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We consider Euler flows on two-dimensional (2-D) periodic domain and are interested
in the stability, both linear and nonlinear, of a simple equilibrium given by the 2-D
Taylor–Green vortex. As the first main result, numerical evidence is provided for the
fact that such flows possess unstable eigenvalues embedded in the band of the essential
spectrum of the linearized operator. However, the unstable eigenfunction is discontinuous
at the hyperbolic stagnation points of the base flow and its regularity is consistent with
the prediction of Lin (Intl Math. Res. Not., vol. 2004, issue 41, 2004, pp. 2147–2178).
This eigenfunction gives rise to an exponential transient growth with the rate given by
the real part of the eigenvalue followed by passage to a nonlinear instability. As the
second main result, we illustrate a fundamentally different, non-modal, growth mechanism
involving a continuous family of uncorrelated functions, instead of an eigenfunction of the
linearized operator. Constructed by solving a suitable partial differential equation (PDE)
optimization problem, the resulting flows saturate the known estimates on the growth of
the semigroup related to the essential spectrum of the linearized Euler operator as the
numerical resolution is refined. These findings are contrasted with the results of earlier
studies of a similar problem conducted in a slightly viscous setting where only the modal
growth of instabilities was observed. This highlights the special stability properties of
equilibria in inviscid flows.
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1. Introduction

We study the stability of a two-dimensional (2-D) flow of an incompressible ideal fluid
described by the classical Euler system subject to periodic boundary conditions,

∂tu + (u · ∇)u = −∇p, (x, t) ∈ T
2 × (0,+∞), (1.1a)

∇ · u = 0, (x, t) ∈ T
2 × (0,+∞), (1.1b)

u(x, 0) = u0(x), x ∈ T
2, (1.1c)

where T2 := R2/(2πZ)2 (‘:=’ means ‘equal to by definition’), whereas x = (x1, x2)
T and

t ≥ 0 are respectively the spatial coordinate and time. In (1.1), u = u(t, x) = (u1, u2)
T is

the velocity field, p = p(t, x) the scalar pressure, whereas u0 is the initial condition for the
velocity field, assumed divergence-free, ∇ · u0 = 0.

Computing the curl of both sides of (1.1a), the equation for the scalar vorticity
ω := ∇⊥ · u, where ∇⊥ := (−∂x2, ∂x1), is

∂tω + (u · ∇)ω = 0, (x, t) ∈ T
2 × (0,+∞), (1.2a)

u = ∇⊥Δ−1ω, (x, t) ∈ T
2 × (0,+∞), (1.2b)

ω(x, 0) = ω0(x), x ∈ T
2, (1.2c)

in which ω0 := ∇⊥ · u0 and it will be assumed that
∫

T2 ω0(x) dx = 0 such that∫
T2 ω(t, x) dx = 0 for all t > 0. Hereafter, our focus will be on the vorticity formulation

(1.2). We will refer to Sobolev spaces Hm(T2), m ∈ R, with the inner product defined as
〈 f , g〉Hm := ∫

T2(1 −Δ)mf̄g dx, where ·̄ denotes complex conjugation such that the norm
is given by ‖ f ‖Hm = √〈 f , g〉Hm (Adams & Fournier 2005). Without loss of generality, we
will focus our discussion on a subspace of Hm(T2) consisting of zero-mean functions

Hm
0 (T

2) :=
{

f ∈ Hm(T2),

∫
T2

f dx = 0
}
. (1.3)

We will also use the space L2(T2) := H0(T2). In addition, we will consider Lebesgue
and Sobolev non-inner-product spaces Lp(T2) and W1,p(T2) with the norms ‖ f ‖Lp :=
(
∫

T2 |f |p dx)1/p and ‖ f ‖W1,p := ‖ f ‖Lp + ‖∇f ‖Lp with 1 ≤ p < ∞.
Analysis of the stability of equilibrium solutions ωs = ωs(x) of system (1.2) is

a classical subject in mathematical fluid mechanics with general results describing
conditions under which flows become unstable. The metric chosen to measure the
deviation from the equilibrium captures different scales of instability – higher regularity
spaces Hm(T2)with m > 0 register finer structures, such as filamentation, while the energy
space H−1(T2) captures large-scale instabilities. Koch’s theorem (Koch 2002) states that
in the finer sense, i.e. if the evolution of the vorticity ω(t) is measured in the Hölder space
Ck,α , for any k ∈ N and α > 0, any non-isochronous equilibrium in 2-D is nonlinearly
Lyapunov unstable. Here, ‘non-isochronous’ means that all Lagrangian trajectories in the
equilibrium flow do not have the same period (a typical example of an isochronous flow is
solid-body rotation).

Most large-scale instabilities are classically attributed to laminar oscillatory structures as
was established by the pioneering Rayleigh–Fjortoft–Tollmien inflection point theory and
its contemporary operator theoretical formulations (Chandrasekhar 1961; Drazin & Reid
1981; Friedlander, Vishik & Yudovich 2000; Schmid & Henningson 2001; Lin 2005). In
this case, instability arises from a smooth unstable mode of the linearized equation, which
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in turn gives rise to nonlinear instability in the energy space by the full analogue of the
Lyapunov theorem, see Friedlander, Strauss & Vishik (1997), Lin (2004) and references
therein. However, one of the simplest equilibrium solutions of (1.1)–(1.2) to which this
theory does not apply is the 2-D Taylor–Green vortex, which is defined as

us(x) = (− cos(x1) sin(x2), sin(x1) cos(x2))
T, ωs(x) = 2 cos(x1) cos(x2) (1.4a,b)

and features a doubly periodic array of cellular vortices. Some non-trivial generalizations
of this equilibrium were recently considered by Zhigunov & Grigoriev (2023).

However, short-wavelength instabilities have been studied using an asymptotic
Wentzel–Kramers–Brillouin (WKB) approach borrowed from geometric optics in
which the solution of the linearization of (1.1) is represented as u(t, x) =
a(t, x, ξ0) exp[iS(t, x, ξ0)/δ] + O(δ) for some δ > 0, where ξ := ∇S is the wavenumber
of the perturbation and an analogous representation is used for the pressure p(t, x)
(Friedlander & Vishik 1991; Lifschitz & Hameiri 1991). Considering the leading-order
expressions obtained by plugging these ansätze into the linearization of (1.1) and then
taking the asymptotic limit δ → 0 followed by switching to the Lagrangian representation,
one obtains a system of ordinary differential equations (ODEs) describing the evolution
of the Lagrangian coordinate x(t; x0), the perturbation wavenumber ξ(t; x0, ξ0) and the
amplitude of the perturbation a(t; x0, ξ0, a0) as a function of the corresponding initial
conditions x0, ξ0 and a0 (chosen such that ξ0 · a0 = 0 to ensure incompressibility). This
system of ODEs, referred to as the bicharacteristic problem, describes the time evolution
of oscillatory perturbations in the short-wavelength limit. An instability of an equilibrium
can then be detected if one can find a solution of this system such that |a(t; x0, ξ0, a0)|
grows in time. While this approach makes it possible to conclude about an instability of the
equilibrium, given its local Lagrangian nature, it does not provide any information about
the global structure of the instability in space.

The 2-D Taylor–Green vortex (1.4a,b) is one of a number of exact solutions of the Euler
equations known in a closed form. In the presence of viscosity ν, the velocity field (1.4a,b)
gives rise to a closed-form solution of the Navier–Stokes system which decays in time as
O(e−νt). Therefore, the Taylor–Green vortex often serves as a benchmark in computational
fluid dynamics. Most of the investigations of the stability of the 2-D Taylor–Green vortex
have been carried out in the viscous setting where (1.4a,b) is not an exact equilibrium
solution of the Navier–Stokes system. However, the main underlying assumption in these
studies was that the time scale on which the instabilities develop is much shorter than
O(e−νt), the rate of the viscous decay of (1.4a,b). These investigations typically involved
WKB analysis, solution of the eigenvalue problem for the linearized operator and/or time
integration of the governing equations, all of which were performed numerically. They
included analysis of elliptic instabilities under three-dimensional (3-D) perturbations (Sipp
& Jacquin 1998; Kerswell 2002; Aspden & Vanneste 2009) and hyperbolic instabilities
(Friedlander & Vishik 1991; Leblanc & Godeferd 1999; Suzuki, Hirota & Hattori 2018).
A thorough discussion of different instability mechanisms possible in the Taylor–Green
vortex under rotation and/or stratification can be found from Hattori & Hirota (2023).
The elliptic instability is closely related to elliptic stagnation points in the base flow and
only occurs when the perturbation is 3-D, crucially depending on the wavenumber of the
perturbation along the direction orthogonal to the plane of motion. On the other hand,
the hyperbolic instability is connected to hyperbolic stagnation points and appears even
under 2-D perturbations (Gau & Hattori 2014), which is more relevant to the current study
where we focus on analysing the stability of 2-D flows. In particular, in this latter study,
the authors considered a problem similar to that investigated here. However, as will be
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evident below, our findings are in fact quite different, underlining the difference between
the viscous and inviscid formulations.

