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Abstract

We prove that there is no algorithm to determine when an amalgam of finite rings (or semigroups) can be
embedded in the class of rings or in the class of finite rings (respectively, in the class of semigroups or in
the class of finite semigroups). These results are in marked contrast with the corresponding problems for
groups where every amalgam of finite groups can be embedded in a finite group.

2000 Mathematics subject classification: primary 16B99, 20M99; secondary 20M25, 20M0S.

1. Introduction

Let K be a class of algebras of some fixed type & (for example: rings, groups,
semigroups, heaps, finite rings). Let {S; : i € I} be a set of members of K indexed
by the set I such that for some type & algebra U there are injective homomorphisms
¢; : U — §;. This collection of algebras and mappings is called a (finite) K amalgam
and is denoted by [{S; : i € I};U;{¢; : i € I}] or more briefly [S;; U; ¢;] or even
simply [S;; U]. Less formally, a K amalgam may be viewed as a collection of algebras
from K (the S;) each sharing a common subalgebra from K (the algebra U). The
algebra U is known as the core of the amalgam.

An embedding of a K amalgam [S;; U; ¢;] is a set of injective homomorphisms
{vi:i eI} withy, : §; — T for some type & algebra T so that for s € S;and ¢ € §;,
vi(s) =v;(t)ifand only if i = j and s = ¢ or there is a u € U such that ¢,;(x) = s
and ¢; (u) =1t.

The fundamental question to be asked concerning a K amalgam is the following:
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QUESTION 1.1. Given a finite K amalgam A = [S;; U], is A embeddable in an
algebra from K?

The classes K which we will be primarily concerned with in this paper are the class
of all semigroups, the class of all rings, the class of finite semigroups and the class of
finite rings. For the class of all groups and the class of finite groups, Question 1.1 has
a remarkably simple solution: the answer is ‘always’, Schreier [13]. For semigroups
and rings however this is not the case. Consider the following pair of semigroups:

-J0 1 2 3 -0 1 2 4
0[0 0 0 0 00 0 0 0
10 0 0 1 1/]0 0 0 2
210 0 0 1 2/0 0 0 2
310 11 3 410 2 2 4

The two semigroups share a common three element semigroup with zero multipli-
cation and so we may consider them as a semigroup amalgam. However this amalgam
is not embeddable in any semigroup since in that case we would have

3-.1-4)=3-2=1 and 3-1)-4=1-4=2

That is, associativity fails in any groupoid in which the amalgam is embeddable (the
first example of this kind was found by Kimura; [1, Volume II, page 139]). It is clear
that a semigroup amalgam A determines a partial groupoid in a natural way but the
example above shows that this is not necessarily a partial semigroup in the sense that
we do not necessarily have (xy)z = x (yz) whenever both sides of this expression are
defined.

Question 1.1 for rings and semigroups has consequently been the subject of a
substantial quantity of work and several books on semigroup theory contain a chap-
ter devoted to it and associated concepts. The question may of course be restated
as a decision problem (which we now formulate specifically in terms of rings and
semigroups):

PROBLEM 1.2. Determine if a finite ring (semigroup) amalgam A = [S;; U] is
embeddable in ring (or semigroup).

More generally we may state the following problems:

PROBLEM 1.3. (i) Given a finite ring (semigroup) amalgam A = [S;; U] of
rings (semigroups) from a class K, determine if A is embeddable in a ring (semigroup)
from K.

(ii)) Given a finite ring (semigroup) amalgam A = [S;; U], determine if A is
embeddable in a ring (semigroup) from a class K.
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We will call Problem 1.3 (i) and Problem 1.3 (ii) (within the class of rings or
semigroups) the strong decision problem for amalgam embeddability in K and the
weak decision problem for amalgam embeddability in K respectively. Ciearly Prob-
lem 1.2 for rings (semigroups) is simply the strong decision problem for amalgam
embeddability in the class of all rings (semigroups). Note that a negative answer to the
strong decision problem for a class K implies a negative answer to the weak decision
problem for K. In terms of decidability and undecidability these problems will coin-
cide for some classes. For example if K is a variety (that is an equationally defined
class) then any ring (semigroup) amalgam containing a ring (semigroup) not from XK
(that is, not satisfying one of the defining identities of K) clearly is not embeddable
in a member of K. Recent results of Kublanovsky and Sapir [8] can be used to show
that the strong and weak decision problems for embeddability of ring (semigroup)
amalgams in the class of finite rings (semigroups) are undecidable (see Theorem 3.3
below). The main result of this paper is the following theorem.

