY 2. If A satisfies Z at p, p is a differentiable point of A 1f and only

1if S(t; a2) converges when t tends to p.
Relation (6) implies
CorOLLARY 3. S(P; 02) € o1.

THEOREM 9. Suppose A satisfies 1 (and hence Z», T1, and Ts) at p, and
suppose C(yq) # p. Then A also satisfies Ty at p.

Proof. 1f ¢ is close to but different from p, S(¢; 02) is defined. By Theorem
4,t  C(vs), and by Theorem 7, S(¢; 02) = S[¢; C(v2)]. Let P C C(y2), P # p.
Then by the corollary of Theorem 3, C(y2) = C(P;v:) and hence S(¢; 03) =
S[t; C(P, v1)] = S(P, t; 01). Z2now implies that
@ lim S(¢; 02) = lim S(P, t; 1) = S(P; a2)

top t>p

Thus S(¢; 02) converges and Z; holds.

CoROLLARY. If A satisfies condition Z, at p and if C(yq) # p, then p is a
differentiable point of A.
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The following example shows that p need not be a differentiable point of 4
when 2 issatisfied and C(y.) = p. Consider the arc defined by
v =f _t:;z_{t4sinf—1,0<’fi<l
v Y ’ - 0 , = 0 .
[t can readily be verified that A satisfies Z; at ¢ = 0, and that the spheres
of ¢, touch the xy-plane at the origin. Thus C(y,) is a point circle. However,

as ¢ tends to 0, S(¢; o2) oscillates and x? 4+ y? 4 z* 4 z = 0 are two accumula-
tion spheres of the sequence S(¢; o2). Thus 23 does not hold at¢ = 0.

THEOREM 10. Let =, hold at p, and let C(y2) = p. Then oy is the set of spheres
which touch a given sphere of oy at p.

Proof. let P and Q be variable points and let C be a variable circle converg-
ing to a fixed point. Suppose there is a fixed sphere which separates this point
from P and Q. Then

lim £ [S(P; €),S(Q; C)] =0

whether or not the spheres S(P; C) and S(Q; C) themselves converge. In
particular, let P and Q be fixed points #p and let C = C(¢; v1) — p, ast — p,
t C A,t # p. Then
(8) £ [S(P;02), S(Q; 02)] = lim £ [S(P, t;01), S(Q, ¢ 01)] = 0.
t5p

Hence any two spheres of o, touch at p.

Conversely, let S be a sphere which touches S(P; ). Choose a point
Q CS, Q3 p. Then S(Q; cs) also touches S(P; a2) at p and S(Q; a.) = S.
Thus S € oo.

COROLLARY 1. o315 the family of spheres, the intersection of any two of which is
C(v2) (cf. Theorem 7, Corollary 5).

COROLLARY 2. There is one and only one sphere of oy through each point
T C(vys);thatis,if Q C S(P;02),Q T C(vs), then S(P; a3) = S(Q; a9).

THEOREM 11. If pisa differentiable point of A, then
(9) 00301302303-

Proof. Evidently oo D 1. Theorem 8, Corollary 3 shows that ¢; D os.
This can also be seen as follows:

Let P % p. By Theorem 6, any sphere S(P; o2) of o; is the limit of a sequence
of spheres S(P, ¢; 01) each of which touches a proper circle C € v; at p. Thus
S(P; a2) also touches C at p, and S(P; o2) € o1

Let C(v2) # p. By Theorem 7, Corollary 5, o; is the set of all the spheres
through C(vy:). Hence S(o3), being the limit of a sequence of spheres through
C(y2), is itself a sphere through C(v.), and thus a sphere of ¢,. Relation (7)
also implies that ¢s D o3 when C(y2) # p.
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Suppose C(yz) = p. By Theorem 10, o, is the set of all the spheres which
touch a given sphere #p of ¢, at p. Hence S(o3), being the limit of a sequence
of such tangent spheres, is itself a sphere of a,.

This section can be summarized by the following remark:

Let p be a differentiable point of an arc A. Let P # p. In addition, if
S(O’s) # P, let P C S(O’a).

Let
Co {cwg) i C) #p o _ {Sm) if S(os) = 1
CP;m)if Cv2) = p’ S(P;a2) if S(o3) = p~

Then C C S, and the structures of v;, o1, and o2 are completely determined by
Cand S.

8. Support and intersection. Let p be an interior point of an arc 4.
Then we call p a point of support (intersection) with respect to a sphere S, if a
sufficiently small neighbourhood of p is decomposed by ¢ into two one-sided
neighbourhoods which lie in the same region (in different regions) bounded by
S. S is then called a supporting (intersecting) sphere of A at p. Thus .S supports
A at p if p Z S. By definition, the point-sphere p always supports 4 at p.

It is possible for a sphere to have points #p in common with every neigh-
bourhood of p on 4 (cf., e.g., equation II, §10). In this case .S neither supports
nor intersects 4 at p.