In contrast to these earlier studies, our focus here is on the instability of the Taylor–Green
vortex (1.4a,b) in 2-D inviscid Euler flows governed by (1.1)–(1.2). Even though, at a
formal level, the Euler equations under periodic boundary conditions can be viewed as the
vanishing viscosity limit of the Navier–Stokes equations, the spectra of the corresponding
linearized operators are fundamentally different. Unlike the linearized Navier–Stokes
operator, the linearized Euler operator is not elliptic, thus the existent theory about
elliptic operators cannot be applied. Moreover, it is also degenerate and non-self-adjoint,
which further complicates the analysis. Most importantly, the spectrum of the linearized
Navier–Stokes operator defined on a bounded domain subject to Dirichlet boundary
conditions or periodic boundary conditions can only consist of the discrete spectrum and
the corresponding eigenfunctions are smooth. Shvydkoy & Friedlander (2008) proved that
the eigenvalues of the linearized Navier–Stokes operator converge to unstable eigenvalues
of the linearized Euler operator which are outside the essential spectrum as viscosity
goes to zero, if such eigenvalues exist. However, despite the simple structure of the 2-D
Taylor–Green vortex (1.4a,b), the existence of unstable eigenvalues of the corresponding
linearized Euler operator is still an open question. If such unstable eigenvalues exist,
the regularity of the corresponding eigenfunctions is not a priori known and may be
determined by the location of these eigenvalues relative to the essential spectrum (Lin
2005). Thus, due to these nuances, the inviscid problem is distinct from its viscous
counterpart.

Since the spectra of the linearized Euler operators obtained by linearizing the velocity
formulation (1.1) and the vorticity formulation (1.2) are equivalent (Shvydkoy & Latushkin
2005), in this study, we use the latter formulation and provide numerical evidence that
the linearized operator has unstable eigenvalues approximately equal to 0.1424 ± 0.5875i
with the corresponding eigenfunctions given by distributions in H0.28

0 (T2), where the
level of regularity s = 0.28 is determined approximately based on Lin’s theorem (Lin
2004), as will be discussed in § 2. This eigenfunction exhibits a more regular profile
in the laminar cells loosing its smoothness in the vicinity of the heteroclinic orbits
of the equilibrium (1.4a,b). We also illustrate another distinct instability mechanism
associated with a continuous family of uncorrelated functions corresponding to points
in the essential spectrum, which is quite different from the modal growth observed in
the former case. Since the essential spectrum does not arise in a finite-dimensional
setting, investigation of these questions requires the use of computational tools which
are more refined as compared with the techniques typically employed in the studies of
hydrodynamic stability (Schmid & Henningson 2001). Obtaining these results is enabled
by the solution of a suitably defined partial differential equation (PDE) optimization
problem. Such optimization-based formulations have had a long history in the study of
flow stability problems, both linear and nonlinear (Schmid & Henningson 2001; Kerswell,
Pringle & Willis 2014; Kerswell 2018). However, given the subtle infinite-dimensional
nature of the optimization problem considered here, we solve it using a specialized variant
of the adjoint-based approach which allows us to impose different levels of regularity on
the obtained optimal initial conditions (Zhao & Protas 2023). By solving this optimization
problem using increasing spatial resolutions, we obtain a sequence of functions that are
localized near the hyperbolic stagnation points of the equilibrium solution (1.4a,b) and
reveal high-frequency oscillations restricted by the spatial resolution. Importantly, using
these functions as initial conditions, the corresponding solutions of the linearized Euler
system reveal growth rates saturating rigorous a priori bounds on the growth of the
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semigroup induced by the essential spectrum of the generator. While these results are
consistent with the findings of the WKB analysis, they also provide information about the
global spatial structure of the perturbations realizing this maximum possible growth.

The structure of the paper is as follows: in § 2, we introduce the problems of linear and
nonlinear instability and discuss the spectrum of the linearized Euler operator; in § 3, we
discuss the numerical discretization of the linearized operator to compute its eigenvalues
as well as the formulation of a PDE optimization problem to obtain initial conditions
such that the corresponding flows realize the largest growth rate of perturbations predicted
by the form of the essential spectrum, which is solved using a Riemannian conjugate
gradient method described in Appendix A; in § 4, we illustrate two distinct mechanisms
that lead to a linear instability – a modal growth and a non-modal growth of the solution,
where the former corresponds to the point spectrum, while the latter corresponds to the
essential spectrum of the linearized operator and is highly dependent on the function
space in which the perturbation is defined. Additionally in that section, we discuss
some computational results concerning the nonlinear instability. A discussion and final
conclusions are deferred to § 5.

2. Linear and nonlinear stability

Linearizing system (1.2) around a steady solution {us, ωs}, we obtain the following system:

∂tw = Lw, (x, t) ∈ T
2 × (0,+∞), (2.1a)

w(x, 0) = w0(x), x ∈ T
2, (2.1b)

where the linearized Euler operator L is given by

Lw := −(us · ∇)w − (u · ∇)ωs = [−us · ∇ − ∇ωs · (∇⊥Δ−1)]w. (2.2)

The solution of system (2.1) can be written as w(t) = etLw0, where w(t) := w(t, ·) and
etL is the semigroup induced by the operator L (Engel & Nagel 2000). The question of
stability of the equilibrium ωs is thus linked to the asymptotic, as t → ∞, behaviour
of ‖etL‖Hm quantified by the growth abscissa γ (L) := limt→∞ t−1 ln ‖etL‖Hm , which is
in turn determined by the spectrum σ(L) of the operator L. While in finite dimensions
it is determined by the eigenvalue with the largest real part, in infinite dimensions, the
situation is more nuanced since there exist operators A such that supz∈σ(A) Re(z) < γ (A),
e.g. Zabczyk’s problem (Zabczyk 1975; Trefethen 1997); some problems in hydrodynamic
stability where such behaviour was identified are analysed by Renardy (1994).

Following Browder (1961), we decompose the spectrum of L into two disjoint sets: the
discrete spectrum and the essential spectrum, as follows:

σ(L) = σdisc(L) ∪ σess(L). (2.3)

We then say that z ∈ σdisc(L) if it satisfies the following conditions:

(i) z is an isolated point in σ(L);
(ii) z has finite multiplicity, i.e.

⋃∞
r=1 Ker(z − L)r is finite dimensional;

(iii) the range of z − L is closed.

Otherwise, z is called a point of the essential spectrum σess(L). To illustrate this
concept, we consider the linear operator T that maps all functions in L2

0(T) to the zero
function. It has only the essential spectrum σess(T) = {0} as its kernel Ker(T) = L2

0(T)
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is infinite-dimensional. As a more complicated example, we consider the linear operator
T : L2

0(T) → L2
0(T) defined by

T[ f ](x) :=
∞∑

n=1

1
n
(an cos(nx)+ bn sin(nx)), where f (x) =

∞∑
n=1

(an cos(nx)+ bn sin(nx)).

(2.4)
For any positive integer p, 1/p is an eigenvalue of T , and cos( px) and sin( px)
are the corresponding eigenfunctions. Since T is not surjective, 0 ∈ σ(T) and since
limp→∞(1/p) = 0, 0 is not an isolated point in the spectrum of T . Therefore, we have
σdisc(T) = {1/p, p ∈ N+} and σess(T) = {0}.

While in finite dimensions linear operators can be represented as matrices which can
only have a discrete spectrum, in infinite dimensions, the situation is complicated by the
presence of the essential spectrum. We refer to the set of eigenvalues of L as the point
spectrum

σp(L) := {λ ∈ C : ∃φ(x) /= 0,Lφ(x) = λφ(x), x ∈ T
2}, (2.5)

where φ is the eigenfunction corresponding to the eigenvalue λ. It follows from the
discrete translation symmetry of the 2-D Taylor–Green vortex (1.4a,b) and the continuous
translation invariance of the Euler system (1.1) that if φ(x1, x2) is an eigenfunction
corresponding to λ, then so is φ(−x1,−x2), whereas φ(x1 + π, x2), φ(x1, x2 + π),
φ(−x1, x2) and φ(x1,−x2) are eigenfunctions corresponding to −λ.

