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Abstract

In a classical paper, E. R. Love considered a certain function defined by a singular integral
which is harmonic outside a circular disk. Love's objective was to derive a simple integral
equation whose solution leads to a useful formula for the capacitance of the condenser
consisting of two parallel circular plates. We close a gap in Love's derivation by finding a
new nonsingular representation of Love's singular integral which permits one to draw the
required conclusions about its boundary values and thereby establishes the correctness of
Love's expression for the capacitance.

1. Introduction

Let D, D' denote two coaxial parallel unit disks lying a distance K > 0 apart in R3,

D = {(x,y,z):x2 + y2<l,z = 0},

D' = {(*, y , z) : x2 + y 2 < 1, z = - * } .

In an important and frequently quoted paper, E, R. Love [7] considered the problem
of determining the potential in space when D and D' form a condenser ^ = D U D'
whose upper plate D is kept at potential 1 and whose lower plate D' is kept at
potential —1. We shall denote the potential by L(x,y,z). Mathematically, L is
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uniquely determined by the requirements that it can be extended to all of R3 in such a
manner that it is harmonic in R3 \ tf, assumes the values +1 on D and —1 on D', is
of order l/y/x2 + y2 + z2 as x2 + y2 + z2 -> oo, and is continuous in R3.

Our object is to review Love's method for determining L (x, y, z), while at the same
time filling a gap in Love's work brought about by the fact that since he considered
only a normal approach to D and £>', Love failed to establish continuity of the potential
at all points of ^ . Especially when establishing the continuity of L at the centres of
the plates, the question turns out to be technically nontrivial. It is not difficult to show
by example that, unless continuity is proved at the centres of the plates allowing an
unrestricted manner of approach, L is not uniquely determined. It is to be noted that
Love, himself, was motivated by the desire to put on a firm basis formally derived and
in part erroneous as well as even meaningless expressions in Nicholson's work [8].
Except for the aforementioned gap, which we fill here, he did succeed in doing this.

For the sake of readability we duplicate Love's work in part, especially in Section 3.

2. The function V(x,y,z)

Following [7], we focus attention on the transformation

V(x,y,z) = -f Ht)dt ==, (x,y,z)€R3\D, r = s/x
2 + y2, (2.1)

n J-\ \/r2 + (z + it)2

where/(0 is a given function, real and continuous for —1 < t < l ,and/(r) =f(—t).
The square root in the denominator of the integrand is determined by the requirement
that Re Jr2 + (z + it)2 > 0. The resulting function V is real and is an even function
of z- Differentiating under the integral sign, it is easily seen that the Laplacian of V
vanishes; that is, V is harmonic in R3 \ D. At a large distance from the origin,

y f{t)dt \ /y

We will now proceed to find two alternative representations for V. The first one will
have the advantage of avoiding the singularity of the kernel of (2.1) and thereby greatly
simplify the problem of determining the limit behaviour of V as D is approached.
Both representations are needed for Section 3.

THEOREM 2.1. For (x,y, z) € R3\D, let ix denote the positive root of the equation

x2 •+• v 2 72

At
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and let

Then

Love's integral equation for the circular plate condenser

2 / 1 \ 2
. y, z) = — arctan I —— 1 = 1 arctan(A//^)-

7T \ rr i _

87

(2.3)

V(x,y,z) = — I f (y/(x2 + y2) sin2a + z2tan2a) da. (2.4)
n Jo \ /

PROOF. With r = y/x2 + y2, let F(r, z, 0 = r2 + z2 - r2, G(r, z, 0 = 2zf,

Q(r, z, t) = y/F2 + G2 = v V 2 + z2)2 + 2(z2 - r2)t2 + r4,

and

R(r, z,t) =

z2-t2 z2)2 + 2(z2 - r2)t2

z2)2 + 2(z2 - r2)r2

Then

V(x,y, z) = V(r, z) = - I R(r, z, t)f (f) dt. (2.5)
7T Jo

We will first consider the special case,/ (t) = 1, — 1 < r < 1, and denote the value of
V(r, z) by W(r, z) in this special case. We proceed to compute W(r, z) explicitly by
real variable transformations. This involves a number of changes of variable.