9. Intersection and support properties of the families ¢y — a3,
o1 — o3, and o2 — o3. Throughout the remainder of the paper, the point p
is assumed to be a differentiable interior point of 4.

THEOREM 12. Every sphere #%.S(a3) either supports or intersects A at p.

Proof. If a sphere S neither supports nor intersects 4 at p, then p C S and
there exists a sequence of points t = p, t C A NS, ¢ # p. We may assume
that conditions Z;, =5, and Z; hold for this sequence. Choose points P and Q
on S such that P, Q, and p are mutually distinct. Then condition Z; implies
S = S(P, 0, t; 00) for each t, and hence S = S(P, Q; o1).

By Theorem 5, S = S(P, Q; 01) D C(P; v1). By Theorem 4, ¢t Z C(P; v1)
and again by Theorem 5, S = S[¢; C(P;v1)] = S(P,¢; ¢1). Condition =,
now implies that.§S = S(P; o2).

Finally, by Theorem 7, S D C(v2), and by Theorem 4, ¢t Z C(vs). If C(vq) #
p, Theorem 7 implies that S = S[¢; C(y2)] = S(@¢; ¢2), while if C(vs) = p,
Theorem 10 implies that S = S(¢; ¢2). Applying the condition Zj;, we are led
to the conclusion .S = S(o3).

THEOREM 13. If S(03) = p, then the spheres of o2 — o3 all intersect A at p,
or they all support.

Proof. Let .S’ and S’ be two distinct spheres of o, — o3. Since S(o3) = p,
Theorem 7, Corollary 4 implies that C(ys) = p, and Theorem 10 implies
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that S and S” touch at p. Thus we may assume that S” C (p \U S") and
S C (p \U.S"”). Suppose now, for example, that .S’ supports 4 at p while S’
intersects. Then 4 M S” is not void and hence we may assume 4 C (p \U S).
Let t—p in ANS”; thus t CS”" NS Hence S(t;02) C (8" NS) U p.
Consequently S(¢; ¢2) cannot converge to S(c3) = p ast — p. Thus S’ and S’
must both support or both intersect 4 at p.

TeEOREM 14. If S(03) # p and C(vys) = p, then every sphere of o2 — o3
supports A at p.

Proof. Suppose C(ys) = p, so that the spheres of ¢ all touch at p (Theorem
10). Let S € a3, S &= S(03), S # p. If a sequence of points ¢ exists such that
tCANS, t—p, then each S(¢; o2) lies in the closure of S. Hence S(o3)
will lie in the same domain, and therefore even in p \U S. Similarly, the exis-
tence of a sequence ' C SN A4, ' — p, implies that S(s;) C p U .S. Thus if
Sintersects 4 at p,S(cs) C (p\U S) N (p\US) = p;in other words, S(vs) = p.

THEOREM 15. All the spheres of oo — o1(01 — o3, 02 — a3) support A at p,
or they all intersect.

Proof. Let S’ and S” be two distinct spheres of ¢y — o1 (61 — 02; 02 — 03).
Suppose, for the moment, that the intersection S’ M S” is a proper circle
Co = C(P,Q;70) [C1 = C(P;v1); Co = C(yz)] (cf. equations (3) and (5)).
Suppose, for example, that S’ intersects while S”” supports A at p. With no
loss in generality, we may assume that A C S” \U p. Thus 4 NS’ and 4 N &
are not void. If t C A NS, by Theorems 4, 5, and 7, S(P, Q, t; 00) =
S(t; Co) [S(P, t;01) = S(t; C1); S(t; 02) = S(¢; Cy)]lies in the closure of

(SI m S”) U (S/ m S,’)~

Letting f — p on A, we conclude that S(P, Q; ¢1) [S(P; 02); S(s3)] lies in the

same closed domain. By letting ¢ converge to p through §' M 4, we obtain

symmetrically that S(P, Q;01) [S(P;2); S(o3)] also lies in the closure of
(5N SIUE NS,

Hence S(P, Q; o1) [S(P; 02); S(e3)] lies in the intersection .S’ \U .S” of these two

domains, i.e., S(P, Q; o1) [S(P; 02); S(es)] is either S* or S”, contrary to our

assumptions. Thus S’ and .S’ both support or they both intersect in this case.

Suppose now that S’ N\S” = p. In view of Theorems 13 and 14 there
remain to be considered only the cases where S’ and S’/ belong to the family
oo — o1, or both belong to o1 — .

By Theorem 6, any sphere S through p which does not touch a circle C
of v; belongs to oo — o1; by Theorem 6, Theorem 7, Corollary 5, and
Theorem 10, any sphere S which touches a circle C of v;, but does not
contain C(y.) in case C(y2) # p, and does not touch a sphere of ¢, in case
C(y2) = p, belongs to o1 — o2. Hence there exists a sphere S of ¢y — 0
(¢1 — 09) which intersects S’ and S” respectively in a proper circle. From the
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above, S and S, and also S and S”, both support or both intersect 4 at p.
Thus .S’ and S” both support or both intersect 4 at p.

