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METRISATION OF MOORE SPACES
AND ABSTRACT TOPOLOGICAL MANIFOLDS

DAVID L. FEARNLEY

The problem of metrising abstract topological spaces constitutes one of the major
themes of topology. Since, for each new significant class of topological spaces
this question arises, the problem is always current. One of the famous metrisation
problems is the Normal Moore Space Conjecture. It is known from relatively recent
work that one must add special conditions in order to be able to get affirmative
results for this problem. In this paper we establish such special conditions. Since
these conditions are characterised by local simplicity and global coherence they
are referred to in this paper generically as "abstract topological manifolds." In
particular we establish a generalisation of a classical development of Bing, giving
a proof which is complete in itself, not depending on the result or arguments of
Bing. In addition we show that the spaces recently developed by Collins designated
as "W satisfying open G(N)" are metrisable if they are locally separable and
locally connected and regular. Finally, we establish a new necessary and sufficient
condition for spaces to be metrisable.

1. INTRODUCTION

Two important themes of topology are the interplay of local and global properties

of a topological space, and the metrisation of abstract topological spaces. In this paper

we develop results concerning both of these themes.

First we give definitions of terms that will be used in this development.

A topological space X is said to have a point-countable basis if X has a basis B

such that each point of X is an element of at most countably many elements of B.

A topological space X is said to be screenable if for each open covering Q of X

there exists a countable sequence Hi, 7i2, H3, • • • of collections of open sets such that

(a) the members of Hi are mutually exclusive, i = 1, 2, 3 . . . ,

(b) the union H of the collection of sets Hi, H2, H3, .. • is & covering of X,

(c) each member of H is a subset of at least one member of Q.
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A topological space X is said to have the property W satisfying open G(N) if
there exists a collection of open sets W having the following properties:

(a) for each point p of X there is an associated countable collection W(l, p),
W(2, p), W(3, p), ... of members of W such that each W(n, p) contains
p, n = 1, 2, 3, . . . ,

(b) if U is an arbitrary open set and x is any point of U then there is an
open set V such that x £ V C U and furthermore if y is any point of V
then there exists an integer k such that x £ W(k, y) C U.

This last concept, "W satisfying open G(N)" was developed recently by P.J.
Collins and associates at Oxford, and others in general topology.

A topological space X is developable if there exists a sequence of open coverings
Qi, 02, <?3, • • • of X such that for each point x e X and each open subset U of X
such that x € U there is some positive integer n such that if G G Qn and x G G then
G CU.

A topological space X is a Moore space if it is regular and developable.
A topological space X is paracompact if for every open covering Q of X there is a

locally finite open refinement % of Q such that % also covers X.
We shall use the notation St(p, Q) to denote the union of all members of Q that

contain the point p. In words, St(p, Q) is referred to as "the star of the point p in the
collection of sets Q."

2. METRISATION OF NORMAL MOORE SPACES

One of the famous questions of topology is the question of whether or not every
normal Moore space can be metrised. It is known that in order to obtain affirmative
results concerning the question of under what conditions a normal Moore space can
be metrised, further conditions, in addition to the Zermelo-Frankel axioms with the
Axiom of Choice, must be part of the hypothesis. In this section we establish theorems
involving such conditions.

The first theorem, which follows, establishes a result whose proof generalises a
classical development of Bing [1, Theorem 5].

THEOREM 2 . 1 . Let X be a Moore space which has the additional properties
of local separability and (global) screenability. Then X is a metrisable normal Moore
space.

PROOF: The proof uses the Axiom of Choice in the form of well-ordering, and
transfinite induction. Let X be well ordered.

Since X is locally separable there exists an open covering Q of X such that
each member of Q is separable. Now X is screenable. Hence there exists a sequence
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Hi, Ti2, Tiz, . . . of collections of mutually exclusive open sets such tha t their union Ti

covers X and is a refinement of Q. Thus, since every subset of Ti is an open subset of

a member of Q, then every member of Ti is a separable subset of X.