First, letting a = z/r and replacing t by the new integration variable u = t/r
in (2.5), we obtain

l/r
a2)2 + 2(a2 - u4

_ rf«. (2.6)
;o vu - t - a 2 ) 2 + 2(a2- l)M2 + M4

Next, replacing M by the integration variable v, where u = (Vl + a2)v, and setting

a2-I z2-r2

b =

we obtain
a2 + 1 z2 + r2 ' + y2 + z2,

W(r, z) = — / , dv. (2.7)
VI + 2bv2 + v*

Now let c = Vl — b2 = 2\z\r/(z2 + r2). Before proceeding to the next change
of variable, we must consider the possibilities, r > 1, z = 0, and r = 0, z ^ 0,
separately. In either situation, c = 0, and by (2.7), we have

2 f1/r dv 2
W(r, 0) = - / ^ = - arcsin(l/r), (r > 1), (2.8)

x Jo VI — u "•
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,z) = -arctan(l/|z|).
n

[4]

(2.9)

Excluding these possibilities, we have c > 0 and can introduce a new integration
variable r\ defined by r) = (u2 + b)/c, that is, v = Vc?7 ~ b. The result is the
following:

r, z) =
(z>-r*+l)/2\z\r

V27T y(z2-r2)/2|z|r V c >? ~ ^ ^ 1 + T)

For the next change of variable of integration, we set

f = i; + v/T+^j2 > 0, that is, r, = (f2 -

This results in

(2.10)

J V
2 ~

on =
tt; Jc£2-2bt; -c

Setting h = (Jb + l) /c = (Z> + 1)/Vl - *2 = \z\/r, we can factor

Hence

and

, where (2.11)

k[ z2 - r2 + 1 + V4z2r2 + (z2 - r2 + I)2

r ' 2|z|r

Finally, let A. = V£ - h/Vh, that is, £ = ft(l + A.2). The result is

2 rX2 rfA ' =-Z2-r2 2 + (1 - z2 - r 2 ) 2

V2|z|
• (2.12)
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When r = 0, z ^ 0, this agrees with (2.9). Therefore

2 /1 - z2 — r2 4- JAz2 + (I — z2 — r2)2

= ^ arctan J - L ^ ^

By (2.8),

W(r, 0) = - arctan ( . ) , (r > 1). (2.14)

Note that (2.14) is the limiting value of (2.13). Comparing (2.3) with (2.13) and (2.14),
we see that W(r, z) == P(x, y, z) in R3 \ D. One recognises ([3, 4]) P(x, y, z) as the
potential in R3 \ D due to a potential of +1 on the single disk D. The equipotential
surfaces are the ellipsoids (2.2), parametrised by /x, 0 < /z < oo. As fj, ->• 0, the
ellipsoids shrink down to D, while as /x —> oo, the ellipsoids approach spherical shells
of radius ^/JI. The corresponding value of P(x, v, z) varies continuously from 1 to 0.

If we go back to (2.1) and carry out the same changes of variable that we have used
for the evaluation of W(r, z), we find in place of (2.12),

dk. (2.15)

Changing the variable of integration from A. to a = arctan k, and noting that by (2.12),

arctan(X2) = | W(r, z) = ^P(r, z),

our formula (2.4) follows.

Note that a continuous extension of P(x, y, z) to all of R3 is obtained by defining
P(x, y, z) as 1 for (x, y, z) 6 D. With this definition of P(x, y, z), (2.4) yields a
continuous extension of V(x, y, z) to all of #3. Thus we can state the following result.

COROLLARY. V(X, y, z) has boundary values for an unrestricted approach to D;
namely, ifO < r = y/x2 + y2 < 1, z = 0, then

V(x,y,z) = -f f(rsma)da, (x,y,z)eD, (2.16)
K JO

provides a continuous extension of (2.1) to D.

The third representation of V is valid outside the plane containing D. It is as
follows.
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THEOREM 2.2. (Compare [7, pp. 439-440], for a less elementary derivation of
essentially the same fact.) For z ^ 0, r = y/x2 + y2, we have

,y,z)=]4 f \ Fn2 J_i Uo + (t- rcos

PROOF. We make use of the formula

/

" d<t> ix t i
= (Reio > 0, ReVl

w + i cos 4> V l + w2 V
(2.18)

which is easily verified by writing the left-hand side as a contour integral over the unit
circle and evaluating the contour integral by residues. By (2.1) and (2.18), if z > 0,

,y,z) = -^ f f(t)dt f
n 2 J_{ Jo

f Re
z + i(t + rcos<p)

Replacing <p by n — <j> and recalling that V is an even function of z yields (2.17).