As regards the discrete spectrum σdisc(L) of the linearized Euler operator (2.1), some
results are available only for certain flows such as parallel and rotating shear flows
(Chandrasekhar 1961; Drazin & Reid 1981; Friedlander et al. 1997) and the cellular
‘cat’s-eye’ flow (Friedlander et al. 2000). In the absence of general results, one of the goals
of the present study is to consider this question in the context of the Taylor–Green vortex
(1.4a,b). Unlike the aforementioned two cases, where the instability is closely related to
the shear flow structure of the equilibria, equilibrium (1.4a,b) possesses a cellular structure
only.

On the other hand, the essential spectrum σess(L) of the linear operator L is fully
understood (Shvydkoy & Latushkin 2003): in Hm

0 (T
2), m ∈ R, it is given by the strip

σess(L; Hm
0 ) = {z ∈ C : |Re(z)| ≤ |m|μmax}, (2.6)

where μmax is the maximal Lyapunov exponent corresponding to the Lagrangian flow
ϕt : ξ → x(t; ξ) generated by the steady state via ∂tx(t) = us(x(t)),

μmax = lim
t→∞

1
t

log sup
x∈T2

||∇ϕt(x)||. (2.7)

In 2-D, μmax can only be attained at a hyperbolic stagnation point xs of the flow {ϕt}
induced by the steady state us and is determined by the largest real part of the eigenvalues
of the velocity gradient ∇us(xs) evaluated over all stagnation points xs (Shvydkoy
& Friedlander 2005). The equilibrium state (1.4a,b) has four hyperbolic stagnation
points xs = {(π/2,π/2), (π/2, 3π/2), (3π/2,π/2), (3π/2, 3π/2)}. By computing the
eigenvalues of ∇us at these four points, we deduce that μmax = 1. Another interesting
property of the stagnation points is that the action of the linearized operator on any
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sufficiently smooth function w vanishes at these points, i.e.

Lw = 0 at x = xs. (2.8)

At the same time, we also have

σ(etL; Hm) = {z ∈ C : exp(−t|m|) ≤ |z| ≤ exp(t|m|)}, (2.9)

such that the full analogue of the spectral mapping theorem holds (Shvydkoy & Latushkin
2003). All points in the band and the annulus are points of the essential spectrum in
the Browder sense (Browder 1961), which is the broadest definition of the essential
spectrum also coinciding with the Fredholm spectrum. In the proof, for any point z ∈
σess(L), Shvydkoy & Latushkin (2003) constructed approximate eigenfunctions as a
sequence of unit vectors {fn} ∈ Hm

0 (T
2) such that ‖(L − z)fn‖Hm → 0 as n → ∞, and

{fn} does not contain any convergent subsequence. These approximate eigenfunctions are
characterized by highly oscillatory behaviour and are stretched along the heteroclinic
orbits of us while concentrating towards the hyperbolic points. These results are consistent
with the asymptotic WKB analysis conducted in the neighbourhood of the hyperbolic
stagnation points which suggests the presence of highly oscillatory perturbations growing
as O(eμmaxt), though they need not be eigenfunctions of L (Friedlander & Vishik 1991;
Lifschitz & Hameiri 1991). In general, it is unknown whether the operator L has
any unstable eigenvalues. However, when it does, the regularity of the corresponding
eigenfunctions is characterized by a theorem of Lin (2004) which we state here in a slightly
less general version adapted to the case when the equilibrium is given by the Taylor–Green
vortex (1.4a,b).

THEOREM 2.1 (Lin 2004). Suppose there exists an exponentially growing solution eλtw0
of the linearized system ∂tw = Lw with Re(λ) > 0 and let w0 ∈ L2(T2). Then, we have the
following:

(i) [regularity of growing modes] w0 ∈ W1,p(T2) ∩ Lq(T2) for all 1 ≤ p < p∗ and 1 ≤
q < ∞, where

p∗ =
⎧⎨
⎩

μmax

μmax − Re(λ)
= 1

1 − Re(λ)
, μmax > Re(λ),

∞, μmax ≤ Re(λ);
(2.10)

(ii) [nonlinear instability] for any p ∈ [1, p∗), q ∈ [1,∞), m ∈ [−1,∞), there exists
ε > 0, such that for any δ > 0, there is a solution ωδ(t) of the 2-D Euler system (1.2)
corresponding to the initial condition ωδ0, satisfying

‖ωδ0 − ωs‖Lq + ‖∇(ωδ0 − ωs)‖Lp ≤ δ, (2.11)

and
sup

0<t<Tδ
‖ωδ(t)− ωs‖Hm ≥ ε. (2.12)

While for general infinite-dimensional nonlinear systems linear instability need not
imply a nonlinear instability, the second part of the theorem above asserts that this is in fact
the case for the 2-D Euler problem, provided the unstable eigenfunction of the linearized
operator L is sufficiently regular.

As a key result of the present study, we provide numerical evidence that the operator
L does possess unstable eigenvalues and we also characterize the regularity of the
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corresponding eigenfunctions concluding that it is consistent with Theorem 2.1, part (i),
cf. § 4.1.1. The nonlinear instability predicted in part (ii) of the theorem is illustrated in
§ 4.2. Another contribution of the present study is to illustrate the non-trivial instability
mechanism associated with the unstable essential spectrum, cf. § 4.1.2.

3. Numerical approaches

In this section, we introduce the numerical approaches that will allow us to characterize
the growth of solutions of the linear and nonlinear problems (2.1) and (1.2). First, in
§ 3.1, we describe a numerical solution of the eigenvalue problem (2.5) such that the
eigenfunctions φ corresponding to the eigenvalues λ ∈ σp(L) can be used as the initial
condition in the linear and nonlinear problems (2.1) and (1.2) (in the latter case, the
eigenfunctions serve as perturbations of the equilibrium (1.4a,b)). Then, in § 3.2, we
introduce an optimization-based approach allowing us to construct solutions of the linear
problem (2.1) saturating the spectral bounds (2.6) and (2.9). Finally, in § 3.3, we describe
the approach to the numerical solution of the evolutionary systems (1.2), (2.1) and its
adjoint.

3.1. The point spectrum of the linear operator L
To characterize the point spectrum σp(L), we adopt a Galerkin approach where the
operator L is discretized using the following orthonormal basis in Hm

0 (T
2):

ϕj1,j2(x) := 1√
2π
(1 + j21 + j22)

−m/2 cos( j1x1 + j2x2), (3.1a)

j1, j2 ∈ N,

ψj1,j2(x) := − 1√
2π
(1 + j21 + j22)

−m/2 sin( j1x1 + j2x2), (3.1b)

and we have

Lϕj1,j2 = α(ϕj1+1,j2+1 − ϕj1−1,j2−1)+ β(−ϕj1+1,j2−1 + ϕj1−1,j2+1),

Lψj1,j2 = α(ψj1+1,j2+1 − ψj1−1,j2−1)+ β(−ψj1+1,j2−1 + ψj1−1,j2+1),

where α = ( j1 − j2)( j21 + j22 − 2)

4( j21 + j22)
, β = ( j1 + j2)( j21 + j22 − 2)

4( j21 + j22)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

In the computations, we approximate functions in Hm
0 (T

2) using a finite subset of the basis
(3.1),

WN = {ϕ0,j2, ψ0,j2 : 1 ≤ j2 ≤ N}
⋃

{ϕj1,j2, ψj1,j2 : 1 ≤ j1 ≤ N,−N ≤ j2 ≤ N}, (3.3)

which contains |WN | = 2
∑N

s=1 4s = 4N(N + 1) elements. We label the basis functions
in WN using the ‘spiral’ ordering, i.e.

pn+2j = ϕj,s, pn+2j+1 = ψj,s,

pn+2s+2j = ϕs,s−j, pn+2s+2j+1 = ψs,s−j,

pn+4s+2j = ϕs,−j, pn+4s+2j+1 = ψs,−j,

pn+6s+2j = ϕs−j,1−s, pn+6s+2j+1 = ψs−j,1−s,

n = 1 + 4s(s − 1),

0 ≤ j ≤ s − 1, 1 ≤ s ≤ N.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)
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Given a function f ∈ Hm
0 (T

2), we thus define its Galerkin approximation f N by

f ≈ f N :=
|WN |∑
j=1

f̂jpj, f̂j = 〈 f , pj〉Hm . (3.5)

Approximating the eigenfunctions φ in (2.5) in terms of the truncated Fourier series (3.5),
we arrive at the discrete algebraic eigenvalue problem

Lφ = λφ, (3.6)

where L is a |WN | × |WN | matrix whose entries are determined by relations (3.2) as

Lj,k = 〈Lpk, pj〉Hm, 1 ≤ j, k ≤ |WN |. (3.7)

As a result of relations (3.2), matrix L is sparse, with at most four non-zero entries in each
row and column. Moreover, since

〈Lpk, pj〉Hm = 〈(1 −Δ−1)m/2Lpk, (1 −Δ−1)m/2pj〉L2

= 〈[(1 −Δ−1)m/2L(1 −Δ−1)−m/2](1 −Δ−1)m/2pk, (1 −Δ−1)m/2pj〉L2,

(3.8)

the matrices L computed in different Sobolev spaces Hm
0 (T

2) are similar. Therefore,
without loss of generality, we can focus our discussion on the matrix constructed with
m = 0, i.e. in L2

0(T
2).

