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DYNAMICS OF HOMEOMORPHISMS ON MINIMAL SETS
GENERATED BY TRIANGULAR MAPPINGS

GI1AN Luict Forti, LUiGl PAGANONI AND JAROSLAV SMITAL

The main goal of the paper is the construction of a triangular mapping F of the
square with zero topological entropy, possessing a minimal set M such that F|u is
a strongly chaotic homeomorphism, as well as other properties that are impossible
for continuous maps on an interval.

To do this we define a parametric class of triangular maps on Q x I, where
Q is an infinite minimal set on the interval, which are extendable to continuous
triangular maps F : I*> — I*. This class can be used to create other examples.

1. INTRODUCTION

Let I = [0,1] be the closed unit interval. Let C denote the class of continuous maps
f:I—I,and A the class of triangular maps F : I? — I?, that is, the continuous
functions defined by

F(:L‘, y) = (f(z)a g(z,y)) = (f(.'L‘), gz(y))'

The map f € C is the base for F', and g, : I — I is a family of continuous maps
depending continuously on z. Note that F transforms the layer I := {z} x I into the
layer If(zy. .

Triangular maps have much simpler dynamics than continuous maps of the square
in general [7]. This is because the projection m; : (z,y) - T semiconjugates any F € A
to its base f via fom; = m; o F. This implies, for example, that Sharkovsky’s theorem
on the coexistence of periodic orbits remains valid in A [6]. Moreover, the projection
m maps the class Per (F) of periodic points of F onto Per (f), or the class UR(F) of
uniformly recurrent points of F onto UR(f). However there are exceptions: homoclinic
orbits {7] or isochronically recurrent points [4] of F are not mapped by m; onto the
corresponding classes of f.

Received 23rd March, 1998

Much of the work of this paper was done while the third author was a Visiting Professor at the
University of Milano. This research was supported in part by Italian C.N.R., and by the Grant Agency_
of the Czech Republic, Grant No 201/94/1088. Support of these institutions is gratefully acknowledged.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 $A2.00+0.00.

https://doi.org/10.1017/5S000497270003255X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003255X

2 G.L. Forti, L. Paganoni and J. Smital (2]

A big difference between the dynamics of maps in C and in A already appears in
the simplest cases in which every periodic point of F is a fixed point and the base is
linear, see [5, 8] (see also {7, Theorem 3)).

However, the class of maps in A of type 2°° (with respect to the Sharkovsky’s or-
dering) is more interesting. There are, for example, maps in A of type 2*° with positive
topological entropy [7] but with recurrent points which are not uniformly recurrent {5].
Such maps are impossible in C. In both of the preceeding examples, the map F has a
base f of type 2°° with an infinite minimal set @ such that F has “bad” behaviour
on the set 77 }(Q) = @ x I. (Recall that a set M is a minimal set for a map if it is
non-empty, closed and invariant and if no proper subset of M has the same properties.)

In the present paper we show that maps of type 2°° in A, even homeomorphisms on
minimal sets, may have very complicated dynamics. Note that if M is a minimal set for
F in A, then m (M) is a minimal set for f (this is true for any general semi-conjugacy,
see [11]), hence 71 (M) is either a periodic orbit or a solenoid, that is, a Cantor-type
set {1]. The first case, however, implies that M is essentially one-dimensional, so non
trivial behaviour is possible only of (M) is infinite. We shall consider only this case.

In Section 2, starting from a Cantor-type set Q and a map f : @ — Q of type
2, we define a family 7 of functions F of type 2°°, non-decreasing on any layer
and such that F(Q xI) C @ x I. It is always possible to extend each F € T to a
function F € A preserving its type 2°° and the monotonicity on each layer. All these
functions have zero topological entropy. Then we define a parametric family 75 C 7.
This construction is based on an idea from [5] and can be further modified to get more
general maps.

In Section 3, we construct a subclass 7p; of 7o and prove that the maps in this class
have a minimal set containing an interval. (The existence of such maps was already
proved in [5].)

In Section 4 we show that there are maps in Ty; which are distributionally chaotic,
and hence, chaotic in the sense of Li and Yorke on a minimal set. Recall that no map
in C having zero topological entropy can be chaotic on a minimal set [3].

In Section 5 we prove some results concerning functions in 7g; and in other classes
To2 € To and T; C T . These results show properties which are impossible in C.

2. A PARAMETRIC CLASS OF TRIANGULAR MAPS
Let {0, 1}" be the space of all sequences of two symbols equipped with the following
metric p: p(a,f) := max{1/i: a(i) # B(i)} for any distinct a = {a(i)}'?l and § =
{B@) }‘.21 in {0,1}N. Since, as is well known, any Cantor-type set @ is homeomorphic
to {0,1}", we may identify an element z € Q with the corresponding sequence z =
z(1)z(2)---.
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Consider now the function f:@Q — Q acting on Q as an adding machine, that is,
for ¢ € {0, 1}N, f(a@) = @+ 1000--- where the adding is in base 2 from the left to
right; for example, f(101100---) = 011100---, f(11100---) = 00010---, and so on.
Given a point £ € @, the point f*(z) € Q is represented by the sequence z, obtained
by adding (in base 2) the sequence z and the eventually zero sequence representing the
number s written in base 2 from left to right. It is easy to see that w¢(z) = Q for any
T€Q.

