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Bulk properties of strongly coupled plasma

Up to this point in this book, we have laid the groundwork needed for what
is to come in two halves. In Chapters 2 and 3 we have introduced the the-
oretical, phenomenological and experimental challenges posed by the study of
the deconfined phase of QCD and in Chapters 4 and 5 we have motivated and
described gauge/string duality, providing the reader with most of the conceptual
and computational machinery necessary to perform many calculations. Although
we have foreshadowed their interplay at various points, these two long intro-
ductions have to a large degree been separately self-contained. In the next four
chapters, we weave these strands together. In these chapters, we shall describe
applications of gauge/gravity duality to the study of the strongly coupled plasma
of N = 4 SYM theory at nonzero temperature, focusing on the ways in which
these calculations can guide us toward the resolution of the challenges described in
Chapters 2 and 3.

The study of the zero temperature vacuum of strongly coupled N = 4 SYM
theory is a rich subject with numerous physical insights into the dynamics of gauge
theories. Given our goal of gaining insights into the deconfined phase of QCD, we
will largely concentrate on the description of strongly coupled N = 4 SYM theory
at nonzero temperature, where it describes a strongly coupled non-Abelian plasma
with O(N 2

c ) degrees of freedom. The vacua of QCD and N = 4 SYM theory have
very different properties. However, when we compare N = 4 SYM at T 
= 0 with
QCD at a temperature above the temperature Tc of the crossover from a hadron gas
to quark–gluon plasma, many of the qualitative distinctions disappear or become
unimportant. In particular, we have the following.

(1) QCD confines, while N = 4 SYM does not. This is a profound difference in
vacuum. But, above its Tc QCD is no longer confining. The fact that its T = 0
quasiparticles are hadrons within which quarks are confined is not particularly
relevant at temperatures above Tc.
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(2) In QCD, chiral symmetry is broken by a chiral condensate which sets a scale
that is certainly not present in N = 4 SYM theory. However, in QCD above
its Tc the chiral condensate melts away and this distinction between the vacua
of the two theories also ceases to be relevant.

(3) N = 4 SYM is a scale-invariant theory while in QCD scale invariance is bro-
ken by the confinement scale, the chiral condensate, and the running of the
coupling constant. Above Tc, we have already dispensed with the first two
scales. Also, as we have described in Chapter 3, QCD thermodynamics is sig-
nificantly nonconformal just above Tc ∼ 170 MeV, but at higher temperatures
the quark–gluon plasma becomes more and more scale invariant, at least in its
thermodynamics. (Thermodynamic quantities converge to their values in the
noninteracting limit, due to the running of the coupling towards zero, only at
vastly higher temperatures which are far from the reach of any collider exper-
iment.) So, here again, QCD above (but not asymptotically far above) its Tc is
much more similar to N = 4 SYM theory at T 
= 0 than the vacua of the two
theories are.

(4) N = 4 SYM theory is supersymmetric. However, supersymmetry is explic-
itly broken at nonzero temperature. In a thermodynamic context, this can be
seen by noting that fermions have antiperiodic boundary conditions along the
Euclidean time circle while bosons are periodic. For this reason, supersymme-
try does not play a major role in the characterization of properties of the N = 4
SYM plasma at nonzero temperatures.

(5) QCD is an asymptotically free theory and, thus, high energy processes are
weakly coupled. However, as we have described in Chapter 2, in the regime of
temperatures above Tc that are accessible to heavy ion collision experiments
the QCD plasma is strongly coupled, which opens a window of applicability
for strong coupling techniques.

For these and other reasons, the strongly coupled plasma of N = 4 SYM theory has
been studied by many authors with the aim of gaining insights into the dynamics
of deconfined QCD plasma.

In fairness, we should also mention the significant differences between the two
theories that remain at nonzero temperature.

(1) N = 4 SYM theory with Nc = 3 has more degrees of freedom than QCD with
Nc = 3. To seek guidance for QCD from results in N = 4 SYM, the challenge
is to evaluate how an observable of interest depends on the number of degrees
of freedom, as we do at several points in Chapter 8. The best case scenario is
that there is no such dependence. For example, the ratio η/s between the shear
viscosity and the entropy density that we introduced in Chapter 2 and that we
shall discuss in Section 6.2 is such a case.
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152 Bulk properties of strongly coupled plasma

(2) Most of the calculations that we shall report are done in the strong coupling
(λ → ∞) limit. This is of course a feature not a bug. The ability to do
these calculations in the strong coupling regime is a key part of the moti-
vation for all this work. But, although in the temperature regime of interest
g2(T )Nc = 4πNcαs(T ) is large, it is not infinite. This motivates the calcula-
tion of corrections to various results that we shall discuss that are proportional
to powers of 1/λ, for the purpose of testing the robustness of conclusions
drawn from calculations done with λ → ∞.

(3) QCD has Nc = 3 colors, while all the calculations that we shall report are
done in the Nc → ∞ limit. Although the large-Nc approximation is familiar in
QCD, the standard way of judging whether it is reliable in a particular context
is to compute corrections suppressed by powers of 1/Nc. And, determining the
1/N 2

c corrections to the calculations done via the gauge/string duality that we
review remains an outstanding challenge.

(4) Although we have argued above that the distinction between bosons and
fermions is not important at nonzero temperature, the distinction between
degrees of freedom in the adjoint or fundamental representation of SU (Nc) is
important. QCD has N f = 3 flavors in the fundamental representation, namely
N f = Nc. These fundamental degrees of freedom contribute significantly to its
thermodynamics at temperatures above Tc. And, the calculations that we shall
report are either done with N f = 0 or with 0 < N f � Nc. Extending methods
based upon gauge/string duality to the regime in which N f ∼ Nc remains an
outstanding challenge.

The plasmas of QCD and strongly coupled N = 4 SYM theory certainly differ.
At the least, using one to gain insight into the other follows in the long tradition
of modelling, in which a theoretical physicist employs the simplest instance of a
theory that captures the essence of a suite of phenomena that are of interest in order
to gain insights. The gravitational description of N = 4 SYM makes it clear that
it is in fact the simplest, most symmetric, strongly coupled non-Abelian plasma.
The question then becomes whether there are quantities or phenomena that are
universal across many different strongly coupled plasmas. The qualitative, and in
some instances even semi-quantitative, successes that we shall review that have
been achieved in comparing results or insights obtained in N = 4 SYM theory to
those in QCD suggest a positive answer to this question, but no precise definition of
this new kind of universality has yet been conjectured. In the absence of a precise
understanding of such a universality, we can hope for reliable insights into QCD
but not for controlled calculations.

We begin our description of the N = 4 SYM strongly coupled plasma in
this section by characterizing its macroscopic properties, i.e. those that involve
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6.1 Thermodynamic properties 153

temporal and spatial scales much larger than the microscopic scale 1/T . In Sec-
tion 6.1 we briefly review the determination of the thermodynamics of N = 4 SYM
theory. The quantities that we calculate are accessible in QCD, via lattice calcula-
tions as we have described in Chapter 3, meaning that in Section 6.1 we will be
able to compare calculations done in N = 4 SYM theory via gauge/string duality
to reliable information about QCD. In Section 6.2 we turn to transport coefficients
like the shear viscosity η, which govern the relaxation of small deviations away
from thermodynamic equilibrium. Lattice calculations of such quantities remain
challenging for reasons that we have described in Section 3.2 but, as we have seen
in Section 2.2, phenomenological analyses of collective effects in heavy ion colli-
sions in comparison to relativistic, viscous, hydrodynamic calculations are yielding
information about η/s in QCD. Section 6.3 will be devoted to illustrating one of the
most important qualitative differences between the strongly coupled N = 4 SYM
plasma and any weakly coupled plasma: the absence of quasiparticles. As we will
argue in this section, this is a generic feature of strong coupling which, at least
at a qualitative level, provides a strong motivation in the context of the physics
of QCD above Tc for performing studies within the framework of gauge/string
duality. Finally, in Section 6.4 we shall see how long-lived collective hydrody-
namic excitations of the plasma, as well as a plethora of excitations of the plasma
with lifetimes that are short compared to the inverse of their energies, emerge
from the gravitational point of view where they correspond to perturbations of the
metric.

6.1 Thermodynamic properties

6.1.1 Entropy, energy and free energy

As discussed in Section 5.2.1, N = 4 SYM theory in equilibrium at nonzero
temperature is described in the gravity theory by introducing black branes which
change the AdS5 metric to the black brane metric (5.34) with an event horizon
at position z0. As in standard black hole physics, the presence of the horizon
allows us to compute the entropy in the gravity description, which is given by
the Bekenstein–Hawking formula

Sλ=∞ = SBH = A3

4G5
, (6.1)

where A3 is the three-dimensional area of the event horizon of the non-compact
part of the metric and G5 is the five-dimensional Newton constant. This entropy is
to be identified as the entropy of the gauge theory plasma in the strong coupling
limit [391]. The area A3 is determined from a spatial section of the horizon metric,
obtained by setting t = const, z = z0 in Eq. (5.34), i.e.
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ds2
Hor = R2

z2
0

(
dx2

1 + dx2
2 + dx2

3

)
. (6.2)

The total horizon area is then

A3 = R3

z3
0

∫
dx1dx2dx3 , (6.3)

where
∫

dx1dx2dx3 is the volume in the gauge theory. While the total entropy is
infinite, the entropy density per unit gauge theory volume is finite and is given by

sλ=∞ = SBH∫
dx1dx2dx3

= R3

4G5z3
0

= π2

2
N 2

c T 3 , (6.4)

where in the last equality we have used Eqs. (5.12) and (5.36) to translate the
gravity parameters z0, R and G5 into the gauge theory parameters T and Nc. Note
that we would have obtained the same result if we had used the full ten-dimensional
geometry, which includes the S5. In this case the horizon would have been nine-
dimensional, with a spatial area of the form A8 = A3 × S5, and the entropy would
have taken the form

SBH = A8

4G
= A3VS5

4G
, (6.5)

which equals (6.1) by virtue of the relation (5.12) between the ten- and the five-
dimensional Newton constants.

Once the entropy density is known, the rest of the thermodynamic potentials are
obtained through standard thermodynamic relations. In particular, the pressure P
obeys s = ∂P/∂T , and the energy density is given by ε = −P +T s. Thus we find:

ελ=∞ = 3π2

8
N 2

c T 4, Pλ=∞ = π2

8
N 2

c T 4 . (6.6)

The Nc and temperature dependence of these results could have been anticipated.
The former follows from the fact that the number of degrees of freedom in an
SU (Nc) gauge theory in its deconfined phase grows as N 2

c , whereas the latter
follows from dimensional analysis, since the temperature is the only scale in the
N = 4 SYM theory. What is remarkable about these results is that they show that
the prefactors in front of the Nc and temperature dependence in these thermody-
namic quantities attain finite values in the limit of infinite coupling, λ → ∞, which
is the limit in which the gravity description becomes strictly applicable.

It is instructive to compare the above expressions at infinite coupling with those
for the free N = 4 SYM theory, i.e. at λ = 0. Since N = 4 SYM has eight bosonic
and eight fermonic adjoint degrees of freedom and since the contribution of each
boson to the entropy is 2π2T 3/45 whereas the contribution of each fermion is 7/8
of that of a boson, the zero coupling entropy is given by
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sλ=0 =
(

8 + 8 × 7

8

)
2π2

45
(N 2

c − 1)T 3 � 2π2

3
N 2

c T 3 , (6.7)

where in the last equality we have used the fact that Nc � 1. As before, the Nc

and T dependences are set by general arguments. The only difference between
the infinite and zero coupling entropies is an overall numerical factor: comparing
Eqs. (6.4) and (6.7) we find [391]

sλ=∞
sλ=0

= Pλ=∞
Pλ=0

= ελ=∞
ελ=0

= 3

4
. (6.8)

This is a very interesting result: while the coupling of N = 4 SYM changes radi-
cally between the two limits, the thermodynamic potentials vary very mildly. This
observation is, in fact, not unique to the special case of N = 4 SYM theory, but
seems to be a generic phenomenon for field theories with a gravity dual. In fact, in
Ref. [653] it was found that for several different classes of theories, each encom-
passing infinitely many instances, the change in entropy between the infinitely
strong and infinitely weak coupling limit is

sstrong

sfree
= 3

4
h , (6.9)

with h a factor of order one, 8
9 ≤ h ≤ 1.096 62. These explicit calculations strongly

suggest that the thermodynamic potentials of non-Abelian gauge-theory plasmas
(at least for near-conformal ones) are quite insensitive to the particular value of the
gauge coupling. This is particularly striking since, as we will see in Sections 6.2
and 6.3, the transport properties of these gauge theories change dramatically as a
function of coupling, going from a nearly ideal gas-like plasma of quasiparticles
at weak coupling to a nearly ideal liquid with no quasiparticles at strong coupling.
So, we learn an important lesson from the calculations of thermodynamics at strong
coupling via gauge/string duality: thermodynamic quantities are not good observ-
ables for distinguishing a weakly coupled gas of quasiparticles from a strongly
coupled liquid; transport properties and the physical picture of the composition
of the plasma are completely different in these two limits, but no thermodynamic
quantity changes much.