We adopt two different methods to numerically solve the algebraic eigenvalue problem
(3.6). As the first method, we use the eigenvalue solver dgeev from the LAPACK library to
compute all eigenvalues of L. This approach provides a complete picture of the spectrum
of the matrix L, but is computationally expensive, limiting the resolution to N2 = 2002.
The second method takes advantage of the sparse structure of the matrix L and uses a
Krylov subspace method (Hattori & Hirota 2023) to only compute the eigenvalue with
the largest real part and the corresponding eigenvector. Specifically, we use the MATLAB

function eigs, setting the dimension of the Krylov subspace to 20, the tolerance to 10−10

and the maximum number of iterations to 1000. To validate these results, at N2 = 2002,
we use a random vector to generate the Krylov subspace, and the obtained eigenvalues
with the largest real part are found to be essentially the same as those obtained using the
LAPACK subroutine dgeev. To speed up the computation, at the resolution (2N)2, we use
λN+ as the shift and the corresponding eigenfunction φN+ as the generator of the Krylov
subspace. This allows us to increase the numerical resolution from N2 = 2002 to 30002.
A combination of these two approaches makes it possible to obtain a global picture of the
spectrum of the matrix L, while also refining the approximations of the most interesting
eigenvalues.

As is shown in § 4.1, employing the procedure described above, we obtain unstable
eigenvalues whose real part is approximately 0.1424 and the corresponding eigenfunctions
belong to H0.28

0 (T2) ⊂ L2
0(T

2). Using the real part of this eigenfunction as the initial
condition in the linearized Euler equations (2.1), we observe an exponential growth of
the L2 norm of the solution w(t) with the rate predicted by the real part of the unstable
eigenvalue. However, as is evident from (2.6), in the Sobolev spaces H1 and H−1, σess(L)
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forms a vertical band |Re(z)| ≤ 1. It is thus a natural question what initial condition can
realize the growth abscissa γ (L) = 1 predicted by σess(L), which is larger than the growth
rate realized by the unstable eigenfunction. Tools needed to address this question are
discussed next.

3.2. The essential spectrum of the linear operator L
As will be evident in § 4.1, the real part of the unstable eigenvalues of problem (2.5) found
as described in § 3.1 is near 0.1424, and therefore, for m /= 0, does not saturate the bounds
on the growth of the abscissa implied by (2.9). It is therefore natural to ask the question
whether there exists an initial condition w0 such that the growth rate of ||etLw0||Hm , i.e.
(d/dt) ln(‖etLw0‖Hm), saturates this bound. Since the essential spectrum is an inherently
infinite-dimensional object, information about it is lost in a finite-dimensional truncation
such as (3.5). We thus need an approach different from the method described in § 3.1 to
study properties related to the essential spectrum. Instead of maximizing the growth rate
of the solutions of (2.1) directly, we aim to maximize the norm of the solution ||etLw0||Hm

at some finite time t = T > 0 over all w0 ∈ Hm
0 (T

2). Since etLw0 is linear with respect to
w0, we can fix ‖w0‖Hm = 1 without loss of generality. Therefore, we define the following
objective functional J : Hm

0 (T
2) → R

J(w0) = ||eTLw0||2Hm, (3.9)

and the corresponding optimization problem.

PROBLEM 3.1. For T > 0, find

w̃0 = argmaxw0∈M J(w0), M := {w0 ∈ Hm
0 (T

2) : ‖w0‖Hm = 1}. (3.10)

To observe a significant exponential growth of ||eTLw0||Hm , one normally chooses
T > O(ln(‖w0‖Hm)), and in our study, we use T = 1. Problem 3.1 has the form of a
quadratically constrained quadratic program defined in terms of positive-semidefinite
operators and is therefore convex.

While discretized versions of Problem 3.1 can in principle be solved by performing
a singular-value decomposition of the corresponding matrix exponential (Schmid &
Henningson 2001), this is problematic when one has to ensure the required regularity of the
optimal initial condition w̃0, which is encoded here in the choice of m. We therefore solve
this problem using a Riemannian conjugate gradient method (Absil, Mahony & Sepulchre
2008; Danaila & Protas 2017; Sato 2021; Zhao & Protas 2023) which requires computation
of the Sobolev gradient of J(w0), denoted ∇J(w0). Evaluating the Gâteaux (directional)
differential J′(w0; w′

0) : Hm
0 × Hm

0 → R, which represents the variation of the objective
function J(w0) in the direction of w′

0 at the point w0, we obtain

J′(w0; w′
0) = lim

ε→0

1
ε

[J(w0 + εw′
0)− J(w0)]

= 2〈eTLw0, eTLw′
0〉Hm

= 2〈(1 −Δ−1)m eTLw0, eTLw′
0〉L2

= 2〈eTL∗
(1 −Δ−1)m eTLw0, w′

0〉L2

= 2〈(1 −Δ−1)−m eTL∗
(1 −Δ−1)m eTLw0, w′

0〉Hm, (3.11)
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where L∗ is the adjoint of the linear operator L defined with respect to the L2 inner product
as 〈Lf , g〉L2 = 〈 f ,L∗g〉L2 and having the form

L∗ = us · ∇ +Δ−1(∇ws · ∇⊥). (3.12)

Finally, using relation (3.11) and the Riesz representation theorem, the Sobolev gradient
of J(w0) with respect to the Hm inner product is obtained as

∇J(w0) = 2(1 −Δ−1)−m eTL∗
(1 −Δ−1)m eTLw0. (3.13)

Details of the Riemannian conjugate gradient method we use to solve Problem 3.1 are
described in Appendix A.

3.3. Numerical solution of the evolution problems
Here, we describe the numerical approach we use to solve the evolution problems (1.2),
(2.1) and the adjoint problem defined in (3.12). We employ a standard Fourier–Galerkin
pseudospectral method (Canuto et al. 1988) where the solution is approximated in terms
of a truncated Fourier series with the nonlinear term and the terms with non-constant
coefficients evaluated in the physical space. In lieu of dealiasing, we use the Gaussian
filter proposed by Hou & Li (2007). The resulting system of ordinary differential equations
is integrated in time using the RK4 technique and a massively parallel implementation
based on MPI. Since the considered initial conditions are distributions, rather than smooth
functions, cf. figure 2, the numerical solutions of problems (1.2) and (2.1) are not well
resolved regardless of the resolution N2. However, the Galerkin projection implied by the
truncation of the series, as in (3.5) together with the resolution-dependent filter, can be
regarded as a regularization of the problem whose effect vanishes as the resolution is
refined, i.e. as N → ∞.

4. Results

Here, we describe the mechanisms of the linear growth of perturbations in the modal
regime, associated with eigenvalues in the point spectrum σp(L), and in the non-modal
regime, associated with points in the essential spectrum σess(L) that do not coincide with
the point spectrum σp(L). This is followed by a discussion of the growth of perturbations
in the nonlinear regime. Hereafter, we will use the convention that the superscript N will
represent the resolution with which a given quantity, such as an eigenvalue, eigenfunction
or a solution of the linear problem (2.1), is approximated.