Denote by 7 the class of maps F : Q@ x I — @Q x I, where Q is a Cantor-
type set and F(z,y) = (f(z), 9(z,y)) where f: Q@ — Q is the adding machine, and
g(z,-) : I — I is continuous and non-decreasing for any z € @, and the family g(z,-)
depends continuously on z with respect to the uniform metric. Thus F' is continuous
on @x1I.

Note that each map F € T (and obviously also its monotonic extension F € A)
has topologically entropy h(F) = 0. Indeed, we have (see [7]).

sup{h(F, Iz); = € Q} + h(f) > h(F),

where h(F, I;) denotes the topological entropy of the map F : @ x I — Q x I with
respect to the compact subset I, that is, the entropy h(F,I;) is computed only for
trajectories starting from I,. But since F' * is monotonic on I; for any i, we have
clearly h(F,I;) =0, and of course h(f) = 0 since f is of type 2°°. Thus, h(F) =0.

Now we describe the construction of the mappings of a special subclass 7y of 7.

First we take an increasing sequence of non-negative integers {k;}2, with kg =0
and such that, forall 1 > 1, ks — ki1 —1=m; > 1. Thus k, = kp_1+m, +1 =
my +---+my, +n. For any z € Q, the digits z(k;), z(kz), ... are called control digits
of z. If

g=2z(1)---z(k1 — 1) z(k1) - 2(kn-1) Z(kn-1 +1) - - - Z(kn — 1) 2(kn) -+,
N, p— ~

my Mn

we define, for every n > 1,

mn

xa(@) = (@knor + 1), 2k = 1) € {0,1)™ and  |xa(@)] = 3 2(knos +i)2".

i=1

Then we consider a family T, := {<p(n,j), j=0,...,2Mmn — 1} of functions from 7
into I satisfying the following properties:

(1) each function ¢(n,j) € T', is continuous and non-decreasing :
(2) 9 (n,2™ —1)o---0¢"(n,0)=1d forallr>1
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where Id denotes the identity map. We call any map of I',, a map of rank n. Moreover
we assume that

(3) Jim max{[le(n, 5) - Id] } = 0
where ||-|| is the uniform norm.

Finally we define a function F : @ x I — @ x I as follows. Take an arbitrary point
z € Q. If the first zero control digit of z is z(k,), then we define

F(z, y) = (f(2), o(n, [xn(2)]) ®))-

Otherwise, if z has no zero control digits, we set

F(z,y) = (f(2), v).

Note that (1) and (3) guarantee the continuity of F in @ x I.

The class 7o consists of the functions constructed in this way for any possible
choice of the parameters k,, and of the families T',,.

Let 72 : (z,y) — y be the projection on the second variable and put ¢, := 2k~
for all n > 0. (Note that to = 1/2.) Given F € Ty, for any < > 0 and any y, € I,
define y; := m[F*(0,y0)] . Then, for any integer 7 > 0 we have

Fi(ga yO) = (fl(Q),ys) = (f,(.O_)) 1/’(")(?!0)),

where ¥(0) = Id and, if 1 < ¢ < t,, ¥(i) is a composition of maps ¢ of rank not
greater than n.
Forall 0 <j € 2™n+1 —1 and 0 € r < ¢,, we have the following relations

(4) (25tn + 1) = P(r) 0 P(25ts),
(5) $((25 + Dtn + 1) = 95(r) 0 9(24tn),
where 97 (r) is the function obtained from ¢(r) by replacing all maps ¢ of rank n with
w(n+1,7).
Indeed,
£ =0 -0&(1) -+ &(mn41)0--,  fETHFVIR(0) =0 -01E(1) - €(mng1)0
kn kn
with [xns1(F5 Q)] = xnss (FEH@)| = |(€Q),- - €(marn)| = . This

means that after 2j¢, iterations, all the first n control digits are zero and so, for the
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next 7 iterations, we apply the same functions ¢ as when starting from 0. Conversely,
after (25 + 1)t,, iterations the n-th control digit is equal to one and so, during the next
T iterations we proceed as in the previous case, but instead of using the functions ¢ of
rank n, we apply the function ¢(n + 1, 7). This is exactly what is written in formulas
(4) and (5). Obviously, if r < t,—1, the function %{r) does not contain any map of
rank n and so ¥;(r) = ¥(r).

Note that from (5) with = 0 we obtain

(6) Y(tn) =1d,  P((27 + )tn) = ¥(2jtn),

Now we prove some identities concerning the functions in 7.

LEMMA 1. Let FeTy. Forevery i > 1 take n > 1 such that t,_, < i<t, and
consider the representation of ¢ in the form

i= (20n-1+ Bn-1)tn-1 + -+ (201 + Br)t1 + 2c0to
with 0 € ay < 2™s+1 — 1, B, € {0,1} for 0<s<n—-1and By=0.If
v(i)=max{s<n-1:8,=0}
we write
i=(20n_1 + Dtnr + - + 2oy + Ditvgyr + 2006ytui) + 0(5).

