SOME PROPERTIES OF C-CONVEX SETS
F. A. VALENTINE

1. Introduction. The notion of convexity in R,, (m-dimensional Euclidean
space) can be generalized to apply to non-connected sets as follows.

DerINITION 1. A4 set s said to be C-convex if each of its components is convex.
If the number of components of such a set is n, it is called a C,-convex set.

In order to determine the character of the complement of a C,-convex set,
we use the notion of L, set, a concept studied by my colleague Alfred Horn
and myself [2]. Although my original goal was to establish the fact that in the
plane the complement of a bounded open Cyr-convex set (n > 1) is an L,y set,
the auxiliary concept of ‘“Maximal families of disjoint open convex sets’’ almost
preempted my original intention. For this reason, the latter concept has been
studied in §3 separately. In order to complete the terminology, I restate the
definition given by Horn and myself [2].

DEFINITION 2. A set S is called an L, set if each pair of poinis in S can be
joined by a polygonal arc in S having at most n segments.

Throughout this paper we confine ourselves to sets in R..

2. Polygonal sets in the plane. In the following treatment the words vertex,
edge and face are used in the usual sense [3, pp. 194-5]. An edge is always inci-
dent with a face, and a face may be bounded or unbounded. A linear edge is
one which is contained in a straight line.

DEerINITION 3. A polygonal set P, is a connected closed set which has the fol-
lowing properties.

(a) It is the sum of a finite number of linear edges.

(b) Its complement consists of n components, and each of these is convex (called
a face).

(c) Each vertex of P, is incident with at least three edges.

NotaTiON. A polygonal arc P in P, joining x and y is denoted by xx; . . .

xy, where x1, . . ., x; denote the vertices of P, on P distinct from x and y. If
no such vertices exist, then P = xy. The boundary of a face F of P, is denoted

by B(F).
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DEerINITION 4. Animproper vertex of P, is one which is incident with at least
four edges of Pn. A segment of a polygonal arc P in P,, as distinguished from an
edge of P, is a maximal connected linear subset of P.

DEFINITION 5. If a polygonal arc in P, joining x and y has a shortest length
(a proper or improper minimum) relative to the arcs in Py, joining x and vy, it is
called a minimal polygonal arc, and we denote it by P(x, y).

LemmA 1. Let F be a face of P,. If x€B(F), y€B(F), then any minimal
polygonal arc P(x, y) C B(F).

Lemma 1 is an immediate consequence of the convexity of F.

LEMMA 2. Let P(x, v)= xx1. . . x¢y be a minimal polygonal arc in P,. Let
Si=(Fi, Fia, ..., Fim,) denote the collection of faces of P, which have x; as a
vertex, and which do not have x;_1x; as an edge (1 = 1,...,t; xo= x). Then all
of the faces in the collection Y =1 are distinct.

Proof. Condition (c) in Definition 3 implies that m; 21 (4 =1,...,1).
Suppose there exist two faces F;, and Fy, contained in Y %_;&; such that F;,=
Fir(1 £ 1< E < t). By Lemma 1, we have then P(x;, xx) = x%ir1. . . x:C
B(Fyr). However, since by hypothesis, x;_1xx  B(Fkr), we have x;_1x;
P(x, ), which is a contradiction. Hence Lemma 2 is clearly true.

THEOREM 1. Let P(x, )= x%1. .. x¢y be a minimal polygonal arc in Pp.
Then there exists a collection § = (Fo, F1, Fs, ..., Fy) of distinct faces of Py
such that the edge xx;31C B(F;) 1 =0,...,t; x0= %, Xep1= y). Let p denote
the number of faces in & = Y i_1F:i— §, and let v be the number of faces in P,
not incident with any part of P(x, v). Then p -+t +v < n — 2.

Proof. Theorem 1 follows from Lemma 2. Let Fyand F’, be the faces of P,
incident with xx;. As in the proof of Lemma 2, F; non € 3 ¢!1&:, F'o non €
> t1$s, since P(x, y) is minimal. Define F; to be a member of {; having
X1Xrpr1 as an edge (B = 1,...,1). Hence § has been defined, and it contains
distinct members. Moreover, since F'g non €, F/o non €®, by counting dis-
tinct faces, weget p +¢t+ 1+ v < n — 1.