4.1. Linear instability
As discussed in § 3.1, since in the discrete eigenvalue problem (3.6) the matrices
corresponding to different values of m are similar, it suffices to solve the eigenvalue
problem using m = 0 only. Figure 1(a) shows the eigenvalues of the discrete eigenvalue
problem (3.6) with m = 0 obtained using the resolution N2 = 2002. We see that there
are two pairs of conjugate eigenvalues ±λ200+ ,±λ200+ , where λ200+ denotes the eigenvalue
whose real and imaginary parts are both positive. To better resolve these eigenvalues
and the corresponding eigenvectors, the discrete eigenvalue problem (3.6) is then solved
with the Krylov method described in § 3.1 which leverages the sparsity of the matrix L.
This allows us to refine the resolution as N2 = 2002, 4002, . . . 30002 and the obtained
eigenvalues λN+ are shown in figure 1(b). We see that as the resolution N2 increases,
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Figure 1. (a) Eigenvalues of the discrete eigenvalue problem (3.6) obtained with m = 0 and the resolution
N2 = 2002 (the inset represents a magnification of the neighbourhood of the unstable eigenvalues λ200+
and λ200+ ). (b) Eigenvalue λN+ computed using the Krylov subspace method with resolutions N2 = 2002,

4002, . . . , 30002. (c) Imaginary parts of the remaining eigenvalues Im(λN) obtained for different resolutions
N2 with panel (d) showing a magnification of a region near the origin.

these eigenvalues converge to a well-defined limit; this limit is interpreted as the ‘true’
eigenvalue in the point spectrum σp(L) (Boyd 2001). We denote limN→∞ λN+ =: λ+ and
at the largest resolution N2 = 30002 have λ3000+ = 0.1424 + 0.5875i, which is a numerical
approximation of the ‘true’ unstable eigenvalue λ+. We note that 0 is also an eigenvalue.
On the other hand, all remaining eigenvalues of the discretized problem (3.6) fall on
the imaginary axis and, as is evident from figures 1(b) and 1(c), they do not converge
to well-defined limits. Instead, as the resolution N2 is refined, the purely imaginary
eigenvalues fill an expanding subinterval of the imaginary axis and they do so ever more
densely. We thus interpret them as representing points in the essential spectrum σess(L),
cf. (2.6), that do not belong to the point spectrum σp(L).

4.1.1. Modal growth
We now analyse the eigenfunction φ3000+ corresponding to the eigenvalue λ3000+ , and its real
part is shown as a surface plot in figure 2(a) and as a contour plot in figure 2(b). We observe
that Re[φ3000+ (x1, x2)] is an odd function and is also symmetric with respect to the lines
x1 = π/2, x1 = 3π/2, x2 = π/2 and x2 = 3π/2; this is also true for Im[φ3000+ (x1, x2)]
and holds for the eigenfunctions obtained using lower resolutions as well. Therefore, these
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Figure 2. (a) Surface plot and (b) contour plot of the real part Re(φ3000+ ) of the eigenfunction corresponding
to the eigenvalue λ3000+ as a function of x1 and x2. (c) Cross-section Re[φN+(x1,π/2)] as a function of x1 for
different resolutions N2 with panel (d) showing a magnification of the neighbourhood of the stagnation point
(π/2,π/2); the dashed line represents the function C1/|x1 − π/2|0.22 + C2 with some C1,C2 > 0, cf. (4.3).
(e) Energy spectra (4.2) of the eigenfunctions φN+ for different resolutions with the straight lines representing
the power-law relations with indicated exponents.

eigenfunctions satisfy the relations

φN
+(−x1,−x2) = −φN

+(x1, x2),

φN
+(ζ − x1, x2) = φN

+(ζ + x1, x2), φN
+(x1, ζ − x2) = φN

+(x1, ζ + x2), ζ = π

2
,

3π

2
.

⎫⎬
⎭

(4.1)
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We observe that Re[φN+] is localized near the hyperbolic stagnation points of the
equilibrium (1.4a,b) and to better understand the behaviour of the eigenfunction, in
figure 2(c), we show Re[φN+(x1,π/2)] as a function of x1 for different resolutions N2. In
other words, this figure shows the cross-sections of the eigenfunction along the heteroclinic
orbit connecting the hyperbolic stagnation points (π/2,π/2) and (π/2, 3π/2), with a
magnification of the neighbourhood of the former shown in figure 2(d).

We now proceed to characterize the regularity of the eigenfunction φ+ more precisely.
It is evident from figure 2(a,c,d) that φ+ is L2-integrable and therefore we can refer to part
(i) of Theorem 2.1, cf. (2.10), from which we conclude that φ+ ∈ W1,p∗

(T2) with p∗ =
1/(1 − Re(λ+)) ≈ 1.16. So that we can compare this prediction with the regularity of the
numerical approximations φN+ of the eigenfunction, we invoke the Sobolev embedding
W1,p∗

↪→ Hm with 1/p∗ − 1/n = 1/2 − m/n (Adams & Fournier 2005) for the spatial
dimension n = 2, which allows us to conclude that s ≈ 0.28, such that φ+ ∈ H0.28

0 (T2).
Since the regularity of a function, understood as the number of well-behaved derivatives,
is encoded in the rate of decay of its Fourier coefficients as k → ∞ (Trefethen 2013), we
consider the energy spectra of the numerically computed eigenfunctions

e(k) := 1
2

∑
k≤| j|<k+1

|φ̂N
j |2, k ∈ N, (4.2)

where φ̂N
j are the Fourier coefficients of the approximations φN+ obtained with different

resolutions N2. This is an approach which has had a long tradition in fluid mechanics
(Brachet et al. 1983; Brachet 1991). For a function to be L2-integrable, its energy spectrum
(4.2) needs to vanish no slower than O(k−1). The energy spectra of the eigenfunctions
φN+ approximated with different resolutions N2 are shown in figure 2(e). We see that, as
the resolution is refined, the energy spectrum decays approximately as e(k) = O(k−1.56),
which is consistent with φ+ ∈ H0.28

0 (T2) predicted by Theorem 2.1, demonstrating the
sharpness of this result. As a result of the symmetry of the eigenfunction stated in (4.1),
we have φ̂j1,j2 = 0 when j1 + j2 is even. We also observe that for each resolution, the
energy spectrum splits into two branches, an effect that becomes more evident when the
energy spectrum (4.2) is redefined to depend on the 1-norm of the wavevector j, i.e. on
|| j||1 := | j1| + | j2|, rather than on | j|. In such a case, e(k) is at the level of round-off
errors when k is even.

To better understand the structure of the eigenfunction φ+ in the neighbourhood of the
hyperbolic stagnation point xs = (π/2,π/2), we will represent it locally in terms of the
following asymptotic ansatz:

φ+ ∼ 1
|ξ1|α|ξ2|β , where ξi = xi − π

2
, i = 1, 2, (4.3)

reflecting the fact that the singularity in φ+ occurs along the heteroclinic orbits of
(1.4a,b). We then have ∂m

ξ1
φ+ ∼ 1/(|ξ1|α+m|ξ2|β) and ∂m

ξ2
φ+ ∼ 1/(|ξ1|α|ξ2|β+m), where

∂m
ξi

is a partial derivative of fractional order m. So that φ+ ∈ H0.28
0 (T2), these expressions

need to be square-integrable which necessitates 2(α + m) < 1 and 2(β + m) < 1.
Therefore, we arrive at α, β < 1/2 − m ≈ 0.22. In figure 2(d), we also show the function
C1/|x1 − π/2|0.22 + C2 for some C1,C2 > 0 and conclude that it accurately represents the
behaviour of the eigenfunction Re[φN+(x1,π/2)] near the point x1 = π/2 as the resolution
is refined. This further confirms that φ+ is not continuous at the hyperbolic stagnation
points.
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We now comment on the rate of convergence of our numerical approximations φN+ as
the resolution is refined. Since the eigenfunction is not smooth, we cannot expect the
spectral approach (3.1)–(3.6) to converge exponentially fast. In fact, based on the standard
convergence theory of spectral methods (Canuto et al. 1988; Shen, Tang & Wang 2011),
we have

||φN
+ − φ+||L2 ∼ O(N−s) with s ≈ 0.28. (4.4)

To verify this prediction, when the exact solution φ+ is not available, we consider the
quantity

||φN+�N
+ − φN+||L2

�N
∼ O(N−1−s), (4.5)

which can be viewed as an approximation of the ‘derivative’ of (4.4) with respect to N.
The left-hand side can be evaluated using the approximations φN+ obtained at different
resolutions. Doing this for N = 600, 800, . . . , 3000 and �N = 200, and performing a
least-squares fit for the expression on the right-hand side, we obtain s = 0.29, which
confirms that our approximations converge at an algebraic rate close to the theoretical
prediction in (4.4).