Returning to the specific case of N = 4 SYM theory, in this case the leading
finite-λ correction to (6.8) has been calculated [402] as has the leading finite-Nc

correction [640], yielding

Sλ,Nc→∞
Sλ=0,Nc→∞

= Pλ,Nc→∞
Pλ=0,Nc→∞

= ελ,Nc→∞
ελ=0,Nc→∞

= 3

4

(
1 + 15 ζ(3)

8

1

λ3/2
+ 5

128

λ1/2

N 2
c

+ · · ·
)

, (6.10)
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where ζ is the Riemann zeta function and ζ(3) ≈ 1.20. Note that equation (6.10)
is obtained by taking Nc → ∞ first and then taking λ → ∞. In this limit, the
last term is always much smaller than the other terms despite the λ1/2 factor in
the numerator. Note also that the O(1/N 2

c ) corrections that are zeroth order in
λ have not yet been computed. The expression (6.10) suggests that sλ=∞/sλ=0

increases from 3/4 to 7/8 as λ drops from infinity down to λ ∼ 6, corresponding to
αSYM ∼ 0.5/Nc. This reminds us that the control parameter for the strong coupling
approximation is 1/λ, meaning that it can be under control down to small values
of αSYM.

It is also interesting to compare (6.8) to what we know about QCD thermody-
namics from lattice calculations like those described in Section 3.1. The ratio (6.8)
has the advantage that the leading dependence on the number of degrees of free-
dom drops out, making it meaningful to compare directly to QCD. While theories
that have been analyzed in Ref. [653] are rather different from QCD, the regular-
ity observed in these theories compel us to evaluate the ratio of the entropy density
computed in the lattice calculations to that which would be obtained for free quarks
and gluons. Remarkably, Fig. 3.1 shows that, for T = (2 − 3) Tc, the coefficient
defined in (6.9) is h � 1.07, which is in the ballpark of what the calculations done
via gauge/gravity duality have taught us to expect for a strongly coupled gauge
theory. While this observation is interesting, by itself it is not strong evidence that
the QCD plasma at these temperatures is strongly coupled. The central lesson is,
in fact, that the ratio (6.8) is quite insensitive to the coupling. The proximity of the
lattice results to the value for free quarks and gluons should never have been taken
as indicating that the quark–gluon plasma at these temperatures is a weakly cou-
pled gas of quasiparticles. And, now that experiments at RHIC and at the LHC that
we described in Section 2.2 combined with calculations that we shall describe in
Section 6.2 have shown us a strongly coupled QCD plasma, the even closer prox-
imity of the lattice results for QCD thermodynamics to that expected for a strongly
coupled gauge theory plasma should also not be overinterpreted.

6.1.2 Holographic susceptibilities

The previous discussion focused on a plasma at zero chemical potential μ. While
gauge/gravity duality allows us to explore the phase diagram of the theory at
nonzero values of μ, in order to parallel our discussion of QCD thermodynam-
ics in Chapter 3, in our analysis of strongly coupled N = 4 SYM theory here
we will concentrate on the calculation of susceptibilities. As explained in Sec-
tion 3.1.1, their study requires the introduction of U (1) conserved charges. In
N = 4 SYM, there is an SU (4) global symmetry, the R-symmetry, which in the
dual gravity theory corresponds to rotations in the five-sphere. A chemical poten-
tial for R-charge can be introduced by studying black branes that rotate in these
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coordinates [720, 302, 557, 393]; these solutions demand non-vanishing values of
an Abelian vector potential Aμ in the gravitational theory which, in turn, lead to a
non-vanishing R-charge density n in the gauge theory proportional to the angular
momentum density of the black hole. The chemical potential can be extracted from
the boundary value of the temporal component of the Maxwell field as in (5.37)
and is also a function of the angular momentum of the black hole. The explicit
calculation performed in Ref. [748] leads to

n = N 2
c T 2

8
μ (6.11)

in the small chemical potential limit. Note that, unlike in QCD, the susceptibility
dn/dμ inferred from Eq. (6.11) is proportional to N 2

c instead of Nc. This is a trivial
consequence of the fact that R-symmetry operates over adjoint degrees of freedom.

As in the case of the entropy, the different number of degrees of freedom can be
taken into account by comparing the susceptibility at strong coupling to that in the
noninteracting theory, which yields

χλ=∞
χλ=0

= 1

2
, (6.12)

where χλ=0 = N 2
c T 2/4 [777]. Similarly to the case of the entropy density, the

ratio of susceptibilities between these two extreme limits saturates into an order
one constant. Despite the radical change in the dynamics of the degrees of free-
dom in the two systems, the only variation in this observable is a 50% reduction,
comparable to the 25% reduction of the energy density in the same limit. This 50%
reduction can be contrasted with the results from the lattice calculations reviewed
in Section 3.1.1 which show a slow rise in the quark number fluctuations above Tc,
seemingly saturating at about 90% of their value in the noninteracting limit. As in
the early interpretations of lattice calculations of the energy density and pressure,
the proximity of the diagonal susceptibilities to their Stefan–Boltzmann values
has been interpreted by some as a sign that the QCD quark–gluon plasma is not
strongly coupled [540, 726, 171, 676]. However, although the susceptibilities cal-
culated on the lattice come numerically closer to their values in the noninteracting
limit than in the case of the pressure, their temperature-dependence is qualitatively
quite similar. Therefore, it is not clear whether the values of the susceptibilities
pose any challenge to the interpretation of the QCD plasma as a strongly coupled
one, given the manifest insensitivity of thermodynamic quantities to the coupling.
Furthermore, the value of the ratio of susceptibilities (6.12) is not universal: it can
be different in holographic gauge theories which are closer to QCD than N = 4
SYM. It is tempting to speculate that if it were possible to use gauge/string duality
to analyze strongly coupled theories with N f ∼ Nc and compute the suscepti-
bility for a U (1) charge carried by the fundamental degrees of freedom in such a
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theory, we may be able to find examples in which the susceptibility is as close to its
weak coupling value as is the case in QCD, even when all degrees of freedom are
strongly coupled. Were this speculation to prove correct, it would be an example
of a result from QCD leading to insight into strongly coupled gauge theories with
a gravitational description, i.e. it would be an example of insight in the opposite
direction from that that throughout most of this book.

The study of off-diagonal susceptibilities as in (3.3) requires the introduction
of an additional U (1) × SU (N f ) global symmetry in the plasma, with N f ≥ 2.
(The global SU (4) symmetry that is already a feature of N = 4 SYM theory
cannot be used for this purpose because the off-diagonal susceptibilities of two
commuting U (1) subgroups within SU (4) must vanish.) As explained in Sec-
tion 5.5, fundamental flavor degrees of freedom are introduced in the holographic
set-up via D-branes, which, in addition to a SU (N f ) global symmetry, also lead
to an additional U (1) charge (baryon number). Analogously to the way the diag-
onal susceptibilities are analyzed above, non-vanishing values of the different
chemical potentials arising in off-diagonal susceptibilities (3.3) are associated with
non-vanishing non-Abelian gauge fields in the brane. In the probe approximation
(N f � Nc), the study of susceptibilities corresponds to determining the reaction
of the partition function of the branes to small values of these non-Abelian fields
up to quadratic order. However, off-diagonal susceptibilities are suppressed by an
additional power of Nc with respect to the diagonal susceptibilities, as shown in
Ref. [170]. This can be inferred from the fact that there is no mixing (at quadratic
order) between different gauge fields in the non-Abelian Yang-Mills Lagrangian.
On the gravity side, this means that the off-diagonal susceptibilities vanish at the
classical level and a one-loop calculation is required. While the complete deter-
mination of the one-loop correction to the partition function is technically very
demanding, since it must include an analysis of all the gravitational fields, the
contribution to the flavor correlations that is leading order in Nc can be obtained
by restricting the calculation to open string fluctuations, since closed string modes
cannot distinguish among different flavors. After this simplification, the analysis of
the one-loop determinant in Ref. [250] yields the leading parametric dependence
of the off-diagonal susceptibilities on both λ and Nc.

The main result of the analysis in Ref. [250] is that the ratio of off-diagonal
to diagonal susceptibilities becomes independent of the coupling in the limit
λ → ∞, which is in marked contrast to expectations based upon extending the
perturbative result (which is that the off-diagonal susceptibilities are suppressed
relative to the diagonal ones by a factor of order (λ3/Nc) log(1/g) with g the
gauge coupling constant [170]) to strong coupling. Within the D3/D7 model for
holographic flavor, the off-diagonal susceptibilities as in (3.3) can be expressed
as [250]
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χud
11 = h

(
M

T

)
T 2 , (6.13)

with h
(

M
T

)
a model dependent numerical constant that depends on the mass of the

quarks, M , but has no dependence on either λ or Nc. The fact that in the large λ

limit this thermodynamic quantity becomes independent of coupling and differs
from its value at λ = 0 only by a modest numerical factor reflects, once again, the
insensitivity of thermodynamic potentials to the underlying degrees of freedom.
Furthermore, the rich structure of the D3/D7 model, which will be discussed in
depth in Section 9.3 , allows us to use the opportunity to vary M/T to compare
the off-diagonal susceptibilities in a plasma at large M/T in which these suscep-
tibilities are dominated by quasiparticles (infinitely narrow bound mesons that can
be thought of as analogous to quarkonia) to that in a plasma at small M/T in
which there are no quasiparticles. (In this high temperature phase, the quarkonium-
like mesons have dissolved and there are no quasiparticles.) As inferred from
Eq. (6.13), the off-diagonal susceptibilities remain parametrically the same in the
large and small M/T limits, even given the radical change in the degrees of free-
dom and in the nature of the plasma. From this study, we can conclude that when
we see non-vanishing values of the off-diagonal susceptibilities, as in the lattice
QCD calculations that we have described in Section 3.1.1, this does not imply
the existence of resonances of any type, let alone bound states. The holographic
analysis of susceptibilities in strongly coupled plasma demonstrates that drawing
conclusions about the strength of the coupling constant or about the nature of the
effective degrees of freedom in the QGP from the lattice computation of suscep-
tibilities should be treated with just as much caution as drawing such conclusions
from the values of thermodynamic quantities.

6.2 Transport properties

We now turn to the calculation of the transport coefficients of a strongly coupled
plasma with a dual gravitational description, which control how such a plasma
responds to small deviations from equilibrium. We shall see that in the strong
coupling limit these quantities take on very different values, both parametrically
and numerically, than in a noninteracting plasma. This makes them much better
suited to diagnosing whether a plasma is gas-like or liquid-like, weakly cou-
pled or strongly coupled, than the thermodynamic quantities and susceptibilities
of the previous section. As we have reviewed in Section 3.2, since the relax-
ation of perturbations toward equilibrium is intrinsically a real time process, the
lattice determination of transport coefficients is very challenging. While initial
steps toward determining them in QCD have been taken, definitive results are
not in hand. As a consequence, the determination of transport coefficients via
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gauge/string duality is extremely valuable since it opens up their analysis in a
regime which is not tractable otherwise. A remarkable consequence of this anal-
ysis, which we describe in Section 6.2.2, is a universal relation between the
shear viscosity and the entropy density for the plasmas in all strongly coupled
large-Nc gauge theories with a gravity dual [554, 212, 552, 206]. This finding,
together with the comparison of the universal result η/s = 1/(4π) with val-
ues extracted by comparing data on azimuthally asymmetric flow in heavy ion
collisions to analyses in terms of viscous hydrodynamics as we have described
in Section 2.2, has been one of the most influential results obtained via the
gauge/string duality.

6.2.1 A general formula for transport coefficients

The most straightforward way in which transport coefficients can be deter-
mined using the gauge/gravity correspondence is via Green–Kubo formulas, see
Appendix A, which rely on the analysis of the retarded correlators in the field
theory at small four-momentum. The procedure for determining these correlators
using the correspondence has been outlined in Section 5.3. In this section we will
try to keep our analysis as general as possible so that it can be used for the transport
coefficient that describes the relaxation of any conserved current in the theory. In
addition, we will not restrict ourselves to the particular form of the metric (5.34) so
that our discussion can be applied to any theory with a gravity dual. Our discussion
will closely follow the formalism developed in [482], which builds upon earlier
analyses in Refs. [690, 554, 212, 552, 206, 725, 761, 364].