COROLLARY 1. A polygonal set P, (n 2 2) is an Ln_; set.

3. Maximal families of convex sets in the plane.

DerFINITION 6. A family of disjoint open convex sets is said to be maximal
if no member of the family is a proper subset of an open convex set which is disjoint
with the rest of the family.

A family of this type containing exactly n members is called an M, set.

LeMMA 3. Each member of an open C,-convex set (n > 1) can be enclosed in
an open convex set which has a polygonal boundary, and which is disjoint with the
rest of Cp. The boundary of this set need not be connected.
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This lemma was proved by Stoelinga. See Bonnesen and Fenchel [1, p. 5].

THEOREM 2. The boundary of a maximal family M, (n > 1) of disjoint open
convex sets is the sum of a finite number of line segments, lines and half-lines.

Proof. Each member of M, must be a two-dimensional convex plane
polygon, otherwise by Lemma 3, it would not be maximal. Since there are a
finite number of members in M, each of which has a finite number of linear
elements in its boundary, the boundary of M, is the sum of a finite number
of line segments, lines and half-lines.

DEFINITION 7. A component of the complement (face) 'of la ‘polygonal set {is
called a pinwheel R provided:

(i) It is a bounded convex set.

(i) The vertices of R can be ordered consecutively (x1, %3, . . . , !xg;ﬂx¢= le1) so
that for each vertex x; there exists an edge E; of the polygonal set l‘which !abuts R
externally at x;, and which is a linear extension of xi—1x; (i = 2, o ). i(See
Figure 1; E;= E).

Es

FiGure 1. A pinwheel

TueorREM 3. Each component of the complement of the closure lof amaximal
family M, is a pinwheel.

Proof. Let K be any component of the complement of 3/,. By Theorem 2,
K has a boundary consisting solely of line segments, lines or half-lines. Let
B(K) be a component of the boundary of K. Among the finite number of ver-
tices of B(K) we include corners as well as vertices of the boundary of M,.
Since M, is maximal, there exists a finite edge x1x.C B(K).

Since M, contains a finite number of components, let C; be the member of
M, abutting x:xs. The straight line through xx; determines two open half-
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planes i7" and Ry~ where C;C R1* by definition. Let E; and E, be the edges
of C; which abut K at x; and x» respectively. Since M, is a maximal family of
convex sets, E1+ Ey— x1— %2 Ryt Moreover, since C; is convex, E;+ E;—
x1—x2e R~ Hence at least one of the edges E; and E; is a linear extension
of x1xs. Without loss of generality suppose E; is an extension of x1x,. Hence, %
must be a vertex of the boundary of M, so that at least three edges of the bound-
ary of M, are incident with x,. Hence, the interior angle 6, of K at x» is less than
w. Let xox3 denote the edge (finite or infinite) of K which together with xyx,
makes the angle 6.. The edge x2x3 must be finite, otherwise the member of M,
abutting xsxs would not be maximalrelative to M,,. By induction, we get a finite
polygonal line xyxs. . . x5 and a set of extensions E;(¢ = 2, . .., s) such that the
interior angle of K at x; is less than =, and such that E; is an extension of
%s—-1%;. Since B(K) has a finite number of vertices including corners, it is clear
that this sequence xxs. . . ¥; can only be continued until we get x1x.. . . X;—1%;
where x1, . . . x;_; are all distinct, and where x; is one of the vertices x4, xs,. . . ,
x;—2. One can prove that x;,= x;, otherwise all the extensions E; would not
exist, which is a contradiction. Since M, is maximal, the interior angle of the
simple closed polygon xixs. . . x; (x¢= x1) at x; is also less than ». Hence
X1%2. . . ¢ is a closed convex polygonal curve. Since K is connected, B(K) is
contained in the closed convex set bounded by xixs. . . x;, and it follows by
an argument of the type just given for xixs. . . x; that B(K) = xix,. . . x..