We now move on to analyse the growth of the solution w(t) of the linear system (2.1)
with the initial condition given in terms of the unstable eigenfunction discussed above,
i.e. with w(0) = Re(φ3000+ ). The linear system is approximated using the spatial resolution
N2 = 32002 and the time step �t = 2−10. The dependence of the norm ‖w(t)‖L2 on time
t is shown in figure 3(a) revealing the expected exponential growth. The corresponding
exponential growth rate (d/dt) ln(‖w(t)‖L2), which is equal to the slope of the curve in
figure 3(a), is shown in figure 3(b). We observe that after a brief initial transient, the growth
rate settles at 0.1425, which is to within less than 0.08 % equal to Re(λ3000+ ). Finally, we
consider the (normalized) autocorrelation function

Cm
τ (t) := 〈w(τ ),w(t)〉Hm

‖w(τ )‖Hm‖w(t)‖Hm
, t, τ ≥ 0, m ∈ Z, (4.6)

which in figure 3(c) is shown for m = 0 and τ = 0. The harmonic behaviour of the
autocorrelation function C0

0(t) indicates that the solution w(t) of the linear system (2.1) is
at all times t ≥ 0 a linear combination of Re(φ+) and Im(φ+). The oscillation period �T
of the autocorrelation function is related to the imaginary part of the eigenvalue λ+ and can
be approximated by �T ≈ 2π/Im(λ3000+ ) = 10.6945, which is consistent with the results
presented in figure 3(c). The behaviour observed in figure 3(a–c) is typical for the modal
growth of a perturbation in a linear problem (Schmid & Henningson 2001), and further
confirms that the eigenvalue λ+ and the corresponding eigenfunction φ+ obtained by
solving the discrete eigenvalue problem (3.6) are indeed good numerical approximations
of the ‘true’ eigenvalue and eigenfunction of problem (2.5).

4.1.2. Non-modal growth
To achieve the growth rate μmax = 1 of the semigroup etL predicted by the
essential spectrum when m = ±1, cf. (2.9), we solve Problem 3.1 with m = ±1
over a relatively short time window with T = 1 and using increasing resolutions
N2 = 1282, 2562, 5122, 10242. At the lowest resolution N2 = 1282, the initial guess
w(0)(x1, x2) = − cos(x2) is used in algorithm (A1), and then, for increasing resolutions,
the optimal initial condition w̃N

0 obtained with the resolution N2 is used as the initial guess
in the solution of the problem with the resolution (2N)2. In figures 4(a) and 5(a), we see
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Figure 3. Time-dependence of (a) the norm ‖w(t)‖L2 , (b) the growth rate (d/dt) ln(‖w(t)‖L2 ) and (c) the
autocorrelation C0

0 (t) corresponding to the solution of the linear problem (2.1) with the initial condition given by
the eigenfunction Re(φ3000+ ). The dashed horizontal line in panel (b) corresponds to Re(λ3000+ ), cf. figure 1(b).
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Figure 4. (a) Growth rate (d/dt) ln(‖wN(t)‖H1 ) versus t for the optimal initial conditions w̃N
0 obtained

by solving Problem 3.1 with m = 1 using increasing spatial resolutions N2. (b) Time dependence of the
autocorrelation function C1

τ (t) corresponding to N = 1024 and τ = 0, 0.25, 0.5, 0.75, 1.

that as the resolution N2 is refined, the growth rate (d/dt) ln(‖wN(t)‖Hm) with respectively
m = 1 and m = −1, approaches μmax = 1 and is sustained over an increasingly longer
time. Thus, the optimal flow evolutions found in this way indicate that the largest possible
growth of the semigroup etL is associated, via the spectral mapping theorem (2.9), with
the essential spectrum (2.6) of the operator L. In other words, there are no eigenvalues
outside the essential spectrum.
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by solving Problem 3.1 with m = 1 using increasing spatial resolutions N2. (b) Time dependence of the
autocorrelation function C−1

τ (t) corresponding to N = 1024 and τ = 0, 0.25, 0.5, 0.75, 1.

The contour plots of the optimal initial conditions w̃128
0 are shown in figures 6(a)

and 7(a) for m = 1 and m = −1, respectively, where we see that similarly to the ‘true’
eigenfunction φ+, cf. figures 2(a) and 2(b), these optimal initial conditions are also
localized around the hyperbolic stagnation points of the equilibrium flow (1.4a,b). How
these small-scale features are refined as the resolution N2 increases is shown for m = 1 and
m = −1 in figures 6(b–e) and 7(b–e) which present magnifications of the neighbourhoods
of the stagnation points (π/2,π/2) and (π/2, 3π/2), respectively. We see that, in
contrast to the ‘true’ eigenfunction φ+, the the optimal initial conditions w̃N

0 feature
small-scale oscillations that become increasingly concentrated at the stagnation points as
the resolution N2 increases with the length scale of the oscillations restricted by the spatial
resolution used. When m = 1, these oscillations are localized along the stable manifolds
and stretched along the unstable ones, cf. figure 6(b–e), and vice versa when m = −1,
cf. figure 7(b–e). Unlike the sequence {φN+} which converges to the true eigenfunction φ+
as N increases, cf. (4.4), the sequence {w̃N

0 } does not converge in a strong sense and this
lack of compactness underpins the infinite-dimensional nature of the stability problem.

Finally, in figures 4(b) and 5(b), we show the autocorrelation function (4.6) respectively
for m = 1 and m = −1, and τ = 0, 0.25, 0.5, 0.75, 1. We see that the behaviour in these
plots is fundamentally different from what is observed in figure 3(c), in that here, the
autocorrelation function decays quite rapidly, indicating that the solution w(t) becomes
effectively decorrelated after approximately a half time unit. In other words, there is no
single growing mode and instead, the evolution w(t) moves through a continuous family
of essentially uncorrelated functions. For this reason, we refer to the perturbation growth
analysed here as ‘non-modal’. The time evolution of the non-modal perturbations realizing
the behaviour shown in figures 4 and 6 for m = 1 and in figures 5 and 7 for m = −1
is visualized in movies 1 and 2 (they are also available respectively at https://youtu.be/
O8xM_1OvuHI and https://youtu.be/jLgUvRKPZ7o).

4.2. Nonlinear instability
Finally, we consider the question about the nonlinear stability of the equilibrium (1.4a,b).
Part (ii) of Theorem 2.1 asserts that if the eigenfunction φ+ is at least in L2(T2), then the

999 A64-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

94
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://youtu.be/O8xM_1OvuHI
https://youtu.be/O8xM_1OvuHI
https://youtu.be/jLgUvRKPZ7o
https://doi.org/10.1017/jfm.2024.946


X. Zhao, B. Protas and R. Shvydkoy

x1

x2

3π/10 7π/10

7π/10

π/2

π/2

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

x1

x1

3π/10 7π/10

7π/10

π/2

π/2

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

x2

x2

3π/10 7π/10

7π/10

π/2

π/2

–0.10

–0.05

0

0.05

0.10

–0.10

–0.05

0

0.05

0.10

3π/10 7π/10

7π/10

π/2

π/2

–0.10

–0.05

0

0.05

0.10

0 2π

2π

π

π

(a)

(b) (c)

(d) (e)

Figure 6. Contour plots of the optimal initial conditions obtained by solving Problem 3.1 with m = 1:
(a) w̃128

0 is shown in the entire domain T2 and (c–e) w̃N
0 are shown for N = 128, 256, 512, 1024 near the

hyperbolic stagnation point (π/2,π/2). The time evolution of the flow corresponding to the initial condition
w̃1024

0 , cf. panel (e), is shown in supplementary movie 1 available at https://doi.org/10.1017/jfm.2024.946.

equilibrium is also nonlinearly unstable. We emphasize that this is not a trivial statement
since for infinite-dimensional problems such as (1.2), a linear instability need not imply
a nonlinear instability. In § 4.1.1, we provided numerical evidence that the eigenfunction
φ+ ∈ H0.28

0 (T2) ⊂ L2(T2). Therefore, a nonlinear instability is indeed expected and here
we illustrate this behaviour. In figures 8(a) and 8(b), we show the time dependence of
the kinetic energy of the perturbation given by the norm ‖ωδ(t)− ωs‖H−1 and of the
corresponding rate of growth when the evolution is governed by the nonlinear problem
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Figure 7. Contour plots of the optimal initial conditions obtained by solving Problem 3.1 with m = −1:
(a) w̃128

0 is shown in the entire domain T2 and (c–e) w̃N
0 are shown for N = 128, 256, 512, 1024 near the

hyperbolic stagnation point (π/2, 3π/2). The time evolution of the flow corresponding to the initial condition
w̃1024

0 , cf. panel (e), is shown in movie 2.