In general, if the field theory at nonzero temperature is invariant under trans-
lations and rotations, the gravitational theory will be described by a (4 +
1)-dimensional metric of the form

ds2 = −gtt dt2 + gzzdz2 + gxxδi j dxi dx j = gM N dx Mdx N (6.14)

with all the metric components solely dependent on z. Since a nonzero temperature
is characterized in the dual theory by the presence of an event horizon, we will
assume that gtt has a first order zero and gzz has a first order pole at a particular
value z = z0.

We are interested in computing the transport coefficient χ associated with some
operator O in this theory, namely

χ = − lim
ω→0

lim
�k→0

1

ω
Im G R(ω,k) . (6.15)
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(See Appendix A for the exact definition of G R and for a derivation of this for-
mula.) For concreteness, we assume that the quadratic effective action for the bulk
mode φ dual to O has the form of a massless scalar field1

S = −1

2

∫
dd+1x

√−g
1

q(z)
gM N∂Mφ∂Nφ, (6.16)

where q(z) is a function of z and can be considered a spacetime-dependent cou-
pling constant. As we will see below, Eqs. (6.14) and (6.16) apply to various
examples of interest including the shear viscosity and the momentum broaden-
ing for the motion of a heavy quark in the plasma. Since transport coefficients
are given by the Green–Kubo formula Eq. (6.15), the general expression for the
retarded correlator (5.62) with � = d and m = 0 leads to

χ = − lim
kμ→0

lim
z→0

Im

{
�(z, kμ)

ωφ(z, kμ)

}
= − lim

kμ→0
lim
z→0

�(z, kμ)

iωφ(z, kμ)
, (6.17)

where � is the canonical momentum of the field φ:

� = δS

δ∂zφ
= −

√−g

q(z)
gzz∂zφ . (6.18)

The last equality in (6.17) follows from the fact that the real part of G R(k) vanishes
faster than linearly in ω as k → 0, as is proven by the fact that the final result that
we will obtain, Eq. (6.25), is finite and real.

In (6.17) both � and φ must be solutions of the classical equations of motion
which, in the Hamiltonian formalism, are given by (6.18) together with

∂z� = −
√−g

q(z)
gμνkμkνφ . (6.19)

The evaluation of χ , following Eq. (6.17), requires the determination of both ωφ

and � in the small four momentum kμ → 0 limit. Remarkably, in this limit the
equations of motion (6.18) and (6.19) are trivial2

∂z� = 0 + O(kμωφ) , ∂z(ωφ) = 0 + O(ω�) , (6.20)

and both quantities become independent of z, which allows their evaluation at any
z. For simplicity, and since the only restriction on the general metric (6.14) is that it

1 Note that restricting to a massless mode does not result in much loss of generality, since almost all transport
coefficients calculated to date are associated with operators whose gravity duals are massless fields. The only
exception is the bulk viscosity.

2 Note from (6.18) and (6.19) that the O(kμωφ) terms neglected in the first equation in (6.20) contain a term
multiplied by gtt while the O(ω�) term neglected in the second equation in (6.20) is multiplied by gzz .
Since both quantities diverge at the horizon, Eqs. (6.20) are not valid there. They are valid anywhere outside
the horizon for sufficiently small ω. Note, however, that the ratio in (6.17) does have a well defined limit
approaching the horizon.
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162 Bulk properties of strongly coupled plasma

possesses a horizon, we will evaluate them for z → z0 where the infalling boundary
condition should be imposed. Our assumptions about the metric imply that in the
vicinity of the horizon z → z0

gtt = −c0(z0 − z), gzz = cz

z0 − z
, (6.21)

and eliminating � from (6.18) and (6.19) we find an equation for φ given by√
c0

cz
(z0 − z)∂z

(√
c0

cz
(z0 − z)∂zφ

)
+ ω2φ = 0 . (6.22)

The two general solutions for this equation are

φ ∝ e−iωt (z0 − z)±iω
√

cz/c0 . (6.23)

Imposing infalling boundary condition implies that we should take the negative
sign in the exponent. Therefore, from Eq. (6.23) we find that at the horizon

∂zφ =
√

gzz

−gtt
(iωφ) , (6.24)

and using Eqs. (6.18) and (6.23) we obtain

χ = − lim
kμ→0

lim
z→0

�(z, kμ)

iωφ(z, kμ)
= − lim

kμ→0
lim

z→z0

�(z, kμ)

iωφ(z, kμ)
= 1

q(z0)

√
−g

−gzzgtt

∣∣∣∣
z0

.

(6.25)
Note that the last equality in (6.25) can also be written as

χ = 1

q(z0)

A

V
, (6.26)

where A is the area of the horizon and V is the spatial volume of the bound-
ary theory. From our analysis of the thermodynamic properties of the plasma in
Section 6.1, the area of the event horizon is related to the entropy density of the
boundary theory via

s = A

V

1

4G N
. (6.27)

From this analysis we conclude that in theories with a gravity dual the ratio of any
transport coefficient to the entropy density depends solely on the properties of the
dual fields at the horizon,

χ

s
= 4G N

q(z0)
. (6.28)

In the next section we will use this general expression to compute the shear
viscosity of the AdS plasma.
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Finally, we would like to remark that the above discussion applies to more
general effective actions of the form

S = −1

2

∫
dωdd−1k

(2π)d
dz

√−g

[
gzz(∂zφ)

2

Q(z;ω, k)
+ P(z;ω, k)φ2

]
, (6.29)

provided that the equations of motion (6.20) remain trivial in the zero-momentum
limit. This implies that Q should go to a nonzero constant at zero momentum and
P must be at least quadratic in momenta. For (6.29) the corresponding transport
coefficient χ is given by

χ = 1

Q(z0, kμ = 0)

A

V
and

χ

s
= 4G N

Q(z0, kμ = 0)
. (6.30)

6.2.2 Universality of the shear viscosity

We now apply the result of the last section to the calculation of the shear viscosity
η of a strongly coupled plasma described by the metric (6.14). As in Appendix
A we must compute the correlation function of the operator O = Txy , where the
coordinates x and y are orthogonal to the momentum vector. The bulk field φ dual
to O should have a metric perturbation hxy as its boundary value. It then follows
that φ = (δg)x

y −→
z→0

hxy , where δg is the perturbation of the bulk metric. For

Einstein gravity in a geometry with no off-diagonal components in the background
metric, as in (6.14), a standard analysis of the Einstein equations to linear order
in the perturbation, upon assuming that the momentum vector is perpendicular to
the (x, y)-plane, shows that the effective action for φ is simply that of a minimally
coupled massless scalar field, namely

S = − 1

16πG N

∫
dd+1x

√−g

[
1

2
gM N∂Mφ∂Nφ

]
. (6.31)

The prefactor 1/16πG N comes from that of the Einstein–Hilbert action. This
action has the form of Eq. (6.16) with

q(z) = 16πG N = const, (6.32)

which, together with Eq. (6.28), leads to the celebrated result

ηλ=∞
sλ=∞

= 1

4π
(6.33)

that was first obtained in 2001 by Policastro, Son and Starinets [690]. In (6.32), we
have added the subscript λ = ∞ to stress that the numerator and denominator are
both computed in the strict infinite coupling limit. Remarkably, this ratio converges
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to a constant at strong coupling. And, this is not only a feature of N = 4 SYM the-
ory because this derivation applies to any gauge theory with a gravity dual given
by Einstein gravity coupled to matter fields, since in Einstein gravity the coupling
constant for gravity is always given by Eq. (6.32). In this sense, this result is univer-
sal [554, 212, 552, 206] since it applies in the strong coupling and large-Nc limits
to the large class of theories with a gravity dual, regardless of whether the theories
are conformal or not, confining or not, supersymmetric or not and with or without
chemical potential. In particular, if large-Nc QCD has a string theory dual, there
should exist temperature ranges where its η/s is well approximated by 1/(4π) up
to corrections due to the finiteness of the coupling. Even if large-Nc QCD does
not have a string theory dual, Eq. (6.33) may still provide a reasonable approxi-
mation in certain temperature ranges since the universality of this result may be
due to generic properties of strongly coupled theories (for example the absence of
quasiparticles, see Section 6.3) which may not depend on whether they are dual to
a gravitational theory.

The original calculation of η/s and the original demonstration of its universality
were based on the relationship between the absorption cross-section σ for a gravi-
ton incident on a black D3-brane in the limit of zero graviton energy and the shear
viscosity η [690, 552]. These authors showed that η = σ/(16πG), with G being
the ten-dimensional Newton constant. General results from black hole physics
include σ = A, where A is the area of the black brane horizon, and s = A/(4G). So
one then finds η/s = 1/(4π), namely (6.33). This derivation is intuitive and geo-
metrical in the way that it relates dissipation in the gauge theory (η) to falling into a
horizon in the dual gravitational description and in the way that it relates both η and
s to A, thus giving an immediate sense of the universality of the result (6.33). How-
ever, the definition of σ requires considering scattering states in the asymptotically
flat region of the D3-brane that lies beyond the AdS5 × S5 region of the D3-brane
where the physics of actual interest resides. The self-contained derivation that we
have presented in full above refers only to physics in AdS5 × S5 and, as we shall
see, it generalizes immediately to the calculation of other transport coefficients.

The leading finite-coupling and finite-Nc corrections to Eq. (6.33) in N = 4
SYM theory have been computed and are given by [215, 211, 210, 640]

ηNc ,λ→∞
sNc ,λ→∞

= 1

4π

(
1 + 15 ζ(3)

λ3/2
+ 5

16

λ1/2

N 2
c

+ · · ·
)

. (6.34)

The above equation is obtained by taking Nc → ∞ first and then λ → ∞. In
this limit, the last term is always much smaller than the other terms. While the
expression (6.34) is only valid as written for N = 4 SYM theory, if the leading
finite-λ correction proportional to 1/λ3/2 and the finite-Nc correction proportional
to λ1/2/N 2

c are re-expressed instead in terms of the parameters R and ls in the
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gravity theory, in this form the expression would then apply to a larger class of the-
ories (those dual to compactifications of type IIB supergravity on various different
five-dimensional manifolds) [216]. It is also important to stress that the correction
proportional to λ1/2/N 2

c is not the full correction of order 1/N 2
c [640]. The prefac-

tor in front of the order 1/N 2
c correction can be expanded in powers of λ, and the

λ1/2/N 2
c term in (6.34) is the leading term in this expansion. The higher order terms

have not yet been computed. It is interesting to notice that, according to Eq. (6.34)
with Nc set to 3, η/s increases to ∼ 2/(4π) once λ decreases to λ ∼ 7, mean-
ing αSYM ∼ 0.2. This is the same range of couplings at which the finite coupling
corrections (6.10) to thermodynamic quantities become significant. These results
together suggest that strongly coupled theories with gravity duals may yield insight
into the quark-gluon plasma in QCD even down to apparently rather small values
of αs , at which λ is still large.

To put the result (6.33) into further context, we can compare this strong coupling
result to results for the same ratio η/s at weak coupling in both N = 4 SYM
theory and QCD. These have been computed at next to leading log accuracy, and
take the form

ηN c ,λ→∞
sN c ,λ→∞

= A

λ2 log
(

B/
√
λ
) , (6.35)

with A = 6.174 and B = 2.36 in N = 4 SYM theory and A = 34.8 (46.1)
and B = 4.67 (4.17) in QCD with N f = 0 (N f = 3) [78, 474], where we have
defined λ = g2 Nc in QCD as in N = 4 SYM theory. Quite unlike the strong
coupling result (6.33), these weak coupling results show a strong dependence on
λ, and in fact diverge in the weak coupling limit. The divergence reflects the fact
that a weakly coupled gauge theory plasma is a gas of quasiparticles, with strong
dissipative effects. In a gas, η/s is proportional to the ratio of the mean free path
of the quasiparticles to their average separation. A large mean free path, and hence
a large η/s, mean that momentum can easily be transported over distances that
are long compared to the average spacing between particles. In the λ → 0 limit
the mean free path diverges. The strong 1/λ2 dependence of η/s can be traced
to the fact that the two-particle scattering cross-section is proportional to g4. It is
natural to guess that the λ-dependence of η/s in N = 4 SYM theory is monotonic,
increasing from 1/(4π) as in (6.34) as λ decreases from ∞ and then continuing to
increase until it diverges according to (6.35) as λ → 0. The weak coupling result
(6.35) also illustrates a further important point: η/s is not universal for weakly
coupled gauge theory plasmas. The coefficients A and B can vary significantly
from one theory to another, depending on their particle content. It is only in the
strong coupling limit that universality emerges, with all large-Nc theories with a
gravity dual having plasmas with η/s = 1/(4π). And, we shall see in Section 6.3
that a strongly coupled gauge theory plasma does not have quasiparticles, which
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makes it less surprising that η/s at strong coupling is independent of the particle
content of the theory at weak coupling.