Finally, we show that the set bounded by B(K) is K. Suppose a component
B1(K) of the boundary of K exists which is interior to the convex set bounded
by B(K). By virtue of the previous paragraph, B:(K) would bound a convex
set, at least part of which would belong to K. But this would make K dis-
connected, which is a contradiction. Thus K satisfies (i) and (ii).

THEOREM 4. Each component of the boundary of a maximal family M,
(n > 1) of disjoint open convex convex sets is a polygonal set.

The complement of the boundary of M, is a maximal family M, (r 2 n), where
r — n is the number of pinwheels in the complement of M,.

Proof. Property (a) in Definition 3 holds by virtue of Theorem 2. Pro-
perties (b) and (c) hold since each member of M, is convex, and since each
residual domain of M, is convex. The concluding statement follows from
Theorem 3.

THEOREM 5. The boundary of a maximal family M, (n > 1) has a com-
ponents if and only if a — 1 members of M, are slabs (A slab is an open convex
set bounded by two parallel lines).

Proof. Let T be a component of the boundary of M,. The set T must be
unbounded, otherwise the unbounded component of M, abutting T externally
would not be convex. If the boundary of each member of M, incident! with T

1A member of M, is said to be incident with T if its boundary contains at least one edge of T.
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is connected, then the boundary of M, isin T, and T is the only component of
the boundary of M,. If a member of M, has a disconnected boundary, then it
must be a slab, since it is convex. The set T can have at most two slabs abutting
it, since two disjoint slabs must be parallel. All the slabs in M, then must be
parallel, and between two consecutive slabs there can be at most one com-
ponent of the boundary of M,. These facts clearly imply the conclusions of
Theorem 5.

In the following treatment it should be recalled that in the definition of an L,
set, the word segment was used, and not edge (See Definitions 2 and 4).

THEOREM 6. Let T be a component of the boundary of a maximal family M,
(n > 1) of disjoint open convex sets. Let s be the number of members of M, which
are incident with T. Then T is an Lo set.

Proof. Replace each slab abutting T (if any exist) by the half-plane which
contains that slab, and which abuts 7. The thus modified s sets of M, incident
with T form a maximal family M. The complement of T is a maximal family
M,. By Theorem 4, r — s = g is the number of pinwheels in M,— M,. We
designate the closures of these by Ry(k = 1,..., q). Choose x€T,y€T. If
P(x, y) = xy, then it contains at most s — 1 segments. Let P(x, ¥) = xx1. . . x:y
and § and & denote the quantities described in Theorem 1.