Let po be the first point of X in the well-ordering of the points of X. Since

the members of Tin are mutually exclusive collections of subsets of X, for each n;

n = 1, 2, 3, . . . , the point po is a point of at most one member of each Tin. Hence, po

is a member of at most countably many members of Ti. Since each member of Ti is

separable, it follows tha t the s tar of po in Ti is also separable.

Let £>o(po) be a countable dense subset of St(po, Ti). We define a related set

Oi(po) as follows: 0 i ( p o ) = \J{St(q, Ti) | q € D0(p0)}. Since each of the sets St(q, Ti)

is separable and D0(p0) is countable then Oi(po) is also separable. Inductively we de-

fine On(po) = \J{St(q, Ti) | q £ Z)n_i(po)} where Dn(po) is a countable dense subset of

On(p0) and D n _ i (po) C Dn(p0), n = 1, 2, 3, . . . . Thus Oi (p 0 ) , O 2 (p 0 ) , O3(po), • • • is

an expanding sequence of separable open sets, each of which contains po, wi th respec-

tive countable sense sets Di(p0), Z?2(-Po), D3(p0), ... which also form an expanding

sequence. Let Vo denote the union of the sets Oi(p0)> 02(po), O3(p0), . . . and Eo

denote the union of the sets Di(po) , D2{po), ^3(po)> •••• We proceed by transfinite

induction to define a possibly uncountable family of sets {Va} as follows:

Assume Va has been defined for every subscript a less than some ordinal sub-

script P > 0, and let pp be the first element (if any) of the set X — [j{Va \ a < P}

relative to the well-ordering tha t was assigned originally to X. We construct sets

0i(P/j) , O2(pp), 03{pp), ... relative to pp in the same manner as 0 i ( p o ) , O2(po),

0 3 ( p o ) , . . . were constructed relative to po- Then we define Vp = {J{Oi(pp) | i =

1, 2, 3, . . . } . The resulting collection {Va} is a collection of sets which covers X.

Moreover, we shall show tha t the collection {Va} is discrete in the sense tha t no mem-

ber of this collection intersects the closure of the union of the other members of this

collection.

To prove tha t the collection {V^} is discrete we show first t ha t each member of

this collection is closed. Let Vp, as defined above, be a representative of the collection

{VQ}, and denote by z a limit point of Vp. Let H(z) be any member of the covering Ti

of X such tha t z & H(z). Since H(z) is open and z is a limit point of Vp then H(z)

must intersect one of the sets Op(pp) of the collection {Oi(p^) , Ozipp), O3(pp), ...}

whose union is Vp. But On{pp) is also open. Thus H(z)nOn(pp) is a non-empty open

set which therefore most contain a point q of the associated countable dense subset

Dn(pp) of On(pp). Hence, z G St(q, Ti) C On+i(pp) C Vp, and consequently Vp is

closed. Next we show tha t no point of Vp is a point or a limit point of the union of the

other members of the collection {V^}. The sets of the collection {VQ} are both open

and closed, each being a union of open sets and each having been shown to be closed.
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Hence, it is sufficient to show that the members of the collection {Va} are disjoint.
Suppose there is a point of Vp which is also an element of Va for some a < (3. The
point pp we chose as the first point in our construction of Vp is by definition not in
Va. We may choose On(pp) such that n is the first integer for which On(pp) intersects
Va. Note that since On-i(pp) (or pp if n = 0) does not intersect Va, Ai-i(P/j) does
not intersect Va (if n = 0, then let Dn_i(pp) denote pp). Then let w e On(pp) n Va.
Then w is an element of some open set H(w) € % such that H(w) contains some point
q in Dn-i(pp) by the construction of On(pp). Since H(w) is open and intersects Va,
H(w) contains a point of Dm(pa) for some integer m. By construction, H(w) is then
contained in Va. But this contradicts the fact that Dn-i(pp) does not intersect Va

because q € H{w).