One lesson from the calculations of η/s is that this quantity changes signifi-
cantly with the coupling constant, going from infinite at zero coupling to 1/(4π) at
strong coupling, at least for large-Nc theories with gravity duals. This is in marked
contrast to the behavior of the thermodynamic quantities described in Section 6.1,
which change only by 25% over the same large range of couplings. Thermody-
namic observables are insensitive to the coupling, whereas η/s is a much better
indicator of the strength of the coupling because it is a measure of whether the
plasma is liquid-like or gaseous.

These observations prompt us to revisit the phenomenological extraction of the
shear viscosity of quark–gluon plasma in QCD from measurements of azimuthally
anisotropic flow in heavy ion collisions, described in Section 2.2. As we saw, the
comparison between data and calculations done using relativistic viscous hydrody-
namic yields the current estimate that η/s seems to lie within the range (1−2)/(4π)
in QCD, in the same ballpark as the strong coupling result (6.33) And, as we
reviewed in Section 3.2, current lattice calculations of η/s in N f = 0 QCD come
with caveats but also indicate a value that is in the ballpark of 1/(4π), likely some-
what above it. Given the sensitivity of η/s to the coupling, these comparisons con-
stitute one of the main lines of evidence that, in the temperature regime accessible
at RHIC and at the LHC, the quark–gluon plasma is a strongly coupled fluid. If we
were to attempt to extrapolate the weak coupling result (6.35) for η/s in QCD with
N f = 3 to the values of η/s favored by experiment, we would need λ ∼ (14−24),
well beyond the regime of applicability of perturbation theory. (To make this esti-
mate we had to set the log in (6.35) to 1 to avoid negative numbers, which reflects
the fact that the perturbative result is being applied outside its regime of validity.)

A central lesson from the strong coupling calculation of η/s via gauge/string
duality, arguably even more significant than the qualitative agreement between the
result (6.33) and current extractions of η/s from heavy ion collision data, is simply
the fact that values of η/s � 1 are possible in non-Abelian gauge theories, and
in particular in non-Abelian gauge theories whose thermodynamic observables are
not far from weak coupling expectations. These calculations, done via gauge/string
duality, provided theoretical support for considering a range of small values of η/s
that had not been regarded as justified previously, and inferences drawn from RHIC
data have now pushed η/s into this regime. The computation of the shear viscos-
ity that we have just described is one of the most influential results supporting
the notion that the application of gauge/string duality can yield insights into the
phenomenology of hot QCD matter.

It has also been conjectured [552] that the value of η/s in Eq. (6.33) is, in
fact, a lower bound for all systems in nature. This conjecture is supported by
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the finite-coupling corrections shown in Eq. (6.34). And, all substances known
in the laboratory satisfy the bound. Among conventional liquids, the lowest η/s
is achieved by liquid helium, but it is about an order of magnitude above 1/(4π);
water – after which hydrodynamics is named – has an η/s that is larger still, by
about another order of magnitude. The best liquids known in the laboratory are
the quark–gluon plasma produced in heavy ion collisions and an ultracold gas of
fermionic atoms at the unitary point, at which the s-wave atom–atom scattering
length has been dialed to infinity [730], both of which have η/s in the ballpark of
1/(4π) but, according to current estimates, somewhat larger.

However, in recent years the conjecture that (6.33) is a lower bound on η/s has
been questioned and counter-examples have been found among theories with grav-
ity duals. As emphasized in Chapter 5, Einstein gravity in the dual gravitational
description corresponds to the large-λ and large-Nc limit of the boundary gauge
theory. When higher order corrections to Einstein gravity are included, which cor-
respond to 1/

√
λ or 1/Nc corrections in the boundary gauge theory, Eq. (6.33) will

no longer be universal. In particular, as pointed out in Refs. [197, 523] and general-
ized in Refs. [203, 204, 229, 373, 662, 737, 49, 205, 234], generic higher derivative
corrections to Einstein gravity can violate the proposed bound. Eq. (6.30) indicates
that η/s is smaller than Eq. (6.33) if the “effective” gravitational coupling for the
hx

y polarization at the horizon is stronger than the universal value (6.32) for Ein-
stein gravity. Gauss–Bonnet gravity as discussed in Refs. [197, 196] is an example
in which this occurs. There, the effective action for hy

x has the form of Eq. (6.29)
with the effective coupling Q(r) at the horizon satisfying [197]

1

Q(r0)
= (1 − 4 λGB)

16πG N
, (6.36)

leading to
η

s
= (1 − 4 λGB)

4π
, (6.37)

where λGB is the coupling for the Gauss–Bonnet higher derivative term. Thus, for
λGB > 0 the graviton in this theory is more strongly coupled than that of Ein-
stein gravity and the value of η/s is smaller than 1/4π . In Ref. [523], an explicit
gauge theory has been proposed whose gravity dual corresponds to λGB > 0. (See
Refs. [640, 217, 639, 741] for generalizations.) It is interesting to note that in all
these examples the bound-violating gauge theory includes degrees of freedom in
the fundamental representation. Indeed, in all the theories that these authors have
investigated that contain fundamental matter, the presence of fundamental matter
pushes η/s toward values below 1/(4π).

Despite not being a lower bound, the smallness of η/s in Eq. (6.33), the qualita-
tive agreement between Eq. (6.33) and values obtained from heavy ion collisions,
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and the universality of the result (6.33) which applies to any gauge theory with
a gravity dual in the large-Nc and strong coupling limits, are responsible for the
great impact that this calculation done via gauge/string duality has had on our
understanding of the properties of deconfined QCD matter.

As we have mentioned in Section 2.2, the determination of η/s in hot QCD
matter by comparing data on azimuthally asymmetric heavy ion collisions and
hydrodynamic calculations is rapidly improving, as theorists begin to use very new
data on the damping of higher-order-than-two harmonics of the azimuthal asym-
metry sourced by fluctuations. Looking ahead a few years, we anticipate that η/s
will be sufficiently well understood that effort will then be spent on tightening
constraints on its temperature dependence and on the values of other transport coef-
ficients. Although it remains to be demonstrated, it is certainly possible that in a
few years string theorists could be debating what the then well-determined value of
η/s for the quark–gluon plasma of QCD is telling us about quantum gravity (finite
1/N 2

c ) and stringy (finite coupling) corrections in the as yet unknown dual descrip-
tion of QCD itself. Although current analyses of heavy ion collision data do not
support this speculation, we can also muse about what would happen if η/s were
to turn out to be lower than 1/(4π) in QCD. We would be asking what features of
the gravitational physics dual to QCD, and indeed in QCD itself, yield this result.
We can speculate that, if this were to happen, the culprit on the QCD side could be
N f /Nc, given the presence of fundamental matter in the presently known examples
where η/s < 1/(4π) and given that N f = Nc in the strongly coupled plasma of
QCD. It is worth noting, though, that in the models of Ref. [607] η/s is unaffected
by the presence of fundamental matter at order λN f /Nc, which is the leading order
at which such effects might have arisen. The reduction in η/s that we described
in (6.37), due to Gauss–Bonnet higher derivative terms in the dual gravitational
theory and apparently related to the presence of fundamental matter in the gauge
theory, comes in only at order N f /Nc, with no enhancement by λ. It is difficult
at present to do more than speculate, but perhaps in the strongly coupled plasma
of theories that, like QCD, have N f ∼ Nc any reduction in η/s attributable to the
fundamental matter may turn out not to be large in magnitude. This story remains
to be written, but it seems likely that as the phenomenological determination of
η/s tightens in future, the gauge/string duality will turn data on the gauge side into
insight on the string side, working in the opposite direction to that which motivates
much of our book today.

6.2.3 Bulk viscosity

As we have discussed in Section 2.2, while the bulk viscosity ζ is very small in
the QCD plasma at temperatures larger than 1.5–2 Tc, with ζ/s much smaller than
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1/4π , ζ/s rises in the vicinity of Tc, a feature which can be important for heavy
ion collisions. Since the plasma of a conformal theory has zero bulk viscosity,
N = 4 SYM theory is not a useful example to study the bulk viscosity of a
strongly coupled plasma. However, the bulk viscosity has been calculated both
in more sophisticated examples of the gauge/string duality in which the gauge
theory is not conformal [134, 207, 209, 600, 213], as well as in AdS/QCD mod-
els that incorporate an increase in the bulk viscosity near a deconfinement phase
transition [409, 404, 417].

We will only briefly review what is possibly the simplest among the first type of
examples, the so-called Dp-brane theory. This is a (p + 1)-dimensional cousin of
N = 4 SYM, namely a (p + 1)-dimensional SYM theory (with 16 supercharges)
living at the boundary of the geometry describing a large number of non-extremal
black Dp-branes [487] with p 
= 3. The case p = 3 is N = 4 SYM, while the
cases p = 2 and p = 4 correspond to nonconformal theories in (2 + 1)- and
(4 + 1)-dimensions. We emphasize that we choose this example for its simplicity
rather than because it is directly relevant for phenomenology.

The metric sourced by a stack of black Dp-branes can be written as

ds2 = α′ (dpλ̃z3−p)
1

5−p

z2

(
− f̃ dt2 + ds2

p +
(

2

5 − p

)2 dz2

f̃
+ z2d�2

8−p

)
, (6.38)

where

λ̃ = g2 N , f̃ = 1 −
(

z

z0

) 14−2p
5−p

, dp = 27−2pπ
9−3p

2 �

(
7 − p

2

)
(6.39)

and

g2 = (2π)p−2gsα
′3−p

2 (6.40)

is the Yang–Mills coupling constant, which is dimensionful if p 
= 3. For p = 2
and p = 4 there is also a non-trivial profile for the dilaton field but we shall not
give its explicit form here. The metric above is dual to (p + 1)-dimensional SYM
theory at finite temperature.

The bulk viscosity can be computed from the dual gravitational theory via the
Kubo formula (A.10). However this computation is more complicated in the bulk
channel than in the shear channel and we will not reproduce it here. An alternative
and simpler way to compute the bulk viscosity is based on the fact that, in the
hydrodynamic limit, the sound mode has the following dispersion relation:

ω = csq − i

ε + p

(
p − 1

p
η + ζ

2

)
q2 + · · · , (6.41)
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with cs the speed of sound. Thus, ζ contributes to the damping of sound. In the
field theory, the dispersion relation for the sound mode can be found by exam-
ining the poles of the retarded Green’s function for the stress tensor in the sound
channel. As discussed in Section 5.3.1, on the gravity side these poles correspond to
normalizable solutions to the equations of motion for metric perturbations, which
we will describe more explicitly in Section 6.4. The explicit computation of these
normalizable modes for the metric (6.38) performed in Ref. [600] showed that the
sound mode has the dispersion relation

ω =
√

5 − p

9 − p
q − i

2

9 − p

q2

2πT
+ · · · (6.42)

from which one finds that (after using η/s = 1/(4π))

cs =
√

5 − p

9 − p
,

ζ

s
= (3 − p)2

2πp(9 − p)
. (6.43)

The above expressions imply an interesting relation [209]

ζ

η
= 2

(
1

p
− c2

s

)
= 2

(
c2

s,CFT − c2
s

)
, (6.44)

where we have used the fact that the speed of sound for a CFT in (p+1)-dimension
is cs,CFT = 1/

√
p. This result might not seem surprising since the bulk viscosity of

a theory which is close to being conformal can be expanded in powers of c2
s,CFT−c2

s ,
which is a measure of deviation from conformality. The non-trivial result is that
even though the Dp-brane gauge theories are not close to being conformal, their
bulk viscosities are nevertheless linear in c2

s,CFT − c2
s . While this is an interesting

observation, it is not clear to what extent it is particular to the Dp-brane gauge
theories or whether it is more generic.

6.2.4 Relaxation times and other second order transport coefficients

As we have described in Section 2.2.3, transport coefficients correspond to the
leading order gradient expansion of an interacting theory which corrects the ideal
hydrodynamic description. A priori, there is no reason to stop the extraction of
these coefficients at first order, and higher order ones can be (and have been) com-
puted using gauge/string duality. Of particular importance is the determination of
the five second order coefficients, τπ , κ , λ1, λ2, λ3 defined in Eq. (2.24). Unlike
for the first order coefficients, the gravitational computation of these second order
coefficients is quite technical and we shall not review it here. We shall only describe
the main points and refer the reader to Refs. [107, 155] for details.

The strategy for determining these coefficients is complicated by the fact that
the three coefficients λi involve only nonlinear combinations of the hydrodynamic
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fields. Thus, even though formulae can be derived for the linear coefficients τπ

and κ [107, 627], the nonlinear coefficients cannot be determined from two-point
correlators, since these coefficients are invisible in the linear perturbation analysis
of the background. Their determination thus demands the small gradient analysis
of nonlinear solutions to the Einstein equations3 as performed in Ref. [155] (see
also Ref. [107]) which yields

τπ = 2−ln 2
2πT , κ = η

πT , (6.45)

λ1 = η

2πT
, λ2 = − η ln 2

πT , λ3 = 0 .