Then we have

(7

. . i kp_1-(n-1) kp_1—(n—-1)

P(i) = $(8(3)) 0 "D (n,0m_1) 0® " (nyap_y —1)0-+ 02" (n,0)
(8) Vi) = 9(6() 0 0™V (n +1,u)
n-2 X
where v(3) = Y. ;2877 (< 2kn-1=(0=1)) and F(i) = y(i) + @y 2kn-1—(0=1),
i=v(i)
In particular, for all n > 2 and all j with 0 € 7 2™ -1,
) kn_1-(n-1), . kp—1-(n=1)

(9) Y(25tn_1) = ¢* ! (n,j—1)o---0¢p? ! (n,0).

Proor: First we prove (7) by induction on n. Let n =1, that is, 1 < i < t;; we
have

1/’(1‘) = 90(1)1 - 1) o-: -O<p(l,0).

In this case i = 2apto = ap, V(i) = 0 and 0(i) = (i) = 0. So (7) is satisfied.
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Assume (7) true for n and consider n+ 1. We have to find the representation of
P(z) for all ¢ with ¢, <7 < tp41. Let

1= (2a,, + ﬂn)tn + -+ (2&1 + ,Bl)tl + 2aptg
and assume first B, = 0. Then, ¢ = 2a,t, + 6(3) and, by (4),
1/)(1) = 1/)(9(2)) o w(zantn)'

Since in this case (i) = 0, (7) is proved if we show that

kn—n(

(10) P2ants) = 0¥ " (04 Lan—1)o---0p* " "(n+1,0).

We prove (10) by induction on a, . By the induction hypothesis and the representation
th —1= (22" = 1) + Dtn_qy + - +2(2™ — 1)y,

we have

(11)
Y(tn — 1) = "~ D(n, 2™ ~1)0

kp_1-(n-1) kp—1—(n-1)
2%n—1 2°n—1
@ (

n,2™" —2)o---0¢p
n—2 .
where y(t, — 1) = 3 (2™i+1 — 1)2ki =7 = 2ka-1-(n-1) _ 1,
i=o
Now, by (5) and (11)

_ Zk"_"-—l

Bltn + (tn = 1)) = B3 (tn — 1) 0 9(0) = Y3(tn — 1) = (n+1,0).

Since
2tn—1 g e e .
f 0 =1---10
kn

at the next iteration we apply the map ¢(n + 1,0), thus
2kn—n
e(2tn) = ¢ (n+1,0),
hence (10) is proved for a, = 1. Assume it is true for a, = j. By (6)
$((27 + Dtn) = 9(25tn)
and by (5) and the induction hypothesis we have

V(27 + Din +tn — 1) = 95 (tn — 1) 0 $(25ts)

zkn—n

=" T 4 1,5) 0™ (4 Lj— o0 N (n+1,0).
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Since
frrtet2tn=lQ) =1---1€(1) - €(mp4a)0 -
kn
with Ix,,+1(f21""+2‘"‘1(g))| = l(g(l),... ,§(mn+1))l = j, at the next iteration we
apply the map ¢(n + 1, 7), thus obtaining (10) for a, = 7+1. Hence (10) is completely
proved.

Assume now [, = 1, that is,
i= Q2o+ 1)ty +---+00) = Lan+1)ta+7

and observe that 6(:) = 8(r).
By (5) and (10) we obtain

zk"—n

(i) = Y5, (r) 0o Y(20mtn) = Y5, (1) 09" "(n+1,0n —1)0---0p?" " (n+1,0).

If t,_1 < 7 <t,, then v(i) = v(r) and

Van(r) = 9(0(r) 0 @™ (n+ 1,04) = $(8(:)) 0 "D (n + 1, n)

n—1 A
since ¥(r) = Y a;2F77 =4(i).
j=v(i)
If r <t,_1,then v(1)=n-1, ay—1 =0 and so F(r) = (i) = 0; in this case

Pa. (r) =9 (6(r)) = v(6(3)).

Thus (7) is proved for n + 1. 0

3. PROPERTIES OF MINIMAL SETS FOR MAPS IN 7 AND T

THEOREM 1. No F € T can have a minimal set with non-empty interior in @x1I.

PROOF: Assume there is a function F' € 7 with a minimal set M containing a non-
empty open set G of Q x I. We may assume, without loss of generality, G C @ x (0,1).

Since m;(M) is minimal for the base map, m1(M) = Q and so, for any z € Q
the set M NI, is non-empty. Let 5 € Q and Mo := M N I ; define yo = ma.x{y :
(zg,y) € M}. By the minimality of M we have wr(zy, %) = M, hence there is an
integer n such that (z,,yn) := F*(z;, %) € G. Since z, is the unique preimage of
z, with respect to f® and F(M) = M (see [1]), we have F"(My) = M NI, . But
F™|a, is non-decreasing and so yp, = ma.x{y Az, y)EM }, contrary to the fact that
sup{y : (z,,¥) € M} > yn. 1|
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THEOREM 2. Suppose that F € Ty has a minimal set M containing the layer
Iy. Then F|p is a homeomorphism.