THEOREM 1.4. Let A = [S;; Ul be a finite ring (semigroup) amalgam. Then there is
no algorithm to decide whether A is embeddable in a ring (semigroup) or a finite ring
(finite semigroup). That is, the strong and weak decision problems for embeddability
of amalgams in the class of rings (semigroups) and in the class of finite rings (finite
semigroups) are undecidable.

In particular Problem 1.2 is undecidable. We note that there are several important
classes for which the corresponding problem has a very different solution. We have
seen that any (finite) group amalgam can be embedded in a finite group. Similarly
Hall has shown that any (finite) amalgam of inverse semigroups can be embedded in
an inverse semigroup [2], however this is not necessarily finite (see [3, page 309] for
an example, due to C. J. Ash, of an inverse semigroup amalgam not embeddable in a
finite semigroup). Interestingly, we will show in Corollary 3.2 that the weak decision
problem for inverse semigroups and finite inverse semigroups is undecidable. The
class of subsemigroups of inverse semigroups has a decidable membership problem;
see [1, Volume II] for a description due to B. Schein. However if K is a class
with undecidable membership problem then the weak decision problem for amalgam
embeddability in K must also be undecidable since individual rings (semigroups)
can be considered, trivially, as amalgams by themselves ([S;S] in our notation).
A shining example of such a class is the class of subsemigroups of completely 0-
simple semigroups which was shown to have this property by Kublanovsky (see [3]).
Naturally, this type of argument does not apply to the strong decision problem for
amalgam embeddability.

A generalization of amalgam embeddability is weak amalgam embeddability (see
[5]). If A is a ring (semigroup) amalgam [S;; U; ¢;] then we will say A is weakly
embeddable in a ring (semigroup) T if for each i there are injective homomorphisms
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v; : §; = T such that for every u € U, ¢;(u) = s and ¢; (u) = ¢ imply v;(s) = v; (1).
So any embedding of an amalgam is a weak embedding but not every weak embed-
ding is an embedding. We can replace ‘embeddable’ with ‘weakly embeddable’ in
Problem 1.3 (i) and (ii) and call the respective decision problems the strong decision
problem for weak amalgam embeddability in K and the weak decision problem for
weak amalgam embeddability in K . It is conceivable that a class K has an undecidable
(strong or weak) decision problem for amalgam embeddability but a decidable (strong
or weak) decision problem for weak amalgam embeddability (or vice versa). We will
show that this is not the case for the class of all rings (semigroups) and the class of
finite rings (semigroups).

THEOREM 1.5. The strong and weak decision problems for weak embeddability of
ring (semigroup) amalgams in the class of all rings (semigroups) and in the class of
finite rings (finite semigroups) are undecidable.

Let S be a semigroup and Z, be the field of two elements, {0, 1}. Then the universe
of the semigroup ring Z,[S] is the set of all functions f : S — {0, 1} which map
only finitely many elements of S to 1. The addition on Z,[S] is pointwise and the
multiplication is defined by f g(s) = Zm; - f (5:)8(s;). There is a natural embedding
of every semigroup S into the multiplicative semigroup of the semigroup ring Z,([S]
which sends an element s to the function f, defined by f,(#) = 1if s = r and O
otherwise. Also if S is a subsemigroup of a semigroup T, then by considering those
elements of Z,[S] which are functions sending all elements ¢ € T\S to 0 we have that
the semigroup ring Z,[S] is a subring of Z,{T]. These facts enable one to translate
many semigroup embedding problems into ring embedding problems. This will also
be true of amalgam embeddability.