These results are valid in the large-Nc and strong coupling limit. Finite coupling
corrections to some of these coefficients can be found in Ref. [214]. Addition-
ally, the first and second order coefficients have been studied in a large class of
nonconformal theories with or without flavor in Refs. [162, 160].

To put these results in perspective we will compare them to those extracted in
the weakly coupled limit of QCD (λ � 1) [812]. We shall not comment on the
values of all the coefficients, since, as discussed in Section 2.2.3, the only one with
any impact on current phenomenological applications to heavy ion collisions is the
shear relaxation time τπ . In the weak coupling limit,

lim
λ→0

τπ � 5.9

T

η

s
, (6.46)

where the result is expressed in such a way as to show that τπ and η have the same
leading order dependence on the coupling λ (up to logarithmic corrections). For
comparison, the strong coupling result from (6.45) may be written as

lim
λ�1

τπ = 7.2

T

η

s
, (6.47)

which is remarkably close to (6.46). But, of course, the value of η/s is vastly dif-
ferent in the weak and strong coupling limits. On general grounds, one may expect
that relaxation and equilibration processes are more efficient in the strong coupling
limit, since they rely on the interactions between different modes in the medium.
This general expectation is satisfied for the shear relaxation time of the N = 4
SYM plasma, with τπ diverging at weak coupling and taking on the small value

lim
λ→∞ τπ � 0.208

T
(6.48)

in the strong coupling limit. For the temperatures T > 200 MeV, which are rele-
vant for the quark–gluon plasma produced in heavy ion collisions, this relaxation

3 Kubo-like formulas involving three-point correlators (as opposed to two) can also be used to determine the
coefficients λi [627]. At the time of writing, this approach had not been explored within the gauge/gravity
context.
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time is of the order of 0.2 fm/c or smaller, which is much smaller than perturba-
tive expectations. We have recalled already at other places in this book that caveats
enter if one seeks quantitative guidance for heavy ion phenomenology on the basis
of calculations made for N = 4 SYM plasma. However, the qualitative (and even
semi-quantitative) impact of the result (6.48) on heavy ion phenomenology should
not be underestimated: the computation of τπ demonstrated for the first time that
at least some excitations in a strongly coupled non-Abelian plasma dissipate on
timescales that are much shorter than 1/T , i.e. on time scales much shorter than
1 fm/c. Such small relaxation time scales did not have any theoretical underpinning
before, and they are clearly relevant for phenomenological studies based on vis-
cous fluid dynamic simulations. As we discussed in Section 2.2, the success of the
comparison of such simulations to heavy ion collision data implies that a hydrody-
namic description of the matter produced in these collisions is valid only ∼ 1 fm/c
after the collision. Although this equilibration time is related to out-of-equilibrium
dynamics, whereas τπ is related to near-equilibrium dynamics (only to second
order), the smallness of τπ makes the rapid equilibration time seem less surprising.
We shall return to this subject in Chapter 7, where we shall describe insights com-
ing from holographic analyses of far-from-equilibrium dynamics that corroborate
the conclusions that we have drawn here. As in the case of η/s, the gauge/gravity
calculation of τπ has made it legitimate to consider values of an important param-
eter that had not been considered before by showing that this regime arises in the
strongly coupled plasma of a quantum field theory that happens to be accessible to
reliable calculation because it possesses a gravity dual.

Let us conclude this section by mentioning that the second order transport
coefficients are known for the same nonconformal gauge theories whose bulk
viscosity we discussed in Section 6.2.3. Since conformal symmetry is broken in
these models, there are a total of 15 first and second order transport coefficients,
nine more than in the conformal case (including both shear and bulk viscosities
in the counting) [715]. In addition, the velocity of sound cs is a further indepen-
dent parameter that characterizes the zeroth order hydrodynamics of nonconformal
plasmas, whose equations of state are not given simply by P = ε/3. As for the case
of the bulk viscosity, the variable

(
1
3 − c2

s

)
can be used to parametrize deviations

from conformality, and all transport coefficients can indeed be written explicitly as
functions of

(
1
3 − c2

s

)
[511].

6.2.5 Transport coefficients in charged plasmas, including those with
quantum anomalies

So far, in the discussion of this section we have focused on the transport properties
of non-Abelian plasmas with no conserved charges. Further transport coefficients
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6.2 Transport properties 173

become relevant if we wish to characterize the viscous hydrodynamics of charged
plasmas. For example, one of the new coefficients that arises at first order in a
derivative expansion is the (electric) conductivity. It characterizes how much of
a conserved charge is transported in the presence of gradients in some chemical
potential4 or, if the conserved charge is associated with a gauged U (1) symmetry,
in response to external electric fields. Also, since the rest frames that are locally
comoving with the charge density and the energy density can differ, the description
of transport in charged plasmas requires the introduction of the heat conductivity5

which characterizes the transport of energy density in response to a temperature
gradient relative to the frame that is locally comoving with the charge density.
There are also thermoelectric coefficients that describe the transport of charge den-
sity in the presence of a temperature gradient or the transport of energy density in
the presence of an electric field or a gradient in some chemical potential.

The only one of these transport coefficients that has received some attention in
the context of understanding the properties of quark–gluon plasma is the electric
conductivity σ , which can in principle be determined from lattice calculations,
albeit calculations that face all the difficulties that, as we have seen in Section 3.2,
are associated with constraining Minkowski space spectral functions and transport
coefficients from Euclidean calculations. Current lattice calculations indicate that
the electric conductivity of quark–gluon plasma in the quenched limit in which the
N f = 3 quarks are arbitrarily heavy lies in the range [323]

1

9
� σ

QGP, quenched
electric

2 e2 T
� 1

3
(6.49)

at T � 1.45Tc, where e2 = 4π/137 is the square of the electromagnetic coupling
constant and where the sum of the squares of the electric charges of the quarks
is given by 2

3 e2 Nc = 2e2. The calculation in Ref. [323] was done only at one
temperature but more recent calculations at one other temperature [324] support
the expectation that σ is proportional to T . And, the first attempt to determine σ for
a quark–gluon plasma containing light quarks (i.e. without making the quenched
approximation) yields an estimate that falls within the range (6.49) [191, 192].

The authors of Ref. [239] have shown how to obtain an analog of the electric
conductivity for the strongly coupled plasma of N = 4 SYM theory by gauging
a U (1) subgroup of the (otherwise global) SU (4) R-symmetry of the theory. In

4 A chemical potential is an intensive thermodynamic variable which, like pressure or temperature or energy
density, varies as a function of space and time in a hydrodynamic fluid. Gradients in a chemical potential drive
flows of the corresponding conserved particle number. The chemical potential or the temperature at any point
in a moving fluid is the same as the chemical potential or the temperature of an external bath in equilibrium
with a static homogeneous fluid with the same values of all intensive thermodynamic variables.

5 The presence of a charge density is a necessary condition for the introduction of a heat conductivity only in
homogeneous and isotropic fluids. In more complicated situations, heat transport may occur in a fluid in the
absence of any charge density. We will not discuss such cases in this book.
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particular, they have chosen a U (1) subgroup such that the sum of the squares of
the charges is 2e2 in N = 4 SYM theory with Nc = 3, as in QCD with Nc =
N f = 3. (It is worth noting, though, that in QCD the electric charge is carried
entirely by fields that are in the fundamental representation of the gauge group
while in N = 4 SYM the R-charge is carried entirely by fields that are in the
adjoint representation of the gauge group.) With an analog of electromagnetism
defined, the computation of the conductivity σ then proceeds along the lines of
the holographic calculations of other transport coefficients that we have described
in Section 6.2.1 since σ is obtained from the zero-frequency limit of the current–
current correlator at vanishing three-momentum. The authors of Ref. [239] obtain

σN=4 SYM
R

2 e2 T
= N 2

c

32π
, (6.50)

which for Nc = 3 lies just below the range (6.49). We also note that the authors
of Ref. [604] have shown how to gauge a U (1) symmetry whose charge is carried
only by fundamental degrees of freedom in a model in which N f � Nc flavors of
fundamental matter, with the sum of the squares of their charges given by e2 N f Nc,
have been added to the N = 4 SYM plasma. They have calculated the conductivity
in this case, finding

σN=4 SYM
fundamental

e2 Nc N f T
= 1

4π
, (6.51)

which again lies just below the range (6.49). We shall return to this model at some
length in Chapter 9. Although it is not clear how best to make the comparison
between these theories and QCD, perhaps these results indicate that the quark–
gluon plasma of QCD is not quite as strongly coupled as the N = 4 SYM plasma
in the infinite coupling limit.

The transport coefficients involving a temperature gradient or an energy current
or both have received less attention in the QCD context but, motivated by consid-
erations from condensed matter physics, they have been calculated holographically
in Ref. [427].

For the rest of this section we shall focus on a particularly interesting class
of charged plasmas, namely those with quantum anomalies. Such systems have
been studied using the techniques of gauge/gravity duality [341, 117, 750], and
these calculations illustrate how the first order dissipative hydrodynamics of non-
Abelian plasmas in theories with anomalies features novel transport coefficients
that are not present in traditional textbook presentations of hydrodynamics like
that of Ref. [567]. We hasten to remark that the special role of quantum anomalies
in hydrodynamics was observed already in Refs. [791], and related phenomena
involving parity violating currents in the presence of rotation or in a magnetic
field, which we will refer to below as the chiral vortical and magnetic effects, were
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discovered even earlier in the pioneering work of Refs. [787, 789, 788]. How-
ever, the recent rediscovery of how anomalies influence hydrodynamic flows using
the techniques of gauge/gravity duality has led to a deeper and more systematic
understanding of how quantum anomalies can have macroscopic consequences
at length scales much larger than any mean free path or any other microscopic
length scale. In this sense, what we discuss in the following is another case
where gauge/gravity duality has contributed important qualitative insights into the
behavior of non-Abelian plasmas.

To be specific, consider a system with one global U (1) symmetry which is
anomalous. As discussed in Section 5.1.4, the boundary U (1) symmetry is mapped
to a U (1) gauge symmetry in the bulk with the boundary U (1) current Jμ mapped
to a bulk gauge field AM . That the boundary U (1) symmetry is anomalous is
reflected on the gravity side through the presence of a Chern–Simons term, the
coefficient of which determines the anomaly coefficient. In Chapter 7, we shall
explain in detail how the hydrodynamics of a neutral fluid can be derived in a
derivative expansion of Einstein’s equations for AdS5. The techniques described
there can be generalized to a charged fluid with a quantum anomaly by finding
long wavelength solutions to an Einstein–Maxwell–Chern–Simons theory in AdS5.
In contrast with the derivative expansion of the equations of motion discussed in
Section 7.2.1, such a calculation incorporates variations in space and time of not
only T (xμ) and uμ(xν) but also of the chemical potential μ(xμ) corresponding
to the anomalous global charge. One finds that up to first order in the deriva-
tive expansion, the anomalous charge current jμ ≡ 〈Jμ〉 can be written in the
form [341, 117, 750]

jμ = ρuμ − σT�μν∂ν

(μ
T

)
+ ξωμ, (6.52)

where ρ is the charge density and σ is the charge conductivity that appears at first
order in a derivative expansion. The last term implies a contribution to the current
that is directed parallel to, and is induced by, the vorticity ωμ ≡ 1

2ε
μνλρuν∂λuρ .

This is called the chiral vortical effect. For non-anomalous currents, such a term
is forbidden by the second law of thermodynamics, and that is the reason why it
does not appear in traditional textbooks on hydrodynamics [750]. However, such
currents can in fact arise in rotating systems [787, 789, 788, 791, 792]. It should
therefore not have been a surprise when such a term was found in the hydrodynam-
ics of the charged fluid described above [341, 117] and, as argued most generally
in the analysis of these calculations in Ref. [750], such a term must be present if the
current in question corresponds to an anomalous global symmetry. More precisely,
if the anomaly of Jμ is given by

∂μ Jμ = −1

8
Cεμνλρ Fμν Fαβ , (6.53)
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with F the field strength of an external gauge field coupled to the current Jμ itself,
then the new transport coefficient ξ entering (6.52) is completely determined by
the anomaly coefficient C and is given in the simplest case by [750]

ξ = C

(
μ2 − 2

3

μ3ρ

ε + P

)
. (6.54)

We note that, in addition to the contribution written here, if the U (1) current
features a mixed gravitational anomaly, i.e. if there is an additional term on the
right-hand side of (6.53) proportional to εμνλρ Rα

βμν Rβ

αλρ with R the Riemann
tensor, then ξ includes a term proportional to T 2 that is present even when
μ = 0, as seen in quantum field theoretical derivations of the chiral vortical
effect [791, 569, 568, 381, 570, 497] as well as in derivations of the effect from
kinetic transport theory [366].