Now we use the fact that a Moore space is developable in showing that each member
Va of the collection {VQ} has a countable basis. To do this note that if Qi, Q2, G3, •..

is a development of X and if Qn D Va denotes the open covering of Va which consists
of the intersections of Qn with Va then {Qn n Va | n = 1, 2, 3, .. .} is a development of
Va. Likewise, using similar notation {Hn D Va | n = 1, 2, 3, .. .} is a screening of Va.

Since Va is separable there cannot exist uncountably many disjoint open sets in Va.

Hence, for each positive integer n, {%n C\Va} is a countable collection. Consequently,
\J{Hn D Va I n = 1, 2, 3, .. .} is a countable open cover of Va. Hence, since this is
true for any screening of any open cover of Va, for each covering Qn n Va of Va we
may choose a countable open cover of Va which refines Gn ^ Va. The union of all
these countable open refining coverings is a countable basis for Va. Therefore, Va

is completely separable. Also, Va inherits regularity from X. We conclude, by the
Urysohn metrisation theorem, that Va has a metric da which is consistent with the
topology that Va inherits from X. Also, without loss of generality, we may choose da

such that da(x, y) < 1 for all x, y € Va. Finally, since the collection {Va} is discrete,
we can create a metric for the whole of X by defining d(x, y) — da(x, y) if x and
y are elements of the same Va and d(x, y) = 1 otherwise. We conclude that X is
metrisable. D

The next theorem provides a metrisation result whose proof does not use the Axiom
of Choice. Instead the result uses the structuring mechanism known as "W satisfying
open G(N)" developed by Collins and associates [3]. The theorem we give does not
require the monotonicity restrictions of Collins and Roscoe [2]. For convenience of
formulation we introduce first the definition of an additional term.

DEFINITION: A Moore pseudo-manifold is a Moore space which is locally separable

and (globally) connected.

THEOREM 2 . 2 . A Moore pseudo-manifold is metrisable if it has the property of

W satisfying open G(N).
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P R O O F : Let X be a normal Moore pseudo-manifold having the property W sat-
isfying open G(N). For each point x of X let {W(n, x)} be a countable collection
of open sets containing x having property (b) of the definition of W satisfying open
G(N). Since X is locally separable there is, for each x in X, a non-empty open
set U(x) = [j{W(n, x) \ W(n, x) is separable}. Furthermore, since there exist only
countably many W(n, x) associated with x, the set U(x) is separable.

Choose a point p of X and let E(p) be a countable set which is (everywhere)
dense in U(p). We define a set C\(p) = \J{U(x) \ x € E{p)} and note that also
Ci(p) is separable. Thus Ci(0) contains a countable dense subset -Bi(p). We define
C2(p) = \J{U(x) | x e Ex(p)}. We now repeat this process to obtain a sequence
C\{p), G2{p), Ci{p), • • • w i t h r e s p e c t i v e c o u n t a b l e d e n s e se t s Ex(p), E2ip), E3(p), . . . .
Next we make stronger use of the property W satisfying open G(N) in order to show
that {Cn(p)} covers X. Suppose on the contrary that H = C\{p) U C2(p) UC3(p) U . . .
and K = X - H are non-empty sets. Then, since X is connected and H is open, there
must be a point q of K which is a limit point of H. Using the local separability of
X again, let U be an open set containing q such that U is separable. Moreover, since
X has the property of VV satisfying open G(iV) there is an open set V containing q
such that for every point x of V there exists a W(n, x) such that q € W{n, x) C U.
But, since q is a limit point of H and H = \J{Cnip)}, x can be chosen to be a
point of a set Ek (p) which is dense in a set C* (p), for some positive integer k. But
W(n, x) is separable and hence W(n, x) C Ek+iip)- It follows that q is contained in
H, which involves a contradiction. Thus H = X and therefore X is separable, and
E = Eiip)uE2ip)vE3ip) U... is a countable dense subset of X. Furthermore, X has
a countable basis consisting of {Win, x) \ x e E} because if U is any open set and p
is any point of U there exists an open set V such that p £ V C U and each point z of
VnE has a neighbourhood W(fc, z) which contains p and lies in U. Therefore, since
X has the regularity property of a Moore space, X is metrisable. D

In the third theorem on conditions under which normal Moore spaces are metrisable
we are able to give more emphasis yet to local properties.