ProOOF: Since M is a compact set and F is continuous, F|ps is a homeomorphism
if and only if it is one-to-one on any set My = M NI;, z € Q. Consider first the case
z € Orb(0), that is, £ = f*(0) for some s > 0 and let t, > s. By (6), ¥(t,) = Id
and this implies that at any step 7 < t, the function ¢ to be applied to is injective
on w2 [F7(Ip)]. Thus F is injective on F*(Ip), which, by the minimality of M, equals
M, . Take now an aribtrary point z € @\ Orb (0). If all control digits of z are equal to
one, then the function to be applied to is the identity. Assume now that the first zero
control digit of z is z(k,,) and take the neighbourhood U of z in Q givenby all t € Q
with the first k, digits of their representations equal to those of z, that is, (i) = z(7),
1 <% <k,. Thus, for every t € U,

F(t,y) = (f), o(n [xa ) ®) = (F@B), ¢(n, [xa(2)]) (%)),
that is, the function ¢ to be applied to is the same for all t € U'.
Let ¢, be the first point in Orb (0) belonging to U, hence
to = f°(0) =z(1)---z(k, —1)0--- € UN Orb (0)
with £y(z) =0 for i > k.. Every t € U N Orb (0) is of the form ¢ = f7(0) with r > =g
and so,
r—=790 = R | P
fr70)=0---0
kn
Hence, for the first rg iterations we apply the same maps either starting from 0 or from
fT~70(0). This implies that, for every y €1,
(12) m2 [F"O (97 y)] = 7('2[FT0 (fr—ro(g), y)]
Define J := m3[M, ] = m2 [Fo(I)]; it follows that

ma[My) = 73 [F70 (F7=r0 (1)) | = ma [P0 (77-70(0), w(r — ro)(D))]
C m[FTO(f770(0), I)] = ma[F70 (Ip)] = J.

By the previous argument concernig the points of the orbit of 0, the map <p(n, Ixn(2))
is injective on J. So it is sufficient to show that m3[M;] C J. Since, by the hypothesis,
Iy ¢ M, the minimality of M implies

o
M= U Fi(Ip)
=0
whence

(13) My | J{M;:te Orb(Q)NU}.
Since m2[M,] C J for every t € Orb (0)NU, by (13) the same holds for the set ma[My]. 0
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REMARK. We conjecture that Theorem 2 is still valid for functions F € 7.
Let us denote by o5 and 75 the following functions depending on the parameter
e (0,1):

(14) os(t) = (1= 8)t, 75(t) = (1 - 6)t +86.

Now we introduce the subclass 7Tg; of 7o consisting of those functions F € Ty that
satisfy the following additional conditions:
V21 Fjn, 0< Jp €£2™n+1 — 2 such that:

(15) (p(2n - 11 j2n—1)(t) = 0-52"_.1) ‘P(2n1 JZﬂ)(t) = Tﬁzn;
(16) if 5, > 0 then, forall 721, ¢ (n,jn—1)o---0¢"(n,0) = Id.
(17)

kan—(2n) k2p_1-(2n—1) )
{(1 —Sons1)? }, {(1 — 620)? ot } are sequences dense in [0, 1].

(Of course, by (3), we must have also lim 4, = 0).
n—300

REMARK. Note that given the sequence {k,}, it is always possible to construct a
(decreasing) sequence {d,,} converging to 0 and satisfying (17).
Now we prove the following

THEOREM 3. Every F € Toy has a minimal set M D Iy.
PROOF: Take a point (0,y0) € Ip. By (9) and (14)-(17) we have

_ 2"2n'
y2(.1'2n+1+1)t2n =¥

_ 2k2n—2n

=@ (21’l + 1:j2n+1)(y0) = y()(l - 62ﬂ+1)

2k2" —2n (

2n R
(2n+lv.72n+l)°"'°‘p 2n+1a0)(y0)

(18)

2k2n—2n

and similarly

2k2n—1—(2"—1) ok2n_1-(2n-1)

(19) Y2(izn+1ytzn-y = (21, J2n)(yo) = 1+ (yo — 1)(1 = d2,)

By the hypotheses on the sequence {4,}, we have
(20) wr(0,90) D Io.

Set M = wr(0,0) and let w = (u,v) € M. Since F*(w) visits any neighbourhood of
Iy, wr(w) contains a point from Iy and consequently, by (20), (0,0) € wp(w). This
implies wp(w) D M, that is, M is a minimal set for F', containing . 0
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4. DISTRIBUTIONAL CHAOS
We start this section by defining the notion of distributional chaos.

Let g be a map from a metric space (S,d) into itself. For any pair (z,y) of points
of S and any positive integer n, we define a distribution function @z, R — [0,1] by

n,(t) = %#{z :0 < i<nandd(g'(z),¢'(v)) < t}.

Obviously @2, is a left-continuous non-decreasing function, ®7,(0) = 0 and @7, (t) =1
for all ¢ greater than the maximum of the numbers d(g*(z),g*(y)), 0 < i < n—1. Note
that for the definition of each ®Z, we need only to know the first n iterates of g.