The specific instance of a charged non-Abelian plasma that we have discussed
above provides a good illustration of the generic relation between a quantum
anomaly and the vorticity-induced contribution to the corresponding current that
it induces, namely the chiral vortical effect. Further qualitatively new and interest-
ing effects are seen if one considers such charged plasmas embedded in an external
field coupling to the current. In classical textbook presentations of hydrodynamics,
the current (6.52) will acquire in an external electromagnetic field a term propor-
tional to the electric field strength Eμ ≡ Fμνuν . The proportionality constant in
front of Eμ is not an independent transport coefficient; it is the same charge con-
ductivity σ that determines the magnitude of the electric current that flows in the
presence of gradients in the chemical potential. In addition, in the presence of quan-
tum anomalies there is also a contribution to the current (6.52) that is proportional
to the magnetic field strength Bμ ≡ 1

2ε
μναβuν Fαβ denoted by ξB Bμ with

ξB = C

(
μ − 1

2

μ2ρ

ε + P

)
, (6.55)

meaning that ξB is again proportional to the strength C of the quantum anomaly.
This means that a quantum anomaly can induce an electric current in the direction
of an applied external magnetic field. This is called the chiral magnetic effect.

In order to apply these ideas to the QCD plasma they must be generalized
because in these applications the electric and magnetic field strengths of interest
are those of ordinary electromagnetism, whose gauge field couples to the non-
anomalous vector (i.e. electric) current J Vμ, not to the anomalous axial current
J Aμ. In Ref. [750], the analysis is generalized even further to a theory in which
there are arbitrarily many U (1) currents, some or all of which are anomalous, with
the anomaly equation (6.53) replaced by
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∂μ J aμ = −1

8
Cabcεμνλρ Fb

μν Fc
λρ , (6.56)

where the different currents are enumerated by a, b and c and where Cabc is sym-
metric under permutations of its indices. In this context, the chiral vortical effect
for each of the currents is controlled by a coefficient ξ a given by a generalization
of (6.54):

ξ a = Cabcμbμc − 2

3
ρaCbcd μ

bμcμd

ε + P
. (6.57)

And, in the presence of a magnetic field for the bth U (1) the current J aμ for the
ath U (1) receives a contribution ξ ab

B Bbμ with

ξ ab
B = Cabcμc − 1

2
ρaCbcd μ

cμd

ε + P
, (6.58)

which is the generalization of (6.55). If we now specialize to the case that is
relevant for QCD, we have two U (1) currents, J Vμ and J Aμ, the only nonzero
anomaly coefficients are C AV V and permutations, with C AV V = Nc e2/(2π2), and
C AAA = C AV V /3 (see, e.g., [488, 684]), and the only magnetic field strength of
interest to us is BVμ. In QCD, therefore, the chiral vortical effect coefficients are

ξ A = C AV VμVμV + C AAAμAμA − 2

3
ρ A 3C AV VμAμVμV + C AAAμAμAμA

ε + P
(6.59)

and

ξ V = 2C AV VμVμA − 2

3
ρV 3C AV VμAμVμV + C AAAμAμAμA

ε + P
. (6.60)

Note that (6.59) reduces to (6.54) if μV = 0, as it should. The chiral magnetic
effect coefficients are

ξ AV
B = C AV VμV − ρ AC AV V μAμV

ε + P
(6.61)

and

ξ V V
B = C AV VμA − ρV C AV V μAμV

ε + P
(6.62)

in QCD. Because the derivation of the chiral vortical effect does not require a gauge
field coupled to J Vμ, in (6.59) and (6.60) the vector current can be taken to be either
the baryon number current or the electric current, meaning that μV could be either
μB or the chemical potential for electric charge, which is to say the electrostatic
potential. In (6.61) and (6.62), μV is the electrostatic potential.

We note that both the chiral vortical and the chiral magnetic effects are of poten-
tial phenomenological interest. For example, the first term on the right-hand side of
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(6.59) tells us that in a rotating lump of cold dense quark matter in which μB > 0,
as may be found within the core of a neutron star, an axial current will develop
along the rotation axis, meaning that quarks with opposite chirality will move in
opposite directions, parallel and antiparallel to the rotation vector. In this way, an
anomalous current in the direction of the rotation vector will be induced. Similarly,
in a region of quark–gluon plasma in which there is an external magnetic field,
for example sourced by the positively charged spectators in a heavy ion collision
with nonzero impact parameter, the first terms on the right-hand sides of (6.61) and
(6.62) both have striking implications. From (6.62) we see that in a region of the
plasma that is in a magnetic field and in which the density of axial charge happens
to be nonzero there will be a tendency toward developing an electric current parallel
(or antiparallel, depending on the sign of the axial charge density) to the magnetic
field, with positively charged and negatively charged particles moving in opposite
directions, parallel and antiparallel to the magnetic field [527, 526, 528, 365, 467].
And, from (6.61) we see that in a region of the plasma that is in a magnetic field and
in which the density of electric charge happens to be nonzero there will be a ten-
dency toward developing an axial current parallel (or antiparallel) to the magnetic
field, with quarks with opposite chirality moving in opposite directions, parallel
and antiparallel to the magnetic field [222, 220]. The observable consequences of
these anomalous transport phenomena are currently under active investigation and,
although various authors have employed gauge/string duality in their investigations
of the chiral magnetic effect, because the phenomenological side of the story is still
being written we will not present it in this book.

In summary, this discussion of charged non-Abelian plasmas with anomalous
currents illustrates that beyond the by now rather complete understanding of the
effects and importance of shear viscosity in non-Abelian plasmas, there are a
significant number of phenomenologically relevant transport properties to which
studies based on gauge/gravity duality are likely to contribute further in the coming
years.

6.3 Quasiparticles and spectral functions

In Sections 6.1 and 6.2 we have illustrated the power of gauge/string duality by
performing, in a remarkably simple way, computations that via standard field the-
oretical methods either take teraflop-years of computer time or are not accessible.
However, to someone familiar with gauge theory calculations in other contexts it
may seem that the surprising simplicity of the calculations we have done comes
with a price. Because we do the calculations in the dual gravitational descrip-
tion of the theory, the reliable results that we obtain are not accompanied by the
kinds of intuition about what is happening in the gauge theory that we would
get automatically from a field theory calculation done with Feynman diagrams or
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could get with effort from one done on the lattice. The gravitational calculation
yields answers, and new kinds of intuition, but since by using it we are aban-
doning the description of the plasma in terms of quark and gluon quasiparticles
interacting with each other, we are losing our prior sense of how the dynamics
of the gauge theory works. There are two salient responses to this reaction. First,
any description based upon Feynman diagrams and interacting quarks and gluons
was inherently weakly coupled, meaning that once we discover that the quark–
gluon plasma produced in heavy ion collisions is a strongly coupled liquid we must
abandon our prior intuition. In this sense, the price referred to above is one that we
must pay whether or not we explore calculations done via the dual gravitational
description. Second, as we have already begun to see and as we will see again and
again throughout the remainder of this book, the new intuition that comes from the
gravitational calculations, intuition based upon strings and horizons and metric per-
turbations and such, is extraordinarily powerful as a source of insights into strongly
coupled, liquid, plasma. A reasonable skeptic, however, may still ask whether the
liquid that we are describing via the new gravitational language could in fact also
be described on the gauge theory side in familiar terms. In other words, is the
dynamics within a strongly coupled plasma different in a qualitative way from that
in a weakly coupled plasma, or does it merely differ quantitatively? We have given
up the description in terms of quasiparticles, but maybe the familiar quasiparticles
or some new kind of quasiparticles are in fact nevertheless present and, without our
knowing it, are what the gravitational dual is describing. We rule out this possibil-
ity in this section, illustrating that a strongly coupled non-Abelian gauge theory
plasma really is qualitatively different from a weakly coupled one: while in per-
turbation theory the degrees of freedom of the plasma are long-lived quasiparticle
excitations which carry momentum, color and flavor, there are no quasiparticles in
the strongly coupled plasma. The pictures that frame how we think about a weakly
coupled plasma are simply invalid for the strongly coupled case.

Determining whether a theory possesses quasiparticles with a given set of quan-
tum numbers is a conceptually well defined task: it suffices to analyze the spectral
function of operators with that set of quantum numbers and look for narrow peaks
in momentum space. In weakly coupled Yang-Mills theories, the quasiparticles
(gluons and quarks in QCD) are colored and are identified by studying operators
that are not gauge invariant. Within perturbation theory, it can be shown that the
poles of these correlators, which determine the physical properties of the quasi-
particles, are gauge invariant [186]. However, nonperturbative gauge-invariant
operators corresponding to these excitations are not known, which complicates
the search for these quasiparticles at strong coupling. Note, however, that even if
such operators were known, demonstrating the absence of quasiparticles with the
same quantum numbers as in the perturbative limit does not guarantee the absence
of quasiparticles, since at strong coupling the system could reorganize itself into
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quasiparticles with different quantum numbers. Thus, proving the absence of quasi-
particles along these lines would require exploring all possible spectral functions in
the theory. Fortunately, there is an indirect method which can answer the question
of whether any quasiparticles that carry some conserved “charge” (including
momentum) exist, although this method cannot determine the quantum numbers
of the long-lived excitations if any are found to exist. The method involves the
analysis of the small frequency structure of the spectral functions of those con-
served currents of the theory which do not describe a propagating hydrodynamic
mode like sound. As we will see, the presence of quasiparticles leads to a narrow
structure (the transport peak) in these spectral functions [10, 777]. In what follows
we will use this method to demonstrate that the strongly coupled N = 4 SYM
plasma does not possess any colored quasiparticles that carry momentum. In order
to understand how the method works, we first apply it at weak coupling where there
are quasiparticles to find.

6.3.1 Quasiparticles in perturbation theory

We start our analysis by using kinetic theory to predict the general features of
the low frequency structure of correlators of conserved currents in a weakly
coupled plasma. Kinetic theory is governed by the Boltzmann equation, which
describes excitations of a quasiparticle system at scales which are long com-
pared to the inter-particle separation. The applicability of the kinetic description
demands that there is a separation of scales such that the duration of interac-
tions among particles is short compared to their mean free path (λmfp) and that
multiparticle distributions are consequently determined by the single particle dis-
tributions. In Yang–Mills theories at nonzero temperature and weak coupling,
kinetic theory is important since it coincides with the Hard Thermal Loop descrip-
tion [439, 187, 360, 774, 524, 167], which is the effective field theory for physics
at momentum scales of order gT , and the Boltzmann equation can be derived from
first principles [167, 232, 233, 168, 169, 77]. In Yang–Mills theory at weak cou-
pling and nonzero temperature, the necessary separation of scales arises by virtue
of the small coupling constant g, since λmfp ∼ 1/(g4T ) and the time scale of
interactions is 1/μD ∼ 1/(gT ), where 1/μD is the Debye screening length of the
plasma.6 The small value of the coupling constant also leads to the factorization of
higher-point correlation functions.

In the kinetic description, the system is characterized by a distribution function

f (x, p) , (6.63)
6 Strictly speaking, λmfp ∼ 1/(g4T ) is the length-scale over which an order 1 change of the momentum-vector

of the quasiparticles occurs. Over the shorter length scale 1/μD , soft exchanges (of order gT ; not enough to
change the momenta which are ∼ T significantly) occur. These soft exchanges are not relevant for transport.
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which determines the number of particles of momentum p at spacetime position x .
Note that this position should be understood as the center of a region in spacetime
with a typical size much larger, at least, than the de Broglie wavelength of the
particles, as demanded by the uncertainty principle. As a consequence, the Fourier
transform of x , which we shall denote by K = (ω,q), must be much smaller than
the typical momentum scale of the particles, K � |p| ∼ T . (Here and below,
when we write a criterion like K � |p| we mean that both ω and |q| must be
� |p|.) Owing to this separation in momentum scales, the x-dependence of the
distribution functions is said to describe the soft modes of the gauge theory while
the momenta p are those of the hard modes. If K is sufficiently small (smaller
than the inverse inter-particle separation ∼ T ), the mode with four-momentum K
is a collective excitation that involves the motion of many particles, while p is
the momentum of those particles. In this case, the Fourier-transformed distribution
f (K , p) can be interpreted approximately as the number of particles within the
wavelength of the excitation. At the long distances at which the kinetic theory
description is valid, particles are on mass shell, as determined by the position of
the peaks in the correlation functions of the relevant operators (p0 = Ep), and these
hard modes describe particles that follow classical trajectories, at least between the
microscopic collisions. All the properties of the system can be extracted from the
distribution function. In particular, the stress tensor is given by

T μν(x) =
∫

d3 p

(2π)3

pμ pν

E p
f (x, p) . (6.64)

Since all quasiparticles carry energy and momentum, we will concentrate only
on the kinetic theory description of stress tensor correlators. Our analysis is anal-
ogous to the one performed for the determination of the Green–Kubo formulae in
Appendix A, and proceeds by studying the response of the system to small metric
fluctuations. The dynamics are, then, governed by the Boltzmann equation which
states the continuity of the distribution function f up to particle collisions [578]:

E p
d

dt
f (x, p) = pμ∂xμ f (x, p) + E p

dp
dt

∂

∂p
f (x, p) = C

[
f
]
, (6.65)

where C
[

f
]

is the collision term which encodes the microscopic collisions among
the plasma constituents and vanishes for the equilibrium distribution feq(E p)

(which does not depend on x and which does not depend on the direction of p).
In writing (6.65), we are assuming that p = E p vp, where vp is the velocity of the
particle. In curved space, in the absence of external forces, the Boltzmann equation
becomes

pμ∂xμ f (x, p) − �λ
μν pμ pν∂pλ f (x, p) = C

[
f
]
, (6.66)
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where �λ
μν are the Christoffel symbols of the background metric. As in Appendix

A, we shall determine the stress tensor correlator by introducing a perturbation in
which the metric deviates from flat space by a small amount, gμν = ημν + hμν ,
and studying the response of the system. Even though the analysis for a generic
perturbation can be performed, it will suffice for our purposes to restrict ourselves
to fluctuations which in Fourier space have only one non-vanishing component
hxy(K ). We choose the directions x and y perpendicular to the wave vector q,
which lies in the z direction. For this metric, the only Christoffel symbols that are
non-vanishing at leading order in hxy are �t

xy = �x
ty = �

y
tx = −iω hxy/2 and

�x
zy = �

y
zy = −�z

xy = iq hxy/2.
We will assume that prior to the perturbation the system is in equilibrium. In

response to the external disturbance the equilibrium distribution changes

f (x, p) = feq(E p) + δ f (x, p) . (6.67)

In the limit of a small perturbation, the modified distribution function δ f (x, p) is
linear in the perturbation hxy . We will also assume that the theory is rotationally
invariant so that the energy of the particle E p is only a function of the modulus of
p2 = gi j pi p j . As a consequence, the metric perturbation also changes the on-shell
relation, and the equilibrium distribution must also be expanded to first order in the
perturbation, yielding

feq = f0 + f ′
0 px py |vp|

p
hxy ≈ f0 + f ′

0

px py

E p
hxy , (6.68)

where f0 is the equilibrium distribution in flat space, f ′
0(E) = d f (E)/d E , and the

velocity is given by vp = d E p/dp. In the last equality we have again approximated
vp ≈ p/E p.

The solution of the Boltzmann equation requires the computation of the colli-
sion term C. In general this is a very complicated task since it takes into account
the interactions among all the system constituents, which are responsible for
maintaining equilibrium. However, since our only goal is to understand generic
features of the spectral function, it will be sufficient to employ the relaxation time
approximation

C = −E p
f − feq

τR
(6.69)

for the collision term, in which the parameter τR is referred to as the relaxation
time.7 Since small perturbations away from equilibrium are driven back to equi-
librium by particle collisions, the relaxation time must be of the order of the mean

7 In this approximation, this relaxation time coincides with the shear relaxation time: τR = τπ [106]. However,
since τπ is a property of the theory itself (defined as the appropriate coefficient in the effective field theory, also
known as the hydrodynamic expansion) whereas τR is a parameter specifying a simplified approximation to
the collision kernel, which in general is not of the form Eq. (6.69), we will maintain the notational distinction
between τπ and τR .
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free path λmfp (which is long compared to the inter-particle distance). The relax-
ation time approximation is a very significant simplification of the full dynamics,
but it will allow us to illustrate the main points that we wish to make. A com-
plete analysis of the collision term within perturbation theory for the purpose of
extracting the transport coefficients of a weakly coupled plasma can be found in
Refs. [75, 78, 459, 812].

Within the approximation (6.69), upon taking into account that the distribution
function in Eq. (6.66) depends on the energy of the particles only through their
spatial momenta, the solution to the linearized Boltzmann equation is given by

δ f (K , p) = −iωpx py f ′
0(p)

−iω + ivpq + 1
τR

hxy(K )

E p
. (6.70)

Substituting this into Eq. (6.64) we learn that the perturbation of the distribution
function leads to a perturbation of the stress tensor given by

δT μν(K ) =
∫

d3 p

(2π)3

pμ pν

E p
δ f (K , p) = −Gxy,xy

R (K )hxy(K ) , (6.71)

where the retarded correlator is given by

Gxy,xy
R (K ) = −

∫
d3 p

(2π)3
vxvy ω px py f ′

0(p)

ω − qvp + i
τR

. (6.72)

From the definition (3.13), the spectral function associated with this correlator is

ρxy,xy(K ) = −ω

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p)

2
τR

(ω − qvp)
2 + 1

τ 2
R

. (6.73)

Obtaining this spectral function was our goal, because as we shall now see it has
qualitative features that indicate the presence (in this weakly coupled plasma) of
quasiparticles.

To clarify the structure of the spectral function (6.73) we begin by describing the
free theory limit, in which τR → ∞ since the collision term vanishes. In this limit,
the Lorentzian may be replaced by a δ-function, yielding

ρxy,xy(K ) = −ω

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p) 2π δ

(
ω − q · vp

)
. (6.74)

The δ-function arises because, in this limit, the external perturbation (the gravity
wave) interacts with free particles. The δ-function encodes the conservation of the
energy of the free particles in the plasma that absorb the energy and momentum
of the gravity wave. Thus, in the free theory limit, this δ-function encodes the
existence of free particles in the plasma. For an isotropic distribution of particles,
such as the thermal distribution, at any q 
= 0 the integration over angles washes
out the δ-function and one is left with some function of ω that is characterized by
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the typical momentum scale of the particles (∼ T ) and that is not of interest to us
here.8 On the other hand, at q = 0 we find that 1

ω
ρxy,xy(ω, 0) is proportional to

δ(ω). This δ-function at ω = 0 in the low momentum spectral function is a direct
consequence of the presence of free particles in the plasma. As we now discuss,
the effect of weak interactions is to dress the particles into quasiparticles and to
broaden the δ-function into a narrow, tall, peak at ω = 0.

When the interactions do not vanish, we can proceed by relating the relaxation
time to the shear viscosity. To do so, we work in the hydrodynamic limit in which
all momenta must be smaller than any internal scale. This means that we can set q
to zero, but we must keep the relaxation time τR finite. The spectral density at zero
momentum is then given by

ρxy,xy(ω, 0) = −ω

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p)

2
τR

ω2 + 1
τ 2

R

. (6.75)

Note that the spectral density at zero momentum has a peak at ω = 0, and note in
particular that the width in ω of this peak is ∼ 1/τR � T . The spectral density
has vanishing strength for ω � 1/τR . This low frequency structure in the zero-
momentum spectral function is called the “transport peak”. It is clear that in the
τR → ∞ limit it becomes the δ-function that characterizes the spectral density of
the free theory that we described above. Here, in the presence of weak interactions,
this peak at ω = 0 is a direct consequence of the presence of momentum-carrying
quasiparticles whose mean free time is ∼ τR .

The expression (6.75) is only valid for ω � T where the modes are correctly
described by the Boltzmann equation. For ω � T , since the quasiparticles can
be resolved, the structure of the spectral density is close to that in vacuum. The
separation of scales in the spectral density is directly inherited from the separation
of scales which allows the Boltzmann description. Finally, using the Green–Kubo
formula for the shear viscosity (A.9), we find

η = −τR

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p) . (6.76)

Thus, since η is determined by the collisions among the quasiparticles, we
can understand 1/τR as the width that arises because the quasiparticles do not
have well-defined momenta due to the collisions among them. In particular, in
perturbation theory [75, 78]

8 A distinct peak at in the spectral density at some ω 
= 0 could be observed if the initial distribution were very
anisotropic. This can arise if the theory has a (gauged) conserved charge and if the system is analyzed in the
presence of a constant force that acts on this charge – i.e. an electric field.
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1

τR
∼ 1

T
g4 ln

1

g
∼ 1

λmfp
. (6.77)

However, independent of the value of the weak coupling or the details of the under-
lying theory, Eq. (6.76) shows that the presence of quasiparticles in the system, as
assumed in kinetic theory, imposes a strong relation between the shear viscosity of
the plasma and the width of the transport peak. This relation can be further simpli-
fied by assuming that the quasiparticles of the system are massless, which leads to
the conformal equation of state with pressure p = ε/3. Recalling that for a weakly
coupled plasma in equilibrium

∫
d3p p f0(p) = 6π3Ts, we see that Eq. (6.76) can

be recast as

τR = 5

T

η

s
. (6.78)

While this relation is based on an oversimplified relaxation time approach, a more
complete perturbative computation, which takes into account the explicit form of
the interaction kernel as well as the thermal mass corrections to the equilibrium
distributions, leads, at most, to a 20% correction of this result, as we have quoted
in Eq. (6.46) [812].

Let us summarize the main points. The zero-momentum spectral densities of a
plasma with quasiparticles have a completely distinctive structure: there is a sep-
aration of scales between the scale T (the typical momentum of the quasiparticles
in the plasma) and the much lower scale 1/λmfp. In particular, there is a narrow
peak in ρ(ω, 0)/ω around ω = 0 of width τR ∼ 1/λmfp and height 2η. At larger
frequencies, the strength of the spectral function is very small. At the scale of the
mass of the quasiparticles, the spectral function grows again. For massless particles
or those with mass much smaller than any temperature-related scale, the role of the
mass threshold is played by the thermal mass of the particles, gT , which is much
higher than the scale 1/λmfp ∼ g4T associated with the mean free path due to the
weakness of the coupling. Finally, above the scale T the structure of the spectral
function approaches what it would be in vacuum. A sketch of this behavior can be
found in the top panel of Fig. 6.1. These qualitative features are independent of any
details of the theory, and do not even depend on its symmetries. All that matters is
the existence of momentum-carrying quasiparticles. In the presence of quasiparti-
cles, no matter what their quantum numbers are, these qualitative features must be
present in the spectral density.

6.3.2 Absence of quasiparticles at strong coupling

We return now to the strongly coupled N = 4 SYM plasma, with its dual gravita-
tional description, in order to compare the expectation (6.75) for how the spectral
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Figure 6.1 Top: sketch of the spectral function at zero momentum as a function
of frequency for a weakly coupled plasma, as obtained from kinetic theory. The
narrow structure at small frequency is the transport peak with a width 1/τR that
is suppressed by the coupling (1/τR ∼ g4T ). The thermal mass is mth ∝ gT .
Bottom: spectral function for the shear channel in the strongly coupled plasma
of N = 4 SYM theory computed via gauge/string duality [777] (solid red) and a
comparison with the vacuum spectral function (dashed black) which it approaches
at high frequencies. The vertical axis of this figure has been scaled by the shear
viscosity η = s/4π of the strongly coupled plasma. Note that the definition of
ρxyxy = −ImG R/π used in Ref. [777] is different from that in Eq. (3.13) by a
factor of π/2.

density should look if the plasma contains any momentum-carrying quasiparticles
to an explicit computation of the retarded correlator at strong coupling, of course
done via gauge/string duality. In this section we will benefit from the general
analyses of Sections 6.2.1 and 6.2.2. As in the kinetic theory computation, we
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study the response to a metric fluctuation hxy(ω,q) in the boundary theory, with
the same conventions as before. As in Section 6.2.2, the fluctuation in the boundary
leads to a metric perturbation in the bulk, δgy

x , of the form

δgy
x (ω, q, z) = φ(ω, q, z)e−iωt+iqz . (6.79)

The field φ is governed by the classical action (6.31) which yields an equation of
motion for φ(ω, q, z) that is given by

φ′′(ω, q, u) − 1 + u2

u f
φ′(ω, q, u) + w2 − q2(1 − u2)

u f 2
φ(ω, q, u) = 0 , (6.80)

where u = z2, w = ω/(2πT ) and q = q/(2πT ). We may now use the general
program outlined in Section 5.3.3 to determine the retarded correlator. It is given
by Eq. (5.64) which, together with Eqs. (6.18) and (6.32), leads to

Gxy,xy
R = − lim

u→0

1

16πG N

√−gguu∂uφ(w, q, u)

φ0(w, q, u)
, (6.81)

where φ(w, q, u) is the solution to the equation of motion (6.80) with infalling
boundary conditions at the horizon. For arbitrary values of w and q, Eq. (6.80)
must be solved numerically [777, 553]. From the correlator (6.81), the spectral
function is evaluated using the definition (3.13). The result of this computation at
zero spatial momentum q = 0 is shown in the bottom panel of Fig. 6.1, where we
have plotted ρ/ω which should have a peak at ω = 0 if there are any quasiparticles
present.