Given a semigroup amalgam A = [S;; U] we can construct the ring amalgam
Z,[A} = [Z,[Si]; Z,[U]]. The amalgam A can be embedded into the multiplicative
semigroup amalgam of Z,[A] as a ‘sub-amalgam’ in the natural way. If A is (weakly)
embeddable in T, then Z,[A] is (weakly) embeddable in Z,[T] (which is finite if and
only if T is). Furthermore, if Z,[A] is (weakly) embeddable in a ring or finite ring
R then the amalgam A (which is a ‘sub-amalgam’ of the multiplicative semigroup
amalgam of the ring amalgam Z,[A]) is (weakly) embeddable in the multiplicative
semigroup of R. Thus it will suffice to prove Theorem 1.4 and Theorem 1.5 in the
case of semigroups.

Theorem 1.4 and Theorem 1.5 admit a relatively simple proof in the style of
several other recent undecidability results concerning embedding problems of finite
semigroups and general algebras: [3, 6, 8,9, 11]. In particular, the results in [8] can
be modified to give Theorem 3.3 in this paper. Common to all of these papers are
proofs roughly of the following format: for every partial group G a finite semigroup
(or algebra) S is constructed such that the answer to the relevant embedding problem
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is ‘yes’ for S if and only if G is embeddable in a group. Since the embeddability of
finite partial groups in the class of all groups or the class of finite groups is undecidable
(see [7, Connection 2.2]), the result follows.

After the above results were obtained (in 1997) the author was informed by Mark
Sapir that he had earlier obtained Theorem 1.4 using the evidently different method
of Minsky machines. In fact Sapir shows that there exists an amalgam of two finite
semigroups whose amalgamated free product has an undecidable word problem [12].
While this surprising result was not obtained by the author of this paper, the proof
we give here of Theorem 1.4 avoids any technicalities associated with the Minsky
machine encoding used in [12] and allows the introduction of some significant bounds
on the size of the core semigroup and also on one of the semigroups involved in the
amalgam (a finite bound on the cardinality of the entire amalgam would obviously
imply decidability of the corresponding embedding problem since there would be
only finitely many amalgams to consider). The proof of the undecidability of the
strong decision problem for amalgam embeddability in the class of finite semigroups
presented in [12] is similar to the one given here.

2. Preliminaries

Throughout this paper we will adopt the notation that if S is a semigroup with
identity element, then S denotes simply S and if S is a semigroup without identity
element, then S' denotes the semigroup obtained from S by adjoining an identity
element. When considering a semigroup (or any other kind of algebraic structure)
S, by S we will mean the underlying set or universe on which the operation of S is
defined (or partially defined, as the case may be).

On any semigroup S we can define the following equivalence relations

&5 ={(a,b):3x,y € §" such thatxa = b, yb = a},

#° ={(a,b): 3x,y € S' such thatax = b, by = a},
FS={(a,b):3w,x,y,z € S such that wax = b, ybz = a},
H=LNR, DPB=LoR=RoL.

When there is no confusion as to what semigroup a particular relation is being de-
fined on, the superscripts of these relations will be dropped. These five equivalence
relations are known as Green’s relations and are fundamental concepts in the study of
semigroups. We will denote by L, (respectively R,, H,, J,, D,) the equivalence class
of & (respectively Z, 5, _#, 9) containing a.

Two important results concerning Green'’s relations are the following. Proofs will
be omitted since they are well known and can be found in almost any semigroup
textbook (see [1] or [5] for example).
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LEMMA 2.1 (Green). Let a and b be two & equivalent elements of a semigroup S
and let s,t € S' be such that as = b and bt = a (s, t exist by the definition of #).
Then the mappings given by x +— xs and y — yt forx € L,, y € L, are #Z-class
preserving, mutually inverse, injective mappings from L, to L, and from L, to L,
respectively.

Recall that an element g of a semigroup S is regular if there is an x such that
axa = a.

LEMMA 2.2. (i) Ifa D-class D of a semigroup S contains a regular element
then every element of D is regular and D is called a regular 2-class of S.

(ii) If a D-class D of a semigroup S is regular then every ¥-class and every
R-class in D, contains an F-class that is a subgroup of S.

The following concept due to Sapir plays an important role in [8] and [11].

DEFINITION 2.3. A split system is a triple of sets (A, B, C) with an associated
operation A x B — C. An embedding of a split system into a semigroup S is a
triple (i, j, k) of injective maps j : A - S, k: B —» Sand!: C —» § and
Jj (a)k(b) = l(ab), foreacha € A and b € B.