3. The integral equation

To find L(x, y, z), the basic idea is to try to represent it as the difference of two
functions of type (2.1), namely

L(x,y,z) = Vl(x,y,z)-V2(.x,y,z), (x, y, z) € V = D U £>', (3.1)

where Vj, V2 have been determined relative to D, D', as the extensions to R3 of the
respective functions, (r = y/x2 + y2),

x(x,y,z) = - I f{? ==dt,
7T J-\ <Jr2 + (Z + It)2

i(x, y,z) = - f , f ( r ) = = = f dt, (x,y,z)eR3\D'.

. (x,y,z)eR3\D (3.2)
-1 V' tUt it)1

and

(3.3)

We do not know a priori that such an / (f) exists, but the existence is established
once we prove that L can be made to have the appropriate boundary values on the
condenser tf.

LOVE'S THEOREM. There exists a function f (f) such that the function L(x,y,z)
defined by (3. l)-(3.3) has the correct boundary values on c€. The function f (?) is the
unique solution of the integral equation

1 /•' K
f(r) = l + - - T — rzf(t)dt, ( - 1 < T < 1 ) . (3.4)

7T y_, K2 + (T - f)2
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PROOF. On the basis of Fredholm theory (see, for example, [7]), the integral equa-
tion (3.4) has a unique solution / (t), and the solution is continuous and an even
function.

For (x, y, z) 6 D, we have, by (2.16), (r = y/x2 + y2),

Vl(x,y,z) = - f f(rcos4>)dct>,
Tt Jo

while, by (2.17),

V1{x,y,z) l f \ r ^
n2J-\Uo K2 + (t-rcos<f>)2

and therefore, assuming L is determined by (3.1) and/ satisfies (3.4),

' n Jo V T ' it J_lK* + (t-r cos4>)2

By symmetry, we conclude, similarly, that L(x, y, z) = — 1 on D'.

4. Capacitance

The capacitance C{K) of the condenser ^ depends on the plate separation K. Since
the potential difference between the plates is 2, we have C{K) = q/2, where q is the
charge on the plate D. The charge can be calculated as the surface integral

q = ~ [f gradVlC?S,

with the integration over any smooth surface enclosing D, for example, over an
equipotential surface near infinity. Referring to the behaviour of V\{x, y, z) near
infinity, we conclude that

f f(t)dt,= - f
where/ (f) is the solution of (3.4). Hence [7]

C(K) = - I f(t)dt. (4.1)
n Jo

The case K —>• oo can be checked easily. It is tantamount to the condenser's
consisting of D alone, with D' absent, and corresponds to / (f) = 1. The well-known
fact that

lim C{K) = 1/TT (4.2)
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follows [3, 4, 13]. On the other extreme is the interesting case, K -> 0, for which, as
a first crude approximation, the capacitance behaves like \/{4TTK) times the area of
either of a pair of parallel plates. Since, in our case, the plates are disks of unit radius,
this means that

lim KC{K) = 1/4. (4.3)
K-*0

Attempts to find more precise estimates go back to Kirchhoff and others. (See [10]
and the bibliography there.) Hutson [2] used Love's theorem and (4.1) to prove that

C(K) = -L + - L log ( - ) + -^-(log 16;r - 1) + o(l) as K - • 0. (4.4)
4K 4it \K J 4n

In recent work of Soibelman's ([11, 12]) a different method is used to obtain further
information on the o(l) term of (4.4). (See also [5] and [6] for treatment of the
asymptotic capacity when the electrode surfaces have more general shapes.)

In [9], the current author used Love's theorem and (4.1) to relate C(K) to a one-
dimensional random walk.

Nicholson himself [8, p. 364] claimed to have found an explicit integral for the
capacitance, namely

7r3 J_x

but this is incorrect. After some changes of variable of integration the expression
becomes

COO = A / log (T^—) logsinh (—) dx. (4.5)
7T3 Jo \l-xj V K )

It does turn out that this satisfies (4.2). However, after some manipulation one finds
that (4.5) implies that lim,_0 [C(K) - 6/(K2K)] = 0, contradicting (4.3).
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