(1.2) with the initial condition ω0 given in terms of the eigenfunction φ3000+ as

ω0 = ωs + δRe(φ3000
+ )/‖Re(φ3000

+ )‖L2 (4.7)

with different indicated magnitudes δ. The time evolution is computed using the spatial
resolution N2 = 32002 and the time step�t = 2−10. We see that in each case, the vorticity
perturbation (ωδ(t)− ωs) at first grows exponentially, as is the case in the linear problem
(2.1), cf. figure 3(a,b), until this growth saturates due to nonlinear effects. Since this
behaviour occurs no matter how small the norm of the initial perturbation is, the results
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Figure 8. Time-dependence of (a) the norm ‖ωδ(t)− ωs‖H−1 and (b) growth rate (d/dt) ln(‖ωδ(t)− ωs‖H−1 )

in the solution of the nonlinear problem (1.2) with the initial condition given in terms of the eigenfunction φ3000+
as ω0 = ωs + δRe(φ3000+ )/‖Re(φ3000+ )‖L2 with different indicated magnitudes δ. The dashed horizontal line in
panel (b) corresponds to Re(λ3000+ ), cf. figure 1(b). In panel (c), we compare the growth rate of the solutions
of the nonlinear problem (1.2) corresponding to the same initial condition ω0 with δ = 10−2 computed using
different indicated numerical resolutions.

presented in figure 8(a,b) confirm that equilibrium (1.4a,b) is also nonlinearly unstable. We
also perform a resolution refinement study to investigate whether the saturation evident in
figure 8(a,b) is a result of an insufficient numerical resolution. Specifically, we compute
the solution of the nonlinear problem (1.2) using the same initial condition given by (4.7)
with δ = 10−2 and a higher spatial resolution N2 = 40962. As is shown in figure 8(c),
the two solutions computed using different resolutions (N2 = 32002 and 40962) reach the
nonlinear stage at essentially the same time and the difference in the growth rate of the
norm is negligible. This confirms that the saturation seen in figure 8(a,b) is physical and
not due to numerical artefacts. Moreover, since the kinetic energy is conserved in the Euler
system (1.2), we have

‖ωδ(t)− ωs‖H−1 ≤ ‖ωδ(t)‖H−1 + ‖ωs‖H−1 = ‖ωδ(0)‖H−1 + ‖ωs‖H−1 . (4.8)

As the right-hand side of the above equation does not depend on time, we know that
‖ωδ(t)− ωs‖H−1 cannot grow exponentially for all times.

5. Summary and conclusions

In this study, we have considered the stability of the Taylor–Green vortex in inviscid planar
flows governed by the 2-D Euler system (1.1). The Taylor–Green vortex (1.4a,b) is a simple
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equilibrium solution of that system characterized by a cellular structure with hyperbolic
stagnation points. In contrast to most earlier studies (Sipp & Jacquin 1998; Leblanc &
Godeferd 1999; Gau & Hattori 2014; Suzuki et al. 2018; Hattori & Hirota 2023), we have
considered the problem in the inviscid setting where there are important differences with
respect to the viscous problem, in particular, as regards the structure of the spectrum of the
linearized operator. As the most important result, we have presented numerical evidence
for the presence of two distinct mechanisms of linear instability in this flow.

First, by numerically solving the eigenvalue problem (2.5) and then integrating the
linearized Euler system (2.1) in time, we showed the existence of an unstable eigenvalue
λ+ ≈ 0.1424 + 0.5875i. Through a careful analysis of the behaviour of the numerical
approximations of the corresponding eigenfunction φ+ both in the physical and in
the Fourier space, we provided convincing evidence that this eigenfunction belongs to
H0.28

0 (T2), which is in close agreement with the assertion in part (i) of Theorem 2.1 (Lin
2004), thereby demonstrating the sharpness of this result. Moreover, the eigenfunction is
discontinuous at the hyperbolic stagnation points xs. We also showed that, in agreement
with part (ii) of Theorem 2.1, this eigenfunction also gives rise to a nonlinear instability.
In this context, we note that employing the complementary (with respect to the one
used in § 4.1.1) form of the Sobolev embedding W1,p∗

↪→ Lq (Adams & Fournier 2005),
where 1/p∗ − 1/2 = 1/q, we deduce that at the same time, φ+ ∈ Lq(T) with q = 2.76.
Consequently, the initial condition for the 2-D Euler system (1.2) given in (4.7) in terms
of this eigenfunction does not belong to the Yudovich class L1(T2)

⋂
L∞(T2) (Yudovich

1963) and therefore, uniqueness of the solution cannot in general be guaranteed. In fact,
as argued by Vishik (2018a,b), Bressan & Shen (2021) and Bruè, Colombo & Kumar
(2024), initial data in Lq with q < ∞ could lead to non-unique solutions; moreover, such
solutions could also exhibit anomalous dissipation. Similar properties resulting from an
interplay between the point spectrum and the essential spectrum of the linearized Euler
operator were recently revealed in the stability analysis of the Lamb–Chaplygin dipole by
Protas (2024).

Second, we illustrated a non-modal mechanism of instability growth which involves
a continuous family of uncorrelated functions, rather than a single eigenfunction of the
linearized operator L. This non-modal instability is tied to perturbations characterized by
highly localized oscillatory features, a mechanism that has also been studied by Sengupta
& Bhaumik (2011) and Sengupta, Sundaram & Sengupta (2020), who showed that the
corresponding component in the energy spectrum plays an important role in the transition
to turbulence in wall-bounded flows. Unlike the eigenfunction φ+, the optimal initial
conditions w̃N

0 depend on the function space in which they are defined and we considered
two Sobolev spaces, namely, H1(T2) and H−1(T2). Constructed by solving a suitable PDE
optimization problem, Problem 3.1, the resulting flows saturate the estimates on the growth
of the semigroup etL implied by the essential spectrum σess(L) via the spectral mapping
theorem (2.9) as the numerical resolution is refined. Using some generic vorticity field
as the initial condition w0 in the linear problem (2.1) will result, after some transient, in
the corresponding solution growing as O(exp(Re(λ+)t)). This points to the absence of
eigenvalues outside the essential spectrum σess(L).

The optimal initial conditions obtained by solving Problem 3.1 exhibit a similar spatial
structure to the initial conditions found by Gau & Hattori (2014), which were obtained
by maximizing a weighted norm ||etLw0||H2 for different t in a viscous flow. However,
the key difference is that the largest growth rate found in that study was essentially equal
to the real part of the most unstable eigenvalue, meaning that, in that case, this growth
was effectively realized by the most unstable eigenmode. In contrast, in the present study,
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Figure 9. (a) Eigenvalues of the operator L + νΔ for different indicated values of ν; they are obtained
by solving the discrete eigenvalue problem (3.6) modified to include the dissipative term νΔ and using
the resolution N2 = 2002. (b) Magnification of the neighbourhood of the eigenvalue λ3000+ with the arrow
indicating the trend with the decrease of ν; the eigenvalues shown in this panel are computed using the Krylov
subspace method and the resolution N2 = 30002.

the largest growth rate is in fact larger than Re(λ+) and this behaviour is not realized by
an eigenfunction, but by a continuous family of uncorrelated distributions. We emphasize
that this mechanism is intrinsically linked to the inviscid and infinite-dimensional nature
of the operator L and, as such, is fundamentally different from the transient growth
of perturbations arising as a result of the non-normality of the eigenvectors of a linear
operator (Schmid & Henningson 2001). These results are consistent with the predictions
of the WKB analysis, which points to linear instabilities growing as O(exp(μmaxt))
(Friedlander & Vishik 1991; Lifschitz & Hameiri 1991). However, in our study, we are
also able to characterize the global spatial structure of this instability paying attention to
the regularity of the perturbations, which is beyond reach of the WKB analysis.

We remark that the solutions discussed here are not smooth functions of the space
variable x and exhibit small-scale features localized near the hyperbolic stagnation points
xs. Therefore, they cannot be fully resolved in numerical computations with any finite
resolution N2, cf. § 3. However, a Galerkin truncation such as (3.5) used to construct
numerical solutions, together with the resolution-dependent low-pass filter employed
in the solution of the time-dependent problems (1.2) and (2.1), can be viewed as a
regularization of the original system with the effect decreasing as the spatial resolution
N2 is refined. The key quantities characterizing the instability, namely, the eigenvalues λN+
and the corresponding eigenfunctions φN+, as well as the growth rates (d/dt) ln(‖wN(t)‖L2),
(d/dt) ln(‖wN(t)‖H1) and (d/dt) ln(‖wN(t)‖H−1), are shown to converge to well-defined
limits as the numerical resolution N2 is refined, cf. figures 1(b), 2(c–e), 3(a,b), 4(a)
and 5(a). Since it is known that, in the viscous case, the spectrum of the linearized
Navier–Stokes operator consists of the discrete spectrum only, it is interesting to investigate
the effect of viscous perturbations on the spectrum of the linearized Euler operator
L, cf. figure 1. In figure 9(a), we show solutions of the discrete eigenvalue problem
(3.6) modified to include a dissipative term proportional to the viscosity ν, i.e. for the
perturbed operator L + νΔ for different indicated values of ν. We see that with the
addition of viscosity, the essential spectrum in L2(T2), which in the inviscid problem
coincides with the imaginary axis iR, disintegrates into a number of discrete eigenvalues
located inside a parabolic region in the left half-plane Re(λ) < 0. At the same time,
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Figure 10. Contour plots of the real part of the eigenfunctions corresponding to the unstable eigenvalues of
L + νΔ shown in figure 9(b): (a) ν = 10−2; (b) ν = 10−3; (c) ν = 10−4; and (d) ν = 10−5.