THEOREM 2 . 3 . Let X be a Moore space having the property of W satisfying
open G(7V). Then X is metrisable if X is locally separable and locally connected.

PROOF: Since X is locally connected the components {CQ} of -X" are both open
and closed. Since no two components have a point in common, and the union of any
subcollection of {Ca} is closed, the collection {Ca} is discrete. Hence, by the last
section of the proof of Theorem 2.1 it is sufficient to establish the desired results for
each individual component under the subspace topology. But each such component
satisfies the hypothesis of Theorem 2.2. Therefore X is a metrisable Moore space. D
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3. NECESSARY AND SUFFICIENT CONDITIONS FOR METRISABILITY

It is desirable to find necessary and sufficient conditions for a result to hold. Notable
examples of metrisability characterisations are those of Bing [1] and of Smirnov [4].
Generally each such characterisation is applicable to a particular family of abstract
topological spaces. Now, in this paper, we establish necessary and sufficient conditions
for a topological space to be metrisable which applies to spaces that are locally "nice"
and globally "coherent" fitting the general criteria of what we have called an abstract
topological manifold.

THEOREM 3 . 1 . A necessary and sufficient condition for a regular and locally

separable space X to be metrisable is that X have a (global) basis which is point-

countable.

PROOF OF SUFFICIENCY: Let B be a point-countable basis of X, and let X be
well-ordered. Since X is locally separable there is, for every point x of X a non-
empty separable open set U(x) which equals the (countable) union of all separable
members of B that contain x. Let p\ be the first element of X with repsect to the
well-ordering of X and let E(p{) be a countable set that is dense in U(p\). We define
CI(P) — V}{U{x) | x e E(pi)}. This countable union of separable sets is separable
and hence has a countable dense set Ei(p{). In general then we define Ci(pi) =
\J{U(x) | x e l?n_i(pi)}, and define Vi to be equal to the union of the collection
{Ciipi), C2(pi), C3(pi), . . . } , and note that Vi is separable.

We use transfinite induction to define a possibly uncountable family of sets such as
Vi. If Va has been defined for all a less than /? then choose p to be the first member
of well-ordered X that is not contained in {]{Va \ a < (3} and define Vp to be the
union of sets Ci(p), C2(p), Cs(p), . . . which are defined relative to p in the same way
that the sets Ci(pi), C^pi), Cz(pi), . . . were defined relative to p\.

Then {VQ} is a discrete collection by the argument given in Theorem 2.1 and
each member Va of {Va} is separable as well as regular. We need to show that there
is a countable basis for each member Vp of the collection {VQ}, assigning to Vp the
subspace topology induced by the topology of X, in order to complete the proof that
X is metrisable.

The required countable basis for X is obtained as follows. Since Vp is separable
there is a countable subset Wp = {<ft} of Vp such that Wp is dense in Vp. For each
point qn of Wp we choose Bn to be the subcollection of B such that each member of
Bn contains qn. Since B is point countable, each collection Bn is countable. Hence,
Bp = B\ U Bi U #3 U . . . is a countable collection of open sets covering the dense set
Wp of Vp. To show that moreover {B C\Vp \ B € Bp} gives a basis for all of Vp,

let z be an arbitrary point of Vp and let G be an open set of X which contains z.

There is a member B of B such that z £ B C G. But B must contain an element qk
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of Wp since B intersects Vp and Wp is dense in Vp. Hence, 5 is a member of Bk

which is contained in Bp. Therefore the intersections of members of Bp with Vp form
a countable basis for Vp and the proof of sufficiency is complete.

P R O O F OF NECESSITY: Let X be metric. Then for each positive integer n, the
set Cn — {N(x, 1/n) | x € X} of 1/n neighbourhoods about points of X is an open
cover of X. Since a metric space is paracompact by [5], then for each Cn cover we may
choose a refinement Vn which also covers X. Each point is in at most countably many
elements of the union of Vi, V2, V3, . . . which is a basis for X. D
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