In stark contrast to the kinetic theory expectation, there is no transport peak in the
spectral function at strong coupling. In fact, the spectral function has no interest-
ing structure at all at small frequencies. The numerical computation whose results
are plotted in the bottom panel of Fig. 6.1 also shows that there is no separation
of scales in the spectral function. In the strong coupling calculation, quite unlike
in perturbation theory, the small and large frequency behaviors join smoothly and
the spectral density is only a function of w = ω/2πT . This could perhaps have
been expected in a conformal theory with no small coupling constant, but note
that a free massless theory is conformal and that theory does have a δ-function
peak in its spectral function at zero frequency. So, having the explicit computation
that gauge/string duality provides is necessary to give us confidence in the result
that there is no transport peak in the strongly coupled plasma. The absence of the
transport peak shows unambiguously that there are no momentum-carrying quasi-
particles in the strongly coupled plasma. Thus, the physical picture of the system
is completely different from that in perturbation theory.

The considerations we have discussed motivate the expectation that the absence
of quasiparticles is a generic property of strong coupling and is not specific to
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any particular theory with any particular symmetries or matter content. To do so,
let us recall that in the kinetic theory calculation the separation of scales required
for its consistency are a consequence of the weak coupling; this is so in pertur-
bative QCD or in perturbative N = 4 or in any weakly coupled plasma. Now,
imagine increasing the coupling. According to kinetic theory, independent of the
symmetries or the matter content of the theory, the width of the transport peak
grows and its height decreases as the coupling increases. This reflects the fact that
as the coupling grows so does the width of the quasiparticles. Extrapolating this
trend to larger and larger couplings leads to the disappearance of the transport peak
which, at a qualitative level, agrees nicely with the strong coupling result for the
N = 4 SYM plasma obtained by explicit computation and shown in the right
panel of Fig. 6.1. As we will argue in the next section, this observation is one of
the most salient motivations for the phenomenological applications of AdS-based
techniques.

6.3.3 Are there quasiparticles in the QGP?

As we have argued extensively in Section 2.2, Chapter 3 and Section 6.2, the
quark–gluon plasma of QCD at temperatures a few times its Tc is strongly cou-
pled. As a consequence, the quasiparticle picture that has conventionally been used
to think about its dynamics is unlikely to be valid in this regime. Taking advantage
of the general discussion of the previous sections, in this section we will provide
further evidence in support of the absence of quasiparticles excitations in the QCD
plasma.

Our first observation is that the quantitative relation (6.78) imposes, in fact, a
very strong constraint on the minimum value of η/s consistent with a quasiparticle
approach. Since the width of the transport peak, 1/τR , must be small for a con-
sistent quasiparticle description, the relaxation time must be long compared to the
inverse temperature, T τR � 1, which, together with Eq. (6.78), implies

η

s
� 1

5
. (6.82)

As we have stressed, this lower bound on η/s arises solely by demanding the
presence of quasiparticles and is independent of the underlying dynamics of the
system. It is instructive to express this bound in units of 1/4π , which shows that
any value of η/s < 2.5/4π is incompatible with a quasiparticle description, which
is consistent with the absence of quasiparticles in strongly coupled N = 4 SYM
discussed in the previous section. Furthermore, the phenomenological fits to flow
data described in Section 2.2 favor η/s values which are smaller than the bound
(6.82), indicating that the relevant degrees of freedom of the QCD plasma in this
region of parameter space cannot be described in terms of quasiparticles.
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The argument above is somewhat indirect, since it utilizes the results of a com-
plicated phenomenological analysis and suffers from the systematic uncertainties
in extracting η/s from experimental data. A much cleaner approach is to try to
directly extract the relevant spectral functions of conserved currents from lattice
QCD. This is a very complicated procedure which suffers from the same numer-
ical complications that affect the extraction of η/s from the lattice, which we
briefly reviewed in Section 3.2. These difficulties notwithstanding, the authors of
Ref. [323] have made the attempt to extract the spectral function of the spatial elec-
tromagnetic current–current correlator 〈Ji (x)Ji (0)〉 with Ji (x) the electromagnetic
current of the different quark fields, from a lattice QCD calculation performed in
the quenched approximation. This spectral function, which is different from the
spectral functions of stress tensor components we studied in the previous section,
is sensitive to the transport of electric charge in the plasma. For a theory with
charged quasiparticles, similar arguments to those in Section 6.3.1 show that this
spectral function must have a transport peak in the low frequency region, signaling
the presence of charged quasiparticles. On the contrary, a strong coupling compu-
tation of this spectral function [777] leads to a structureless behavior with the same
qualitative features as those shown in the lower panel of Fig. 6.1.

The spectral function that best fits the lattice correlator at a fixed temperature
T = 1.45 Tc is shown in Fig. 6.2. In contrast to the general expectation of the
quasiparticle picture, no narrow structure was found at small frequencies. This is
a strong indication that at least charge carriers in the plasma do not behave like
well-defined quasiparticles with lifetimes longer than 1/T and that the charged
plasma components must be strongly coupled. While these lattice results clearly
disfavor a quasiparticle description of the QGP, they are also qualitatively different
from the results obtained for the same correlator via gauge/gravity duality calcu-
lations in strongly coupled N = 4 SYM, since some wide structure does remains
at low frequency. Whether this structure is a hint of the presence of some broad
excitations in the plasma or whether it is due to the many differences between
QCD and N = 4 is hard to gauge without further studies. In either case, the failure
of the quasiparticle picture makes it very important to have new techniques at our
disposal that allow us to study strongly coupled plasmas with no quasiparticles,
seeking generic consequences of the absence of quasiparticles for physical observ-
ables. Gauge/gravity duality is an excellent tool for these purposes, as we have
already seen in Sections 6.1 and 6.2 and as we will further see in the remaining
chapters of this book. Indeed, as we use gauge/gravity duality to calculate more,
and more different, physical observables we will discover that the calculations done
in the dual gravitational description begin to yield a new form of physical intuition,
phrased in the dual language rather than in the gauge theory language, in addition
to yielding reliable results.
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Figure 6.2 Spectral function of the electromagnetic current–current correlator in
QCD at T = 1.45 Tc extracted from the lattice computation in Ref. [323]. The
black band reflects the uncertainty in the spectral function due to the numerical
error of the lattice results within a fixed parametrization of the spectral function.
This spread does not include the effect of different parametrizations, which lead to
further systematic uncertainties (see Ref. [323] for details). The spectral function
for noninteracting quark–gluon plasma is also shown for comparison. This free
gas spectral function is given by the blue curve for ω > 0 and also includes a
delta function at ω = 0 that is not shown. This δ-function reflects the presence of
noninteracting quasiparticles (particles, in fact) in the free gas, as discussed in the
context of the stress–energy correlator after Eq. (6.74).

6.4 Quasinormal modes and plasma relaxation

As we have argued in Section 6.3.2, there are no colored quasiparticles in strongly
coupled N = 4 SYM. These correlators nevertheless possess an interesting
analytic structure. Inspection of Eq. (6.81) reveals that this particular retarded
correlator can have poles whenever the boundary value field φ0(w, q, u → 0)
vanishes. This observation is not restricted to the particular stress tensor chan-
nel described by Eq. (6.81). It is true for the retarded correlator of any operator
in the gauge theory since, as explained in Section 5.3, the general expression for
the retarded Green’s function Eq. (5.64) is inversely proportional to the amplitude
of the non-normalizable mode, A(k), of the field dual to the particular operator of
interest. Since, as outlined in Section 5.3, the retarded correlator is obtained from
solutions to the classical equations of motion in the gravity theory with infalling
boundary conditions at the horizon, this field theory correlator has poles for those
values of w and q for which a normalizable and infalling solution can be found.
For the particular case of the scalar mode described in Section 6.3.2, this amounts
to finding solutions to Eq. (6.80) that satisfy the boundary conditions
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φ(w, q, u → 0) = 0 , (6.83)

φ(w, q, u → 1) = (1 − u)−iw/2 , (6.84)

where the second equation corresponds to the infalling boundary condition (5.61).
A solution to the above boundary value problem cannot be found for arbitrary

values of w and q. Nevertheless, since the problem of finding these solutions is
formally identical to that of finding the energy levels of a hamiltonian in quan-
tum mechanics, it is easy to see that for a fixed value of q there will be a discrete
and generally infinite set of values wn(q) for which these solutions exist. How-
ever, differently from the quantum mechanical problem, the absorptive boundary
condition (6.84) forces these wn(q) values to be complex with a negative imaginary
part. For this reason, this discrete set of solutions are called quasinormal modes,
and the complex function wn(q) can be thought of as the dispersion relation of
the corresponding mode. Thus, at strong coupling the retarded two point functions
are analytic in the upper half frequency-plane, as expected from general consider-
ations, but with a discrete set of poles in the lower half plane, which correspond to
the quasinormal modes.

In general, there are no closed form expressions for the quasinormal mode spec-
trum of a given operator and the frequencies wn(q) must be found numerically. For
the field φ, the first few quasinormal modes are plotted in the top panel of Fig. 6.3
at fixed q = 1 [555]. These complex frequencies have imaginary parts which are
as large as their real parts. Thus, the poles of the associated stress tensor correlator
do not describe quasiparticles. Furthermore, since the widths of these modes are
of order T or larger, the lifetimes of the associated excitations are of order 1/T or
shorter.

Although the low momentum modes described by these quasinormal modes all
have short lifetimes, we shall see in Section 8.6 that in some channels the imaginary
parts of their complex frequencies are proportional to (πT )4/3q−1/3 and so vanish
in the limit in which q → ∞ and w/q → 1 [349]. In this regime, they describe
short wavelength collective modes moving at close to the speed of light. Following
Ref. [295], we shall use this feature to construct a model of a jet moving through
the strongly coupled plasma in Section 8.6.

The interpretation of these quasinormal mode excitations on the gravity side
is straightforward. Since the field φ describes a particular set of metric fluctu-
ations (6.79), these modes describe the relaxation of small perturbations of the
thermal black hole, which lead to disturbances of the black hole metric. Simi-
larly, since these modes correspond to the poles of the retarded Green’s function,
they describe the relaxation of the strongly coupled plasma as it responds to exter-
nal disturbances. At sufficiently long times, this relaxation process is dominated
by the lowest mode, since it possesses the smallest imaginary part and, thus, the
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Figure 6.3 Location of the quasinormal mode poles in the complex w plane at
fixed q = 1 for the scalar (top panel) and sound (bottom panel) components of
the stress tensor. Figures taken from Ref. [555].

longest lifetime. For this particular channel, the imaginary part of the latter mode is
always of order T and all excitations relax within a time 1/T , which is the generic
strong coupling prediction for all plasma excitations which do not involve con-
served currents. (The component of the stress tensor associated with φ decouples
from the conservation equation.)

In contrast to the typical correlators that describe the response of the plasma
(or thermal black hole) to generic disturbances, such as those described above,
the relaxation of disturbances in the conserved currents must be described in the
long time and long distance limit by hydrodynamics, as we have described in Sec-
tion 2.2. Thus, the structure of the retarded correlator for the associated operator
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must reflect the general expectations from hydrodynamics in the q → 0, w → 0
limit. Since in this limit the retarded correlators for these currents are Green’s func-
tions of the conservation equations, they must have a pole solely determined by
hydrodynamics. Thus, the low momentum and frequency limit of the quasinormal
mode spectrum of the gravitational field dual to these operators must reflect the
hydrodynamic behavior. In the bottom panel of Fig. 6.3 we show the quasinormal
spectrum for the stress tensor component associated with sound waves, which will
be defined precisely in Section 8.3. All but the lowest one of the quasinormal modes
in this channel are similar to the quasinormal modes in the left panel, with real and
imaginary parts of comparable magnitude. We shall refer to all modes such as these
as non-hydrodynamic quasinormal modes. The lowest mode in the bottom panel of
Fig. 6.3 is clearly distinct from the others as it has a much smaller imaginary part.
Furthermore, the frequency of this mode w0(q) → 0 as q → 0. In contrast, all
the higher non-hydrodynamic modes have w 
= 0 at q = 0. This means that the
lowest mode controls the dynamics of the system at late times and long distances.
Furthermore, in this limit the dispersion relation of w0(q) can be found analytically
and is given by [555, 107]

w0 = ± 1√
3
q − iq2

3
+ O

(
q3
)
, (6.85)

which coincides with the sound dispersion relation (6.41) with c2
s = 1/3, η/s =

1/4π and ζ = 0, consistent with our previous derivation of the shear viscosity
to entropy ratio in Section 6.2. This analysis can be used to determine additional
transport coefficients, as has been done in the case of the nonconformal model
described in Section 6.2.3 [600]. As we will elaborate further in the next chapter,
in a context in which an initially far-from-equilibrium state evolves in time and
comes at late time to be described hydrodynamically, the dynamics of the lowest
quasinormal mode controls the late time hydrodynamic behavior of the fluid while
all the other non-hydrodynamic quasinormal modes describe the relaxation of the
initially far-from-equilibrium state.
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