A variation on split systems called split pairs play an analogous role in [6].

As mentioned above, the proof of Theorem 1.4 will use the undecidability of the
embedding problem of finite partial groups in the class of all groups and the class of
finite groups (see [7, Connection 2.2]). By a partial group we will mean a set with
an element 1 and with a partial binary operation which is, where defined, associative
and satisfies 1x = x1 = x and is such that if gh = gkor hg = kg then h = k. A
symmetric partial group (see [8]) is a partial group G with the property that for every
g € G there is a unique g’ € G’ such that gg’ = g’'g = 1. For any finite partial
group we may construct a symmetric extension G’ of G which is a symmetric partial
group containing G such that for every g € (', either g or g’ is contained in the
set G. This last condition ensures that there are only finitely many possible symmetric
extensions and they may be effectively listed. It is also clear that if G is embeddable
in a group, then there is a symmetric extension of G that is embeddable in a group,
since every group may be considered as a symmetric partial group (where the ‘partial’
operation is defined everywhere). Thus the problem of determining whether a finite
symmetric partial group is embeddable in a group or in a finite group is undecidable
also; otherwise we would have the following algorithm for checking embeddability
of finite partial groups. Construct all symmetric extensions of the given partial group
and check if any are embeddable in a group or finite group. If the answer is yes, then
the original partial group is embeddable in the same group. If the answer is no, then
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the original partial group is not embeddable in a group or a finite group (this would of
course be a rather slow algorithm, but an algorithm nevertheless).
The following definition first appeared in [3].

DEFINITION 2.4. Let G and G’ be partial groups such that G is embedded in G'.
Foreachi =0, 1,2, ..., let G’ be the subset of the universe of G’ defined as follows:
G° = {1} (the identity element), G' = G, G'*!' = G'G. Then for k > 2, the partial
group G’ is an extension of rank k of G if and only if

(1) 6 =U,G,

(2) for every pair of positive integers i, j with i + j < k and every pair of elements
x € G',y € G/, the product xy exists and is contained in G'*/,

(3) ifi+j > kandx € G'\ G'"!, y € G \ G’ ! then the product xy is not defined,
(4) ifi+j+I<kandx € G',y € G, z € G, then (xy)z and x (yz) are defined
and equal,

(5) forf,g,he G ,fg=fhorgf = hf ifand only if g = A.

For all arguments to follow we will take G4 to be an extension of rank four of a
finite symmetric partial group G, and G; will be used to denote the set U;=0 G for
i <4

A group H can be viewed trivially as an extension of arbitrary rank of itself. So
if a symmetric partial group G is embeddable in a group H, then for every & there is
an extension of rank k of G that is also embeddable in H, and since there are only
finitely many possible extensions of rank k of a finite partial group, all of which can
be effectively listed, we have the following lemma.

LEMMA 2.5 ([3]). The problem of determining whether or not an extension of rank
k of a partial group is embeddable in a group or in a finite group is undecidable.

With every extension G’ of rank two of a partial group G we may construct an
associated split system

({a} x G x {B}, {b} x G x {c}, {a} x G’ x {c}).
Where the operation is defined as follows
(a,g,b)-(b,h,c)=(a,gh,c)

where gh is the product of g with 4 in G'.

We now state a fundamental lemma concerning split systems constructed in this
way. This is proved in [8] and [11]. An analogous result for the related ‘split pairs’ is
implicit in [6].
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LEMMA 2.6. Let ({a} x G x {b}, {b} x G x {c}, {a} x G’ x {c}) be the split system
associated with G, an extension of rank 2 of a finite symmetric partial group G. Then
G’ is embeddable in a group (finite group) if and only if there is an embedding (j , k, )
of ({a} x G x {b}, {b} x G x {c}, {a} x G’ x {c}) into a semigroup (finite semigroup)
T such that image of {a} x G x {b} under j and {b} x G x {c} under k lie within
I -classes. An embedding of a split system in this way is called an S¥-embedding.

DEFINITION 2.7. For any group H, the Brandt semigroup B,(H) is the semigroup
of elements of the form {0} U {(i, g,j) : g € H,0 < i,j < n+ 1} with multiplication
(,8,7)-(k,h, ) = (i, gh, ) if j = k and O otherwise.