Having the whole sequence {®7,(¢)} ., we set
— )i 3 n * p. n
D,y (t) = lhrgg.}f o7, (1), @5,(t) = hﬂsogp 7, (1)

We shall refer to @, as the lower and ®;, as the upper functions of z and y.
If there is a pair (z,y) of points of S such that ®,,(t) < ®,(¢) for all t in some
non degenerate interval, then we say that g is distributionally chaotic (see [9, 10}).
The main result of this section is the following.

THEOREM 4. Forevery €, 0 < € < 1, there exists a function F, € Ty, such that
for u = (0,0) and v=(0,1),

@ t)=10<t<1l and Pu(t)<e, 0<t <1l —¢.

ProoOF: Fix € € (0,1). We construct the function F. by choosing j, = 0 for all
n and the functions ¢(n,j) € T',,, depending on integer parameters a,, b, and m,,, as
follows:
( Odopn—_11 0 < .7 < a2n-1
, Ida a2n—1 £ J < ban_i

Ofpn_y b2n—1 S J <201 +ban-1

\ Id, aon—1+bap_1 < J < 2M2n-1
T&gna 0 S] < azn

~

. Id, a2n < .7 < b2n
p(2n,5) =4 .
Ton? ban < J < azn + b2,

| Id, Qon + bop < j < 2M2n

where 0s,, ; and 75, are the functions defined in (14), o3, _
left-inverses given by

UEZn—l(t) = min{l,t/(l - (52,,_1)}, Tg2n(t) = max{O, (t - 52,,)/(1 - 52,;)} te [O, l],

. .
. and Toy, 2T€ their
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and {d,} is a sequence satifying (17) with nli'rr;o n=0.

In this way we get a function F, € 7p;. Thus what remains to be chosen are the
parameters ay, b, and m,,.

Before starting with the choice of these parameters we need some properties of F,.
Let J; := my[Fi(Ip)] and A; := |Ji| = [¢(5) ()]

By applying the functions o5 or 75 to an interval J C I, we get

los(N)| < 11, |rs(D)] < 1.
Moreover, for every 7 < 2™ —1 and s <

l*(n,5) 09" (n,j — 1) 009" (n,0)(J)] < |J]

since first we apply the functions g5 or 75 and then their left-inverses for a smaller
number of times. Thus, by (7) it is easy to prove by induction that for any interval
JcliI

(21) [v(@)()] < 1]

For any j with a,41 € J € bn41 — 1 we have o(n + 1,7) = Id; thus, by (9) we obtain
P(2jtn) = ¥(26n41tn). Then, if we set

2kn n

kn—n
=Jr, it = (n+1,ap41 —1)o- o (n +1,0)(I),

by the structure of the family I',,4; we have

2 kn~n 2kn—n

(22) J= a;’::; (I) or J= 1':::11

(1)
according to whether n is even or odd. By (4), (5), (8) and (21) we have

= [p(E)(D)| = |[$(r) 0 Y(2jta)(I)| = |$(r) 0 P(2an41ta) (1)
= ¢ <[], i=2ta+7r, 0<r <tn
= [¢E)D)| = |95 (r) o $(23ta) (1) = |95 (r) © Y(2an11ta)(T)]
=|1/'j(r)(-)|=l¢( ) ()] < IJI 1i=2j+ Dt +r 0K 7 <ty

This implies that, if Aza,,,t, = |J| < 1/(n + 1), then

(23) A; € A2a"+1tn < s 2a,,+1t,, 1 < 2bn+1tn

n+1
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Now we have to choose the parameters a,,b, and m,. The choice will be made
iteratively in order to assure that, for n > 1,

(24) 2rn-1(1/n) 21— 1/n and ®n(1—¢) <e.

The relation ®Zo*n-1 (1/n) 2 1 — 1/n means that the number of ¢'s less than 2b,t,_,
for which \; < 1/n is “almost the same” as 2b,t,_; while ®i» (1 — €) < € means that
the number of 7’s less than t,, for which A; <1 — ¢ is “small” in respect to t,,.

Let n = 1. Take a3 = by =1 < 2™, Then we have Mg =1, A\; =1 ~4; and
A =1 for all 2 i< 2™ =t,. So, the first inequality of (24) is trivially satisfied and

1 1
<I>f},,(1—e)=2Tl#{1}:O<i<2m1 and/\i<1—s}<2—1;.

If we choose m, such that 1/2™1 < g, then the second inequality of (24) is satisfied.
Assuming we have determined a,,b,. and m, for all »r € n, now we choose the
parameters an.41,bny1 and my,1. By (22),

kn—-n
A2"-11-{-1‘7! = (1 - 6ﬂ+1)an+12 )
so we take any41 SO that Age, ¢, < 1/(n+1). Now, by (23),
#{i:0 <i < 2bpyits and A; <1/(n+1)} 2 2(bng1 — Gnt1)in

and so we can take b,y so that

@32n+ltn 1 > Z(bﬂ+1 —_ a’"+1)tn >1- 1 ,
n+1 2bp41tn n+1

that is, the first inequality of (24) is satisfied for n+1. Assume m,; has been chosen
with apy1+bng1 < 2™n+1 and take anqq +bnp1 € j < 2™n+1. Then p(n+1,5) = Id.
If i = 2jt, +r with 0 < 7 < t,, then, by (4), (9) and the structure of T';,;; we have
¥(i) = P(r) o Y(25t,) = ¥(r) and so A; = A,. The second inequality in (24) implies
(25)

#{i:i=25t,+rand 0 7 <ty : Ai<l—e} =#{r:0< 7 <tn and A\, < 1—¢€} < etp.