Case 1. Suppose x non € Ry, ynon € R, (k= 1,..., q). First, let Sg
B =1,...,q) denote the closures of the pinwheels in M,— M each of which
has one and only one vertex in common with P(x, y) —x—2y. Since each of
these vertices is then improper, we have Sg€® (8 =1,..., q1). Set up an
order on P(x, y) from x to y, and let Q;( = 1, ..., ¢2) denote in succession
the closures of the pinwheels in M,— M, for which Q;- P(x, v) contains at
least one edge of T. Each set Q,- P(x, y) is connected, and Q- P(x, v) precedes
Qs P(x,y), on P(x, y) etc. Let x* and x;2 denote the vertices of T where P(x, ¥)
enters and leaves Q; respectively. If a vertex of T is an interior point of a seg-
ment of P(x, v), it is called a removable vertex of P(x, y). If x:! and x;? are both
proper vertices of Qy, then since Q; is a pinwheel, either x;' or x,? isa removable
vertex of P(x,y). If either x,' or x,% is an improper vertex of Q,, the set & in
Theorem 1 contains at least one face corresponding to that vertex. Hence Q;
corresponds either toa face of @ or to a removable vertex of P(x,y). If x:? 5 x4!,
then Qisisolated from Q.. Ifx;2= xJ!, then x.' is improper. Moreover Q; and Q.
then have opposite orientations in the sense that the vertices of one of them are
ordered clockwise and the vertices of the other counterclockwise. (See Figure
1.) One can show that this implies the following. If xs!is %ot a removable vertex of
P(x, y), then either x;! or x,*> must be an improper vertex or a removable vertex
of P(x, y). This is true whether the sense in which the directed P(x, ¥) meets
Qs and Q- coincides with their proper orientations or not. Hence, we can assign
to each Q; and Q; either a member of @ or a removable vertex of P(x, y), and
the faces and vertices involved are all distinct. Suppose Qy, Qst1, - - -, Qryo
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are a subset of consecutive sets from Q;(j = 1, ..., ¢z) for which x2= x4},
Xrp?= Xfpoly . . .,y Xrpe—12= Xsy4.% Then all of these vertices are improper. If
none of these vertices is also a removable vertex of P(x, y), then since each
consecutive pair of Qf, Qsyy, . . ., Qrie have opposite orientations, one can
show that either x;* or xs,2 is a removable vertex of P(x, ¥) or an improper
vertex. Hence, to each set in the above consecutive sets we can assign eithera
distinct face in @ or a removable vertex of P(x ,y). Moreover, one can choose
the faces of @ just mentioned distinct from > §_1Ss. Now, by separating
P(x, y) . 2¥-.1Q; into disjoint parts, the above type of argument implies the
following. There is a subset of faces in & — > §_1Ss and a set of distinct
removable vertices of P(x, y) which together are in 1 — 1 correspondence with
Oy Qs ..., Q, Hence, if we let m equal the number of segments in P(x, ),
the above together with the fact SeC & (8 = 1, .. ., ¢1) implies that m + ¢;+
g:<$t+ 14 p. Theorem 1 implies that p+¢t+ 142 <7 — 1. Since
g1+ ¢:< ¢, ¢ — ¢a— ¢2< v, and since r = s + ¢, we have m < s — 1. Thus
P(x, y) contains at most s — 1 segments.

Case 2. Supposexnon €ERp(k=1,...,q9),y € Ri(ifixed). Lety € x,_1%a,
an edge of R;. Choose y’ in the interior of E, (see Figure 1). If E,Z Ry (k = 1,

., q), then by Case 1 P(x, ") has at most s — 1 segments. It is easy to see
that x and v can be joined by a polygonal arc having at most s — 1 segments.
Secondly, if E,C R;(j fixed), then x,€ R;, x. € R;. Let P(x, x,) and ¥ /:F:
be the quantities in Lemma 2. Since %, is an improper vertex which is an end-
point of P(x, x,), and since P(x, x.) is minimal. there exist at least two faces
of T having x, as a vertex, not belonging to > ‘&, and distinct from F, and
F’y (see Theorem 1). This together with a proof similar to Case 1 implies the
following. If x, is a removable vertex of P(x, x.)+ xoy or if x,y C P(x, x.),
then P(x, x.) contains at most s — 1 segments. If P(x, x.) and x,y are not so
related, then P(x, x,) contains at most s — 2 segments. In any case, x and ¥y
can be joined by a polygonal arc in T having at most s — 1 segments. The
same proof holds if x and y are interchanged. If both x and y are contained
in the boundaries of pinwheels of M,— M, a similar proof applied to x and y
simultaneously yields the same conclusions.

THEOREM 7. Let T be a component of the boundary of a maximal family M,,
and let s be the number of faces of M, incident with T. Suppose that s 2 3, and
suppose a slab or half-plane B exists which is incident with T. Then through any
point x € T there passes an infinite polygonal ray in T having at most s — 2
segments.

Proof. 1f x € T - B, then any half-line in T - B having x as endpoint will
suffice. If x € T — T - B, choose a point y € T — T - B which is contained
in the interior of an infinite half-line of 7". By Theorem 6, there exists a minimal
polygonal arc P(x, ) C T having at most s — 1 segments. If P(x, y)- B = 0,
then B non €, Bnon€ ® (see Theorem 1), and it is clear by the arguments
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given for Theorem 6, with v 2 1, that P(x, y) will contain at most s — 2 seg-
ments. If P(x, y)- B contains an edge of T, then clearly x can be joined to
infinity via a portion of P(x, y) and a suitable half-line in T" - B which together
contain at most s — 2 segments. If P(x, y)- B contains a vertex x’ of T which
is not incident with an edge of P(x, y) - B, then &’ is improper. Since x’ non € Ry,
(B=1,...,q), defined in the proof of Theorem 6, that proof implies that
P(x, v) will contain at most s — 2 segments. Hence in all cases x can be joined
to infinity by an at most s — 2 sided polygonal ray in 7.