as is evident from figure 9(b), the discrete eigenvalue λ+ is perturbed, but remains on
the right half-plane. The unstable eigenvalue obtained with ν = 10−5 is, after a suitable
rescaling, close to the result reported by Hattori & Hirota (2023) with a 0.7 % relative
error. As is evident from figure 9(b), the unstable eigenvalues of L + νΔ converge to the
unstable eigenvalues of L in the limit of vanishing viscosity, which is consistent with
the theoretical results of Shvydkoy & Friedlander (2008). This further demonstrates that
the linear instabilities considered here are fundamentally inviscid properties. To close this
discussion, in figure 10, we plot the real part of the eigenfunctions corresponding to the
unstable eigenvalues shown in figure 9(b) for ν = 10−2, 10−3, 10−4 and 10−5. Similarly to
the unstable eigenfunction obtained in the inviscid case, cf. figure 2(a,b), they all reveal an
odd symmetry while the Taylor–Green vortex possesses an even symmetry. As ν decreases,
these eigenfunctions become concentrated along the heteroclinic orbits. Sengupta, Sharma
& Sengupta (2018) showed that numerical errors induce a symmetry-breaking instability
in the computation of the viscous evolution of the 2-D Taylor–Green vortices. We think
this is because the numerical errors contain components proportional to the odd unstable
eigenfunctions.

In terms of future work, a natural question to consider is an extension of the problems
studied here to the stability of 2-D Taylor–Green vortices in 3-D Euler flows (Hattori &
Hirota 2023). However, mathematically rigorous results are much more limited in 3-D
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due to the presence of the vortex-stretching term (u · ∇)ω in the 3-D Euler equations.
In addition, in 3-D, μmax cannot be easily computed by evaluating ∇u at hyperbolic
stagnation points and a counterpart of the spectral mapping theorem (2.9) is not available.
Furthermore, the eigenfunction shown in figure 2 and the optimal initial conditions shown
in figures 6 and 7 reveal the absence of a smallest scale. Therefore, to resolve the
small-scale features dominating these objects in a computationally efficient manner, in the
future, we plan to use discretization techniques combining non-uniform grids (Sengupta
et al. 2018) with adaptive mesh refinement (Ceniceros & Hou 2001; Di, Li & Tang
2008). Finally, it is an interesting question whether the non-modal growth discussed in
§ 4.1.2 can also reach the nonlinear stage and lead to turbulence. However, to answer this
question, one needs to solve Problem 3.1 over a much longer time interval and with a much
higher numerical resolution, which would necessitate larger computational resources than
currently available. One potential future direction to address this question is to find ways
to reduce the dimension of our search space by using a priori knowledge about the optimal
initial conditions.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.946.
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Appendix A. Riemannian conjugate gradient approach

Problem 3.1 is solved numerically with a Riemannian conjugate gradient method (Danaila
& Protas 2017). At each (nth) iteration, the method consists of three steps. First, we project
the gradient ∇J(w(n)0 ) given in (3.13) onto the space tangent to M at w(n)0 . Then, we use
the previous search direction, denoted d(n−1), to construct a Riemannian conjugate ascent
direction using a suitable vector transport operation, and combine it with the projected
gradient obtained in the first step to construct the current search direction d(n). Finally,
we retract the resulting state back to the constraint manifold M. A local maximizer of
Problem 3.1 is obtained as w̃0 = limn→∞ w0

(n), where the successive approximations w(n)0
are therefore determined with the iterative formula

w(n+1)
0 = R[w(n)0 + τnd(n)], n = 0, 1, . . . , (A1)

where w(0)0 is the initial guess. Here, R : Hm
0 (T

2) → M is the retraction operator defined
by (Absil et al. 2008)

R(w) := w
||w||Hm

, w ∈ Hm
0 (T

2), (A2)
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which normalizes the state w(n)0 + τnd(n) to pull it back to the constraint manifold M
defined in Problem (3.1). The optimal step size τn is obtained by solving an arc-search
problem to find the step size τ such that the objective functional J achieves its maximum
along the curve {R[w(n)0 + τd(n)], τ > 0} on the manifold M, i.e.

τn = argmaxτ>0{J(R[w(n)0 + τd(n)])}. (A3)

This problem is solved with a suitable derivative-free approach, such as a variant of Brent’s
algorithm (Press et al. 2007). We denote the space tangent to the manifold M at w(n)0 by
Tw(n)0

M. The search direction d(n) in (A1) belongs to Tw(n)0
M and is computed as

d(0) = P0 ∇J(w(0)0 ),

d(n) = Pn ∇J(w(n)0 )+ βnΓτn−1d(n−1) (d(n−1)), n ≥ 1.

⎫⎬
⎭ (A4)

As is illustrated in figure 11, the projection operator Pn : Hm
0 (T

2) → Tw(n)0
M realizes an

orthogonal projection onto the linear subspace Tw(n)0
M. It is defined by the relation

Pn w := w − 〈w, ν〉Hmν, ν = w(n)0

||w(n)0 ||Hm
. (A5)

Since Pn ∇J(w(n)0 ) ∈ Tw(n)M whereas d(n−1) ∈ Tw(n−1)M, these two elements belong to
different linear spaces and, as such, cannot be directly added. Therefore, we use the vector
transport Γ defined in terms of the differentiated retraction (Absil et al. 2008) to map
the element d(n−1) from the subspace Tw(n−1)

0
M to Tw(n)0

M. For any w ∈ M and ξw, ϕw ∈
TwM, we define

Γϕw(ξw) := d
ds

R(w + ϕw + sξw)|s=0

= 1
‖w + ϕw‖Hm

[
ξw − 〈w + ϕw, ξw〉Hm

‖w + ϕw‖2
Hm

(w + ϕw)

]
. (A6)

Setting w = w(n), ϕw = τn−1d(n−1) and ξw = d(n−1), we then obtain

Γτn−1d(n−1) (d(n−1)) = 1

‖w(n)0 ‖Hm
Pn d(n−1). (A7)

A schematic illustration of the Riemannian conjugate gradient method (A1) is shown in
figure 11.

The ‘momentum’ term βn in (A4) is chosen to enforce the conjugacy of consecutive
search directions and is computed using the Polak–Ribière approach (Nocedal & Wright
2002),

βn = 〈Pn ∇J(w(n)0 ), (Pn ∇J(w(n)0 )− Γτn−1dn−1 Pn−1 ∇J(w(n−1)
0 ))〉Hm

|| Pn−1 ∇J(w(n−1)
0 )||2Hm

. (A8)

In our computation, we restart algorithm (A1) by setting βn = 0 based on the following
two criteria necessary from both the theoretical and practical points of view as they help
erase obsolete information from earlier iterations (Nocedal & Wright 2002):
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M

w0
(n–1)

∇J (w0
(n))

Pn ∇J (w
0

(n))

w 0
(n)

τn–1
 d(n–1)

d(n–1)

βnΓτn–1 d(n–1) (d(n–1))

Figure 11. Schematic illustration of the Riemannian conjugate gradient method (A1).
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Figure 12. Dependence of the objective functional J(w(n)0 ) on the iteration index n for different numerical
resolutions.

(1) n = 20k, k ∈ Z+;
(2) the search direction d(n) fails to be an ascent direction, i.e.

〈d(n), Pn ∇J(w(n)0 )〉Hm

||d(n)||Hm || Pn ∇J(w(n)0 )||Hm
< tol1, 0 < tol1 � 1. (A9)

Iterations (A1) are declared converged when the relative change of the objective
functional (3.9) between two consecutive iterations becomes smaller than a specified
tolerance 0 < tol2 � 1, i.e. when

0 ≤ J(w(n+1)
0 )− J(w(n)0 )

J(w(n)0 )
< tol2. (A10)

In practice, we set tol1 = tol2 = 10−10. To illustrate the performance of algorithm (A1),
figure 12 shows the values of the objective functional J(w(n)0 ) for m = 1 as a function of the
iteration index n. As explained in § 4.1.2, we solve Problem 3.1 using increasing resolutions
N2 = 1282, 2562, 5122, 10242, and use the optimal initial condition w̃N

0 obtained with the
resolution N2 as the initial guess in the iteration (A1) with the resolution (2N)2. As shown
in the figure, the method requires more iterations to converge for higher resolutions due to
an increased number of degrees of freedom.
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