More information on Brandt semigroups and their important role in semigroup
theory can be found in [1] or [5]. Despite the apparently simple structure of the
Brandt semigroups, in [3] it is shown that the set of finite subsemigroups of Brandt
semigroups is a non recursive set.

We now define a finite semigroup S(Gy, G4) corresponding to any finite exten-
sion G4 of rank four of a symmetric partial group G;.

DEFINITION 2.8. Let G4 be an extension of rank four of a symmetric partial group G,
with Gy, Gy, ... , G4 defined as before. Then we construct the semigroup S(Gq, Gy4)
on the set

((,8,/):0<i<j<5g€G;-;}U{0}

with the multiplication (i, g, j) - (k, h, 1) = (i, gh, ) if j = k and gh is the product
of g with & in G4 and O otherwise.

It is not difficult to verify that this is indeed a semigroup. Associativity holds
essentially because we required it to be so in our definition of an extension of rank k.
If G4 is embeddable in a group H, then S(G,, G4) can be viewed as a subsemigroup
of ‘the upper half’ of the Brandt semigroup Bs(H) over H.

Let (1) be the one element group. Now the set Bs({1)) N S(G,, G4) consists of
those elements of the set Bs((1)) with the form (i, 1, j) where { < j. Furthermore
the restriction of the operations of both Bs((1)) and S(G;, G,) to this set coincide
and form a subsemigroup. We will denote this subsemigroup by S({1}, (1)) which is
consistent with our previous definition since (1) can be considered as an extension of
rank four of itself. We can now construct the following amalgam.

DEFINITION 2.9. For a finite extension G4 of rank four of a symmetric partial group
G, define an associated semigroup amalgam A(G;, G4) by

A(G1, G4) = [S(Gy, Ga), Bs({1)); S((1), (I))].

https://doi.org/10.1017/51446788700002214 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002214

280 Marcel Jackson {9

The following tables representing S(Gy, G4) and Bs({1)) respectively may help to
visualize the amalgam we have constructed (here (i, G,j) = {(i, g,j) : g € G}):

1,Go, ) | (1,G,2) | (1,G,3) | (1,G5,4) | (1,Gy, 5)
2,G0,2) | 2,G1,3) | 2,G2,4) | (2,G3,95)
(3,60, 3) | 3,G1,4) | 3,63,5)
4,Go. 4 | 4.6, 5
(5, Gy, 5)

(1, Go, 1) 1 (1,Go,2) | (1, Gy, 3) | (1,Gop,4) | (1, Gy, 5)
(2,Go, 1) | (2,6G0,2) | 2, Go,3) | 2, Go,4) | (2, G, 5)
(3,Go, 1) | (3,G0,2) | 3,Gp,3) | (3,Go,4) | (3,Gyo,5)
(4, Go, 1) | (4,Go,2) | (4, Go,3) | (4,Gp, 4) | (4,Go,5)
5,Go, 1) | (5,G0,2) | (5,Go,3) | (5,Go,4) | (5,Gy,5)

3. Proof of the main theorem and other results

Theorem 1.4 and Theorem 1.5 now follow from the following theorem.

THEOREM 3.1. Let G, be a symmetric partial group. The following are equiva-
lent:

(1) G, is embeddable in a group (finite group).

(2) There is an extension Gy of rank four of G, that is embeddable in a group (finite
group).

(3) There is an extension G4 of rank four of G, such that A(G;, G,) is embeddable
in an inverse semigroup (finite inverse semigroup).

(4) There is an extension Gy of rank four of Gy such that A(Gy, Gy) is embeddable
in a semigroup (finite semigroup).

(5) There is an extension Gy of rank four of Gy such that A(Gy, G,) is weakly
embeddable in a semigroup (finite semigroup).

PROOF. That (1) implies (2) follows from comments earlier in this paper (see before
Lemma 2.5).

(2) implies (3): Say G4 is embeddable in a group H. Then it is easily verified
that A(Gy, G4) is embedded in the Brandt semigroup Bs(H) by the identity maps:
v : 8(Gy, G4) — Bs(H) and v, : Bs((1)) — Bs(H) that take an element from their
respective domains and assign to it the element with the same name in Bs(H). Note
that Bs(H) is finite if and only if H is a finite group and that Bs(H) is an inverse
semigroup.
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(3) implies (4): Trivial.