Let now 7 = (2j + 1)t, + 7 with 0 < 7 < t,. Again, by (5), (8) (9) and the structure
of ', 41 we obtain

$(i) = 95 (r) o Y (2ita) = ¥; (r) = ¥ (6(r))

and so A;j = Ag(r). Note that 6(r) may assume all values from 0 to t,(,) — 1 where
0 < v(r) < n— 1. (See the notation of Lemma 1.)
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Now we intend counting the number of indices r with 0 < r < ¢, for which
v(r) = . This means counting the indices having in their binary representation 0 at
the place k;, 1 in the places kp, | < p < n and 0 in all places greater or equal to
k,. Thus the required number is t,/2"~!. These indices can be collected in t, /t;2"~*
blocks of type ! containing the numbers having in their binary representation the same
digits in the places greater or equal to k;, that is, in blocks of indices of the form

r=(2an-1+ Dtn-1+- -+ Qa1 + D41 + 20qt; +s with 0<s< ¢
with the same aq, | < g n—1.

For each block B of type [ and any index ¢ = (2§ + 1)}¢t, +r, r € B, by (7) and
the structure of [pnyy, we have A; = |9(i)(I)| = |¥(s)(I)| = As and, by the second
inequality in (24), we get

#{i:ieBand \;<1—-¢}=#{s:0<s<tand \; <1—¢} ety
Since the number of blocks of type ! is ¢, /t;2"~ =t and 0 I < n—1 we obtain

n—1

.. . tn
#{ii= (2 +Dta+r, 0<r<tpand \; <l-—e} < thn, = ety Zzn,.
From (25) and this inequality we get

21
#iii=2ta+7, 0<T<Upand A <l-e} <oty o= = 2t,,(1 _ 2—("+1))e.
p:

Since t,41 = 2™n+1(2t,), we conclude that

Hin n
Ot (1—¢) = W#{i 1< 2™n+1(2t,) and N < 1—¢}
< 2(a'n.-+-1 + bn+1)tn + 2Etn(1 - 2—(n+1)) (2m"+1 - (an+1 + bn+1))
s 2Ma+1(2t,,)
_ (@nt1+bagr)(1 — (1 - 274D)) (1)
= T + 5(1 -2 )
and we choose mp,41 so that ®i5 (1 —¢) <e. 0

Summarising, by Theorems 2, 3 and 4 we have the following
COROLLARY 5. Forevery ¢, 0 < € < 1, there exists a function F, € Ty, satisfy-
ing the following properties:
(i) F. has a minimal set M C Q x I such that F.|p is a homeomorphism;
(i) M contains points v and v such that
) =1,0<t<1 and ®,,(t)<e 0<t<l—e¢.

Note that the behaviour described in Corollary 5 is impossible in dimension one.
Indeed any f € C with hA(f) = 0 is not chaotic (in the sense of Li and Yorke) on any
minimal set {3].

https://doi.org/10.1017/5S000497270003255X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003255X

14 G.L. Forti, L. Paganoni and J. Smital [14]

5. OTHER RESULTS

In this section of the paper we present some other results about the functions in
the class 7p;. Moreover we define other subclasses of 7 and we prove some properties
of them.

THEOREM 6. For every function F in To1 no point of the layer Iy is isochroni-
cally recurrent.

PRrOOF: We have to prove that for every yo € I there exists a neighbourhood
U =U; x Uz of (0,y0) such that for every positive integer v, there is an integer r for
which F™(0,y) € U. The proof is analogous to that in [4].

We distinguish two cases: yp < 1 and yo = 1.

Let yo < 1. We choose U = I x U with supU; < 1, and take an integer p such
that

1- l > supUs.
p

Consider the set

A= {n :n 21 and my [Fz(j"+1+1)t"(g, 0)] >1-— %}

By (19), the set A contains infinitely many elements and by the monotonicity of the
functions ¢(n,.), for every t € I we have

o [Fz(jn+1+1)tn (Q, t)] > [F2(1n+1+1)tn (Q, 0)] >1- %

for any n € A.

Take an integer v and let 29+ Y 2%, ¢; € {0,1}, ¢ > 0, be its binary repre-
i2gq+1
sentation. Fix any n € A; since

kn+1
m m. p—
okn—2"ntlg, 2Mn+1 =0---010---0-- -,

kn Mp41
for 1 = 2(jn41 +1)ta26n =27 10277 1 we have

T]/=0"'0§(1)"'£(mn+1)0"‘ s

~——
kn
with jp41+1= |(§(1), cee {(mn_H))I. Since p =70 = 2(jn41+ tn =0---0---, we

kn+1
have f#(0) =0---0--- and F™(0,yo) = F2nt141)in( (0, y,).
k'n+l
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Since my [Fz(j"““)t"(f“(g),t)] = g [Fz(j"+1+1)‘" (0, t)] for every t € I, by the
definition of A we get

12 [F7(Q,40)) = ma [F2Umtr*2)in (f(0),3,.)] = ma [ F2Ums1+1)in 0, )]

> m [F"’(""““)‘"(Q, 0)] >1--.
P

In the case yo = 1 we proceed in a similar way starting from a neighbourhood U = IxU,
with inf (Uz) > 0 and using formula (18). a

REMARK. The previous result shows that for each function in 75; the point 0 is
isochronically recurrent for the base map while it is not the projection of any isochron-
ically recurrent point of the triangular map F'.