4. C,-convex sets in the plane. In this section we investigate the comple-
ment of an open bounded C,-convex set.

DEFINITION 8. A maximal family of disjoint open convex sets M, is said to
be a maximal extension of an open Cp-convex set Cn iof M, Cn, and if each
member of M, contains a unique member of C,.

THEOREM 8. The complement of an open bounded C,-convex set is an Lniy
setif n > 1. If n=1, the complement is an L set.

Proof. Let M, be a maximal extension of C,, and let M, be the family
defined in Theorem 4, so that M,D M,. Let x, and x» be any two points in
M.— C,, and let K; and K be components of M, such that x,€ K, x:€ K.
The sets K1 and K; need not be distinct. When # = 1, the proof is trivial.
When 7 = 2, there exist only two components in Cs, so that the boundary of
M is a straight line. The proof that x; and x: can be joined by a polygonal arc
L; not intersecting C; is trivial.

Proof for n 2 3. Case 1. Suppose the boundary of M, has no slabs or
half-planes incident with it. In this case the boundary of M,, denoted by T,
must be connected (see Theorem 5). Ifx,€ T (¢=1,2), relabel it y;. If x;non€ T,
then since each member of C, is convex, and since each K; is not a slab or a
half-plane there exists a line segment x;y;C M,— C, such that y;€ T. By
Theorem 6, y; and vy, can be joined by an L,_; polygonal arc in T.. Hence, x;
and x, can be joined by an L,y polygonal arc in M,— C,.

Case 2. Suppose the boundary of T has at least one slab or half-plane
incident with it, and suppose that K; and K, are incident with the same
component T of T. Let s denote the number of faces of M, incident with 77,
If s = 2, x; and x; can be joined by an at most 3-sided polygonal arc in M, — Cy.
Hence, suppose s 2 3. Then either a line passes through x; not intersecting Ch,
or a segment x;y; exists such that y;€ T, x;9;- C,= 0. If both y, and y. exist,
the remainder of the proof is the same as in Case 1. Suppose a line L exists
through x; not intersecting C,, and suppose y; exists. Then by Theorem 7, a
polygonal ray Q C T exists through y, having at most s — 2 segments. Since
C, is bounded, points z:€ L, 23 € Q exist such that 212, C,= 0. Hence, it is
clear that x; and x, can be joined by an Ly, (s < 7) polygonal arc in M, — C,.
The same proof holds if x; and x, are interchanged.
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Case 3. Suppose T is disconnected, and let K; be incident with T; (4 = 1, 2),
where T'; are components of Twith T;5£ Ts. Let s; be the number of faces of M,
incident with T;. Theorem 5 implies 4 < s;+ 52 < # + 1. If s;= 2, then x; can
be joined to infinity by a half-line not intersecting C,. If s;2 3, then x; can be
joined to infinity by a half-line not intersecting C,, or a segment x;y; exists
such thst y;€ T, x;y;- C,= 0. By applying Theorem 7, then x; can be joined
to infinity in all subcases by a polygonal ray R; containing at most s;— 1
segments. Since C, is bounded, there exist points 2;€ R; such that z; and 2.
can be joined by an at most two-sided polygonal arc not intersecting Ci.
Hence x; and x; can be joined by an at most u-sided polygonal arc in M, — Ca,
where, by counting, p < (51— 1)+ (s2— 1)+ 2 = s;+ s2< % + 1.  This com-
pletes the proof.

The expression ‘‘C-convex set’” was suggested to me by Professor Max Zorn
some years ago.
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