(4) implies (5): This follows immediately from the fact that every embedding of an
amalgam is a weak embedding of that amalgam.

(5) implies (1): Say the amalgam A(Gq, G4) is weakly embeddable in a semigroup
T (a finite semigroup T) via the injective homomorphisms v, : S(G;, G4) — T and
vy : Bs({1)) - T.

For any element g € G, consider the element v, (2, g, 3) of T. Now since G, is sym-
metric, there is an element g’ such that gg’ = g’g = 1 in Gy (and of course in G4 since
G, is contained within Gg4). So v;(2, g, 3)[vi(3,¢. 9] = vi((2,2,3)3,¢',4) =
v((2,1,4)) and

(@2, 1, 9)[v(4, 1, 2)vi((2, g, 3))]
= [vi((2, 1, N)v((4, 1, 2))]v1((2, g, 3)) (by associativity)
= (@, L, H)v(4, 1, 2912, 8, 3))  (since vi((2,1,4)) = v2((2, 1. 4)))
=[n(2 1,494, 1,2)n(2, g, 3))
= [12(@2, 1, 2))Iv:1((2, g, 3))
= [ (2, 1,2)]v((2, g, 3)) (since vi((2, 1,2)) = v2((2, 1,2)))
= (2, 8, 3)).

Note that we do not know what the product v,((4, 1, 2))v,((2, g, 3)) from the first line
actually is in T, only that it does exist. Therefore the set H,53 = {v,((2,2,3)) : g €
G,} is #-related to v,((2, 1, 4)). In particular H, ; lies within an %2-class of T.

Also [v,;((1, &', 2D]vi((2, g, 3)) = vi((1, &', 2)(2, g, 3)) = v((1, 1, 3)) and

i@, 8. 3))v2(G, 1, w1, 1, 3))
=v((2, 8, 3)(G, 1, Div((1, 1, 3))]
=v((2, & 3INA(G, 1, D)r((1, 1, 3))]
=v((2, 8, 3))(G, 1, DA, 1, 3))] = vi((2, g 3IN[A(G, 1, 3))]
= (2, 8 3I)i(G, 1,3)] = vi((2, g, 3)).

Thus H,; is within an #-class of T. In particular since H, ; is both .#-related and
A-related in T, it lies within an S#-class of T.

Now for each element ¢ € G, we can consider element v,((3, g, 4)). Replacing
every expression of the form (i, k, j) in the above arguments by (i + 1, k,j + 1) we
obtain the analogous result that the set H; 4 = {(3, g,4) : g € G} is also contained
in an ¥ -class of T.

Consider the extension G; of rank 2 of G; consisting of the elements of G, with
the partial operation f - g = h if and only if either f or g is contained in G, and
fg = hin G4. We can construct the associated split system ({a} x G; x {b}, {b} X
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G, x {c}, {a} x G, x {c}) and a corresponding embedding (j, k, I) into T defined by
j ((a, g’ b)) = vl((zv g’ 3))v k((b’ g’ C)) = V[((3, g? 4))v l((a’ hv C)) = l)l((z’ hv 4))

where g is contained in G, and h is contained in Gj. It is clear that these maps are
injective and constitute an embedding of ({a} x G, x {b}, {b} x G, x {c}, {a} x G, x{c})
since j ((a, g, b)k((b, b, ©)) = vi((2, g, 3N)vi((3, h, ) = vi((2,8,3)(3,h,4)) =
v, ((2, gh,4)) = l((a, gh, ¢)). Furthermore since the images of j and k are the sets
H, 5 and Hj 4 respectively and these lie within ##-classes of T we may apply Lemma
2.6 to show that G, is embeddable in a group. The theorem is proved. |

More specifically we have proved

COROLLARY 3.2. Given a semigroup amalgam A = [S;, S;; U] with |S,] < 26,
[U| < 16, there is no algorithm to determine whether A is embeddable (or weakly
embeddable) in any of the following: a semigroup; a finite semigroup; an inverse
semigroup; a finite inverse semigroup. As S, we may take Bs({1)) and as U we may
take S((1), (1)).