Hence, from Theorems 2, 4 and 6 we get the following

COROLLARY 7. Forevery e, 0 < € < 1, there exists a function F, € Ty, such
that:

(i) F. has a minimal set M D Iy;
(i) Fe|pm is a homeomorphism;
(iii) no point of Iy is isochronically recurrent;
(iv) ®@L,(t) =1 for 0 <t <1 and Bu,(t) € € for 0 <t £ 1— ¢, where
u=(0,0) and v=(0,1).

Now we define another subclass 7g2 of T as follows: for every n 2> 1

o(n,0) = p(n,1) = Id,
0 (n,2P —1)o---0¢p"(n,0)=Id, 1<p<my, forallr > 1.

THEOREM 8. For every F € Tya we have
lim F*(0,y0) = (0, yo)
8= 00

for every yo € I.
ProoF: Formulas (6) and (9) and the definition of 7o imply yss = yg for every
integer s. a
COROLLARY 9. There exists F € Too such that:
(i) for every yo € I, lim F?° (0,y0) = (0,%0);
$—00
(i) F has a minimal set M D Iy;
(iii) F|p is a homeomorphism;
(iv) no point of Iy is isochronically recurrent.
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PRroor: By Theorems 2 and 6, the only thing to be proved is that 7p; N 7oz # 0.
It is enough to take in the definition of Tp1, jn = 2 for all n, ¢(n,0) = ¢(n,1) = Id
and choose ¢(n,jn + 1) = ¢(n,3) as the left inverse of ¢(n,2). All other functions can
be chosen equal to the identity. 0

REMARK. A one-dimensional map f has zero topological entropy if and only if the set
{z € I: lim f?(x) = z} coincides with the set of the isochronically recurrent points
8—00

[7, Table 1). We recall (see Section 2) that our maps have zero topological entropy
and so properties (i) and (iv) of Corollary 9 show a completely different behaviour with
respect to the one-dimensional case.

To present the last results of the paper we introduce another subclass 77 of 7. Let
{k:}$2, be an increasing sequence if positive integers with k; — 4 — +o00, and {p;}$2,
a sequence of mappings from I into I of the form

pi(t) =t%, withs; >0, lims; =1.
1—+00

As in the definition of the class 7g, the digits z(k1), z(k2),... are called control digits
of £ € Q. We define a function f:Q x I —» Q x I as follows:
If the first zero control digit of z is z(kn),

F(z,y) = (f(z), en());

otherwise F(z,y) = ( f (g),y) The condition l1_1)r& s; = 1 assures the continuity of F.
Moreover, it is easy to recognise that F' is a homeomorphism of @ x I onto itself.
THEOREM 10. There exists a function F € 77 with the following properties:
(i) forany w € {0} x (0,1) we have wr(w) =Q x I;
(i) F has two minimal sets, namely @ x {0} and Q x {1};
(iii) {0} x (0,1) C Rec (F)\UR(F);
(iv) forany u € {0} x (0,1) and v = (0,0) or v=(0,1),

(26) (D:w(t) =1, q)uv(t) =0, te (0’ 1);

hence F is distributionally chaotic.

PRrROOF: (i) Since the functions ¢; commute, the value F™(0,y0) = (f™(0),ym)
depends only on the number of times any function ¢; is applied.

Given a positive number r, take n so that k, € 7 < kn41. Then the points
f‘(g), 0 < i < 2" are represented by all the 2" sequences

ay, a0, ae{0,1},1<i<r
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which have the (n + 1)-th control digit equal zero and so the only functions that may
enter in the expression of y;, 1 <1< 2", are ¢y, ..., Yn+1. The number of times the
function ¢;, 1 < 7 < n+1, enters the expression of yor equals the number of sequences
ai---a,0--- having ax, =0 and ax, =1 for all 1 < s < i. This number is 27* for
1<i<n,and 277" for i = n+ 1. So, we have

kn_q okn—2 okn—(n-1) o okn—n
n

Kn—
Yogkn = @5 To@d " T o--0pl’y o i "™ (yo).

Since
fzkn =0-.- e
(O) 0 ~ 010 y

for the next 2*» iterations we use exactly the same functions as starting from 0. We
may proceed in this way until the k,4; digit is zero. Thus, for all m with 2 < m <
2kn+1-kn—1 we get

gkn—1 okn—2 okn—(n—1) okn—n okn—n
(27) Ymzkn = T oy oo pitt) ° @ ° Ppn1 (v0)-

In order to construct the function F we start by imposing on the sequence {s;}
the additional condition

(28) $%i 182i=1, i>1

This implies
(p%i_l oy =1Id, 121

Hence, by (27) and (28) for all n > 1 we obtain

(m2k2n—2n)
_ kon—2n _ 82 +1 ko —1
s ) Ymaeen = oha (o) =u™" , 1< m g 2ken41=F2n
( ) (m2k2n—1‘2")
_ m2k2"_1-2n _ .%2n 1< < kop—kan—1-1
ym2k2n—l = P2 (yO) =% s SRS 2 .