THEOREM 16. If C(vs) # p, every sphere of o1 — o supports A at p.

Proof. Suppose S € g1 — o intersects A at p. Let t —»p, t C A NS,
t # p. By Theorem 6, C(¢; v1) touches S at p and hence C(¢; vi) C.S\U p.
Since C(¢;v1) — C(vs) it follows that C(yy) CS\US. If #' converges to p
through 4 N S, it follows symmetrically that C(ys) C S\U S. Thus C(v2) CS.
Since S ¢ o2, however, Theorem 7, Corollary 5 implies that C(yz) = p.

10. Characteristics and a classification of the differentiable points.
The characteristic (ao, a1, a2, a3; 7) of a differentiable point p of an arc 4 is
defined as follows:

ag,a1,a, = lor2; a3 =1,2,oro; 2 =1,2,0r3.

a9 is even or odd according as the spheres of ¢o — 1 support or intersect.

ao + a1 is even or odd according as the spheres of ¢; — 2 support or
intersect.

@y + a1 + a. is even or odd according as the spheres of o3 — o3 support or
intersect.

ao+ a1+ a2 + a3 is even if S(o;) supports and odd if S(e;) intersects,
while a; = o if S(o3) neither supports nor intersects.

2= 1if C(ys) # p;1 = 2if C(ys) = pand S(o;) # p;and i = 3if S(a3) =».

Theorems 16, 14, and the convention that S(o3) supports when it is the
point-sphere, lead to the restriction on the characteristic (ao, a1, a2, a3; %) that
ao+ ...+ a;is even. As a result, there are just 32 types of differentiable
points; 12 when ¢ = 1, 12 when ¢ = 2, and 8 when 7 = 3.

Examples of each of the 32 types are given by the curves

D x =1t y=1, z=1"),
for the casesa; = 1or2,and

o oa . YsinghifOo< |t <1
(I1m) x—t,y—t,z—{o =0 ,

for the cases a; = =, all relative to the point ¢ = 0. The indices, m, %, and
are positive integers and m < n < r. The different types are determined by the
parities of the indices m, #, and # and the relative magnitudes of m, %, », and
2m. In each of these examples the circles of y; and the spheres of ¢; touch the
x-axis at the origin. In the case ¢ = 1, o2 is the family of planes through the
x-axis; while in each of the cases ¢ = 2 or 3, o2 is the family of spheres which
touch the xy-plane at the origin (cf. Remark at the end of §7).

The first of the following tables lists examples of all the types of differentiable
points together with their characteristics, while the second table summarizes
the properties of these types. Congruences are mod 2.
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TABLE 1

(@o, a1, as, as; 1)

Equation i =1 m<2m< n<r =2 m<n<2m<r 1 =3 m<n <r<2m
i
1,1,1,1;1) =0/ (1,1,2,1;2) = (1,1,1,1;3) r=1
=1 n=0 n=0
1,1,1,2;1) =1 (1,1,2,2;2) = (1,1,2,2;3) r=20
m = {m=1 m= lj-——|———
(1,1,2,1; 1) =11](1,21,1;2) = (1,2,2,1:3) r=1
=0 n=1 n=1
(1,1,2,2;1) =0 (1,2,1,2;2) = (1,2,1,2;3) r=0
1 - _
2,2,1,1;1) =0 (2,1,1,1;2) = (2,1,1,2;3) r=20
=1 n =1 n=1
2,2,1,2;1) =11 (2,1,1,2;2) = (2,1,2,1;3) r=1
m = wee=lm = Q- m = 0———|——
2,2,2,1;1) =1 (2221;2) = (2,2,1,1:;3) r=1
=0 | n=0 n=0
2,2,2,2;1) =01 (2,2,22;2) = 2,2,2,2:3) r=20
(1,1,1, ;1) =1 (1,1,2, »;2) n=0
m = m=1
(1,1,2, =;1) =0 (1,2,1, »;2) n=1
11
(2,2,1, »;1) =1 (2,1,1, »;2) n=1
m = m=0
2,2,2, »;1) =0 (2,2,2, »;2) n=0
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TABLE 11

C(v2) | S(o3) | Characteristic Restrictions Examples: (I) or (I1) N?'
(ao, a1, as, as; 1) o
Clva) S(as) types
(ao, a1, az, as; 1)
az; = lor2 I 8
=p #=p 61 — gysupports ag+a; =0 m<22m<n<r X-axis xy-plane
(@, a1, @z, @ ;1) 1 4
(a0, a1, az, as; 2) I 8
a; = lor2
=p #p g2 — ogsupports | ag + a1 + as=0 | m < n < 2m<r x =y =z xy-plane
(@0, a1, @z, @ ;2) 11 4
(ao, a1, a2, a3; 3)
=p | =p a; = lor2 o3 supports aotartarta=0| m< n<r<2m I jx=y=53 =y=3z= 8
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