So the weak decision problem for amalgam embeddability in the class of inverse
semigroups and finite inverse semigroups is undecidable.

In the case of embedding (weak or otherwise) a semigroup amalgam in a finite
semigroup (or in a finite inverse semigroup) we may improve the bounds in this
theorem as follows.

THEOREM 3.3. Given a semigroup amalgam A = [S,, S;;U] with |§,;] < 7,
1U| <5, there is no algorithm to determine whether A is embeddable in a finite
semigroup or a finite inverse semigroup.

PROOF. This essentially follows from the main result in [8]. For any extension G,
of rank 3 of a partial group G; (with G, for i < 3 defined as before) we may construct
a semigroup S(Gj, G3) in the following way: the universe of S(Gy, G3) is the set
{4, g,j):0<i<j <4, g e G,_;} and the multiplication is defined in the same
way as that for S(Gy, G4) in Definition 2.8 (this semigroup first appeared in [3]). In
[8], Kublanovsky and Sapir show that for a symmetric partial group G, one can find
an extension Gj of rank three of G; embeddable in a finite group, if and only if one
can find a finite semigroup T containing S(Gy, G3) with elements x, y € T such that
x-(1,1,4)-y = (2,1,3) in T. With this in mind, we can construct an amalgam
consisting of S(Gy, G3) along with a semigroup that enforces this condition in any
embedding semigroup. This second semigroup, S;, can be taken as the set

{(2,1,1),4,1,3),(2,1,3),(1, 1,4, (2,1,4),(1, 1, 3), 0}
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with multiplication as within a Brandt semigroup. The set
U=1{2,13),1,1,4,2,1,4,(,1,3),0}

is common to both S; and S(G;, G3) and furthermore the restriction of the operations
of these semigroups to U coincide and forms a subsemigroup of both which we will
call U. It is now easily verified that the following constitutes a semigroup amalgam:

A’[Gla G3] = [S(Gls G3)’ SZ; U]~

Furthermore if G, is embeddable in a finite group H, then this amalgam is embeddable
in B4(H) in the obvious way (analogous to the embedding of A(G,, G4) into Bs(H)).
On the other hand, if A'(G;, G3) is embeddable into a finite semigroup T by the maps
v; and v, then we have

(2, 1, D)vi((1, 1, 4)v2((4, 1, 3)) = v2((2, 1, D)na((1, 1, H)12((4, 1, 3))
=1n(2,1,3) =v(2,1,3))

and therefore G; is embeddable in a group. ]

Note that there is a subsemigroup U’ of U on the three element set
{(2,1,3),(1,1,4),0

If we replace U by U’ throughout the proof of Theorem 3.3, all arguments remain valid
except the natural embedding of A’(G;, G3) into B,(H) is now only a weak amalgam
embedding since v,((2, 1,4)) = v,((2, 1, 4)) though (2,1,4) ¢ U'. Thus we have
proved

THEOREM 3.4. Given a semigroup amalgam A = [S,,S;;U] with |S| = 7,
|U| = 3, there is no algorithm to determine whether A is weakly embeddable in a
finite semigroup.

In [12], Sapir proves the undecidablity of the strong decision problem for amalgam
embeddability in the class of finite semigroups using an almost identical structure to
that we use to prove Theorem 3.3 above however the bounds for |S,| and |U| are 17
and 7 respectively.

Fundamental to the proof of Kublanovsky and Sapir’s result [8] is the fact that
finite semigroups consisting of only one non zero _# -class have a particularly well
defined structure: they are completely O-simple and by a well known theorem of Rees,
isomorphic to a Rees Matrix semigroup with zero over a group (see [1] or [5] for
details). The completely O-simple structure is not available in the general case of
embedding in a _# -class of an arbitrary semigroup (indeed any finite semigroup can
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be embedded in an infinite semigroup with a single _# -class which is not completely
O-simple), and this is why the proofs of Theorem 3.3 and Theorem 3.4 only apply for
embedding amalgams in the class of finite semigroups.

NOTE 3.5. Theorem 3.2, Theorem 3.3 and Theorem 3.4 have ring analogues. To
obtain these we can replace ‘semigroup’ with ‘ring’ and any numbers n appearing in
the theorems by 2".