We want to show that it is possible to choose the sequence of parameters {s,) in order
to assure that

Vyo € (0,1), wr((0,30)) D Io.

Since the w-limit sets are strongly F-invariant, this implies wp((g, yo)) =Qx1I.
To this aim it is enough to assure that the values given by (29) with m =1 are
dense in I and this is equivalent to requiring that

(30) 2k2n=2% 160 (55, 41)  is dense in (—00, +00).
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If {s2n+1} is a sequence satisfying (30) and

(31) Hm S2n+1 = 1,

n—+o0o

then the whole sequence {s,} constructed by using (28) satisfies the required property
lims, = 1. To satisfy (30) and (31) we define the sequence {szn41}22, by
n

[of
(32) log (s2n+1) = 2,62"—712,,

where {0,}52, is a sequence dense in (—o0, +00) satisfying

1

<
n

On
(33) |

So (i) is proved. In the following, given the sequence {o,}, we show how to construct
the sequence {k,} in order to satisfy (33).

Property (ii} is obvious. By (i), every point w € {0} x (0,1) is recurrent and, by
(ii), wr(w) is not a minimal set. So w is not uniformly recurrent (see [1]). Now we
prove (iv). In order to assure (26) we take sequence {0,}, dense in (—oco,+00) and
such that 09,1 < 0 and o3, > 0.

Now we recursively define the sequences {k,} and {s,}.

We start the recursive process by taking k; arbitrarily, st = s2 =1 and &k > &
satisfying (33). Assume now we have constructed k;, s; for i < 2n so that (33) is
satisfied. By (28) and (32) we immediately get szp+1 and Sapt2.

Suppose now n even [n odd]. We take 0 < p, < 1/2n such that, for yo < pn
[yo > 1 — pn] and for all j with 0 < j < 2k2n, we have

(34) yj<-21; [yj>1—%].

This is possible since only a finite number of continuous functions enter in the expression
of y; and for them both points 0 and 1 are fixed.

Then we find an integer p so that, for yo = 1 — (1/2n) [yo = (1/2n)],

2(/:2"—211.) 2(kon—2n)
(35)  Ypokon =¥hnp1  (¥0) < Pn [y,,gkz,. = Qong1 (W) >1-— pn].

Now, we choose ks,4+1 so that

p2ken 1
(36) ——2k2n+1—1 < 5;

and kzn+42 > kany1 satisfying (33).

https://doi.org/10.1017/5S000497270003255X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003255X

(19] Minimal sets 19

Now we show that the function F' constructed in this way satisfies (26). Take
o € (0,1) and ng such that yo € [(1/2n0),1 — (1/2n0)]. Choose n even and greater
than ng. For every r, p2¥2n < r < 2%2n+1-1 we can write 7 = m2k2n + j with
p < m < 2ken+1-k2n—1 and 0 < j < 2F2n . So, by (29), (34) and (35)
Umakan S Ypokan < Pn and ¥y, < T
Thus

. 1
#{i 10 < i< 2kem1-1 apd Yi < %} > 2k2n+1-1 _ pokon,

and so, by (36)
okons1-1[ 1 p2k2n 1
Hence we conclude that &7 (t) =1 for ¢t € (0,1).
Similarly, if we take n odd, we get

¢2k2n+l 1 1- _1_ < i
2n 2n’

and so ®,,(t) =0 for t € (0,1). 0

REMARK. Again the properties proved in Theorem 10 are impossible in C. Indeed for a
one-dimensional map f with h(f) = 0 we have Rec (f) = UR(f) and each w-limit set
contains only one minimal set. The next theorem shows something more: the existence
of a triangular map F with A(F) = 0 having an w-limit set containing infinitely many
minimal sets.

THEOREM 11. There exists a triangular map F of type 2°°, strictly increasing
on any layer I, having an w-limit set containing uncountably many minimal sets.

PRrROOF: By [2, Theorems 6.2, 6.5] there exists a function f € C of type 2°° having
an infinite w-limit set Q D @ containing isolated points and such that Q\Q is a single
orbit disjoint from @. Moreover, this function acts as the adding machine on @ and for
every z € Q\Q we have w 7(z) = Q. We take such a function as base of the triangular
map we are constructing. We choose pg € Q\Q with Orb (pg) = Q\Q and associate to
it the zero sequence. Then we code Orb (py) by associating to each point p, = f*(po)
the corresponding sequence f*(0). Now we define F(z,y) = (f(z),92(y)) on @ xI as
follows: for z € @, g = Id and for z € Q\Q, gz as in the construction of the class
71 on the corresponding points of Orb (0). Arguing as in the proof of Theorem 9 we get
w~(z) =@ x I for any z € (Q\Q) x (0.1). Clearly, any set @ x {a} is a minimal set
for F contained in wg(2). It is easy to see that it is possible to extend F continuously
to a triangular map F : I? — I? increasing on any layer. 0
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