This is because if S is a finite semigroup with n elements then the semigroup ring
Z,[S] has 2" elements.

Necessary and sufficient conditions for the embeddability of a semigroup amalgam
into a semigroup have been found by Howie [4]. We will describe this characterisation
since by Theorem 1.4 the conditions involved must not be algorithmically verifiable.

Let A = [{S; : i € I} U;{¢; : i € I}] be a semigroup amalgam. We will
assume that the sets S; are pairwise disjoint. The free product, I1*S;, is the semigroup
generated by X, = US; with the Cayley tables of the S; as relations R,. That is, IT*S;
is the semigroup (X 4; R,). We may define a congruence 6 on IT*S; as the congruence
generated by {(¢;(w), ¢; (w)) : i,j € I, u € U}. The free product of the amalgam A
is the semigroup I},;S; = (X4; R4)/6. For each i € I there are homomorphisms v;
from each S; into I17,S; defined by v;(s) = s. If these maps constitute an embedding
of the amalgam A, then it is said that A is naturally embedded in its free product.

THEOREM 3.6 ([4]). The amalgam A is embeddable in a semigroup if and only if it
is naturally embedded in its free product.

Let X/, be the set
UUXs\{¢i(w):ue U, iel})

and R/, the set of Cayley tables of the S; with every occurrence of an element of the
form ¢;(u) replaced by the element u. We have

MySi = (Xas Ra) /6 = (X5 RY).
The previous theorem can now be restated as

THEOREM 3.7. The amalgam A is embeddable in a semigroup if and only if the
elements X/, are distinct in (X/,; R,).

Thus we may reformulate Theorem 1.4 for semigroups as

COROLLARY 3.8. There is no algorithm that will solve the following decision
problem: given a finite semigroup amalgam A, determine whether two generators
x,y € X, represent different elements of the semigroup (X';; R),).
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We finish with some questions.

QUESTION 3.9. (i) What are the minimal pairs (|S,|, |U|) for which Theorem 3.2,
Theorem 3.3 or Theorem 3.4 (or their ring analogues) are true and are these minimal
pairs the same?

(ii) Are there classes for which the decision problem for amalgam embeddability is
decidable (or undecidable) and the decision problem for weak amalgam embeddability
is undecidable (or decidable respectively)?

(iii) Are there varieties V for which the (strong or weak) decision problem for amalgam
embeddability or weak amalgam embeddability is decidable (or undecidable) but the
opposite is true for the finite trace of V (that is, the finite members of V)?

Regarding the first of these questions we note that in [2] it is shown that any
semigroup amalgam with a two element core is embeddable in a semigroup. The
last question seems of particular interest when V is the class of inverse semigroups
(which form a variety in the signature {-,™'}) since it is known that every inverse
semigroup amalgam is embeddable in an inverse semigroup, but also that not every
finite inverse semigroup amalgam is embeddable in a finite inverse semigroup (see [5]).
We note however that one of the main results of [10] shows that there is an algorithm
that determines, given a finite semigroup amalgam A with inverse semigroup core,
whether A is embeddable in a finite semigroup, though the embedding semigroup is
not inverse.

NOTE 3.10. (Added in proof.) Denote the 14 element subsemigroup of Bs({1})
on the elements: {(1,1,1), (1,1,3), 1,1,5), (2,1,2), (2,1,4), (3,1,3), 3, 1, 5),
3,1,D),@,1,49,4,1,2),(5,1,5), (5,1, 3), (5, 1, 1), 0} by Cs. For any extension
Gy of rank four of a symmetric partial group Gy, the semigroup S(G,, G4) intersects
Cs on a 10 element subsemigroup, V say. If we replace the amalgam A(G,, G4) by
[S(G1, Gy), Cs; V] throughout, the proof of Theorem 3.1 continues to be valid and we
obtain a new version of Corollary 3.2 with bounds of 14 and 10 respectively. If we
replace the core semigroup V in this construction by the 8 element subsemigroup on
{((1,1,3),(1,1,9),(2,1,2),(2,1,4), 3, 1,3), (3, 1, 5), (4, 1,4), 0}, then (as in the
comments preceding Theorem 3.4) we obtain a further improved bound in the case of
weak amalgam embeddability in the class of all semigroups (this time 14 and 8).
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